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Abstract 

Background Noninvasive and accurate prediction of lymph node metastasis (LNM) is very important for patients 
with early-stage cervical cancer (ECC). Our study aimed to investigate the accuracy and sensitivity of radiomics mod-
els with features extracted from both intra- and peritumoral regions in magnetic resonance imaging (MRI) with T2 
weighted imaging (T2WI) and diffusion weighted imaging (DWI) for predicting LNM.

Methods A total of 247 ECC patients with confirmed lymph node status were enrolled retrospectively and randomly 
divided into training (n = 172) and testing sets (n = 75). Radiomics features were extracted from both intra- and 
peritumoral regions with different expansion dimensions (3, 5, and 7 mm) in T2WI and DWI. Radiomics signature and 
combined radiomics models were constructed with selected features. A nomogram was also constructed by combin-
ing radiomics model with clinical factors for predicting LNM.

Results The area under curves (AUCs) of radiomics signature with features from tumors in T2WI and DWI were 0.841 
vs. 0.791 and 0.820 vs. 0.771 in the training and testing sets, respectively. Combining radiomics features from tumors 
in the T2WI, DWI and peritumoral 3 mm expansion in T2WI achieved the best performance with an AUC of 0.868 and 
0.846 in the training and testing sets, respectively. A nomogram combining age and maximum tumor diameter (MTD) 
with radiomics signature achieved a C-index of 0.884 in the prediction of LNM for ECC.

Conclusions  Radiomics features extracted from both intra- and peritumoral regions in T2WI and DWI are feasible 
and promising for the preoperative prediction of LNM for patients with ECC.

Key points 

1. Radiomics models with features from MRI for LNM prediction for ECC.
2. Combined radiomics signature with intra- and peritumoral regions achieved the best performance.
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3. Combined radiomics signature with an AUC of 0.846 for predicting LNM.
4. A nomogram combining clinical factors with radiomics signature further improves predictive performance.

Keywords Early-stage cervical cancer, Lymph nodes metastasis, Radiomics, Magnetic resonance imaging, Peritumoral 
region

Background
Although the incidence of cervical cancer (CC) in the 
developed countries has decreased for the past two 
decades, it remains the fourth most common cancer 
and the leading cause of cancer-related death world-
wide in women [1]. Radical hysterectomy and pelvic 
lymphadenectomy are the standard treatment options 
for patients with early-stage cervical cancer(ECC) [2]. 
However, studies demonstrated that there is less than 
30% ECC with pelvic lymph node metastasis (LNM), 
which indicates over 70% patients with ECC were over-
treated and suffered from unnecessary complications 
of lymphadenectomy [3, 4]. It is necessary to identify 
LNM accurately for patients with ECC in order to avoid 
unnecessary lymphadenectomy. Sentinel lymph node 
(SLN) biopsy has been suggested to decrease the need 
of pelvic lymphadenectomy for patients with ECC [5, 
6]. The accuracy of SLN biopsy can be improved by 
several types of ancillary methods, including immuno-
histochemistry, polymerase chain reaction and serial 
sectioning [5–8]. However, both lymphadenectomy and 
SLN biopsy are invasive modalities; therefore, noninva-
sive and accurate prediction of LNM is very important 
for patients with ECC.

Magnetic resonance imaging (MRI) is the mainstay 
image modality for the staging of CC, especially the 
apparent diffusion coefficient (ADC) values derived 
from diffusion weighted imaging (DWI) are increasing 
applied to characterize the tumor microenvironment 
and microstructure of CC for LNM diagnosis [9]. How-
ever, traditional MRI mainly assesses the sizes of lymph 
nodes and is limited in its diagnosis sensitivity, which 
may lead to inappropriate treatment decisions [10]. 
With the emergence of radiomics, many attempts had 
been reported using different combinations of MRI in 
the preoperative prediction of LNM for patients with 
CC, such as T2 weighted imaging sequences (T2WI) 
[11–13], T2WI combined with dynamic contrast-
enhanced MRI (DCE) [14–16], multiple-parameters 
MRI [17–19], ADC [20], as well as T2WI combined 
with ADC for locally advanced CC [21]. Although the 
sensitivity of MRI in the prediction of LNM has been 
improved with radiomics, the overall performance of 
these studies ranged from poor to moderate, particu-
larly, radiomics features extracted from lymph nodes 

rather than primary tumor in some studies may affect 
the stability of radiomics features resulting from the 
relatively small volume of lymph nodes [22].

The purpose of this study is to investigate the accuracy 
and sensitivity of intra- and peritumoral radiomics fea-
tures in T2WI, DWI sequences for preoperative LNM 
prediction with ECC patients and develop a flexible nom-
ogram with clinical factors for potential clinical utilities.

Materials and methods
Patients
Patients with ECC from January 2008 and Decem-
ber 2018 were retrospectively reviewed and analyzed 
through searching electronic medical records in the 
authors’ hospital. The inclusion criteria were: (1) patients 
underwent radical hysterectomy and systematic pelvic 
lymph node dissection; (2) with histologically confirmed 
ECC according to the International Federation of Gyne-
cology and Obstetrics (FIGO) stage; (3) without any 
treatment before surgery; (4) with detailed clinical and 
pathological characteristic; (5) standard MRI examina-
tion less than 2  weeks before hysterectomy. The exclu-
sion criteria were: (1) incomplete clinical data; (2) lack of 
sufficient MRI sequences: T2WI with fat suppression or 
DWI; (3) poor image quality (including artifacts and the 
slices of ROI < 3 slices) [14]. The patients’ selection flow-
chart is shown in Fig. 1. The Ethics Committee in Clini-
cal Research (ECCR) of the authors’ hospital approved 
this study, which was conducted in accordance with the 
Declaration of Helsinki (ECCR no. 2019059), and waived 
the need of written informed consent with confirmation 
of patient data confidentiality due to nature of the retro-
spective study.

MRI acquisition and segmentation
MR images of sagittal T2WI with fat suppression and 
transverse DWI were acquired through a 3.0  T scan-
ner (PHILIPS, ACHIEVA) using a 16-channel phased 
array body coil. T2WI was acquired applying param-
eters of TR/TE = 3000/90  ms, FOV = 220 × 220  mm, 
matrix = 336 × 336, thickness = 4  mm and gap = 1  mm 
with fast spin echo sequence. DWI was acquired 
applying parameters of TR/TE = 3000/55  ms, 
FOV = 430 × 334  mm, matrix = 224 × 224, thick-
ness = 4  mm, and gap = 1  mm in transverse orientation 
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including the entire female pelvis with a single-shot echo 
planar imaging (EPI) sequence using a b value of 0 and 
1000 s/mm2. All images were stored in a picture archiv-
ing and communication system (PACS).

The regions of interest (ROIs) of tumor were manu-
ally delineated along the boundary of the tumor slice by 
slice in sagittal T2WI with fat suppression and transverse 
DWI by a radiologist with 7 years of experience via a 3D 
Slicer software (version 4.2.1, https:// www. slicer. org). 
A mask of the area with tumor boundary was defined 
as the intra-tumoral region. The peritumoral ROIs were 
obtained with python (version 3.7.6) by uniform expan-
sion of intra-tumoral region with a dimension of 3 mm, 
5 mm, 7 mm, respectively [23, 24]. The tumor boundary 
to the outer expansion boundary was defined as peri-
tumoral region. In order to ensure the accuracy of seg-
mentation, in the process of image segmentation, a senior 
radiologist has already validated all uncertain segmenta-
tion. Typical ROIs of intra- and peritumoral regions in 
sagittal T2WI with fat suppression and transverse DWI 
are shown in Fig. 2.

Radiomics feature extraction and selection
In preprocessing, intensity normalization was performed 
to transform arbitrary gray intensity values into a stand-
ardized intensity range in T2WI and DWI. Radiomics 
features of first-order, shape-based, texture, Laplacian 
of Gaussian and wavelet features were extracted from 
contoured intra- and peritumoral ROIs using Python 
package (Pyradiomics) according to Image Biomarker 

Standardization Initiative (IBSI) [25]. Mann–Whitney 
U tests were firstly used to select potentially informa-
tive features with a p < 0.05. Secondly, the least absolute 
shrinkage and selection operator (LASSO) method was 
applied to select the optimal features through tuning the 
coefficient λ and using ten-fold cross-validation to avoid 
over-fitting.

Radiomics signature and nomogram
Radiomics signatures were constructed with selected 
optimal features and their nonzero coefficients from 
intra- and peritumoral ROIs, as well as their combina-
tions for the prediction of LNM status. The performance 
of radiomics signatures was evaluated by receiver oper-
ating characteristic (ROC) curves and the value of area 
under curve (AUC). Univariate analysis was performed to 
select clinical factors that associated with LNM of ECC. 
A nomogram was constructed using multivariate logistic 
regression integrating clinical factors and radiomics sig-
nature for the preoperatively prediction of LNM of ECC. 
A C-index was calculated in the training and testing sets 
to assess the discrimination performance of the nomo-
gram. Calibration curves were plotted to evaluate the cal-
ibration of the radiomics nomogram with 1000 bootstrap 
resamples, and the goodness of fit was assessed with the 
Hosmer–Lemeshow (H–L) test [26].

Statistics analysis
Statistical analyses were performed in R software (version 
3.6.0, http:// www. Rproj ect. org). Key radiomics features 

Fig. 1 The flowchart for patients recruitment in this study

https://www.slicer.org
http://www.Rproject.org
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selection and logistic regression modeling were done 
using the “glmnet” package. Nomogram construction and 
calibration plots were performed using “rms” package. 
The H–L test was performed using “Resource Selection” 
package. The ROC curves were calculated using Medcalc 
software. For continuous clinical variables, two sample t 
test was used to assess the equality of variances between 
positive and negative LNM groups. For categorical vari-
ables, fisher’s exact test and Chi-square test were used to 
test the difference between groups. For all tests, p < 0.05 
was considered as statistically significant.

Results
A total of 247 patients with ECC were enrolled in this 
study with a mean age of 54.1 ± 10.01 (range, 28–77), as 
shown in Fig.  1 for the patients enrollment. There were 
79 patients with LNM and 168 of non-LNM, respec-
tively. Patients were randomly divided into training and 
testing sets by a ratio of 7 to 3 with 172 patients (mean 
age ± SD, 53.91 ± 9.88; range,28–77) and 75 patients 
(mean age ± SD, 54.54 ± 10.35; range, 30–75) allocated to 

the training and testing sets, respectively. There was no 
significant difference in LNM status between the train-
ing and testing sets (31.9% vs. 32%, p = 0.92). Detailed 
clinicopathologic characteristics of patients are shown in 
Table 1.

A total of 1014 radiomics features were extracted 
from the intra-, peritumoral ROIs with 3 mm, 5 mm and 
7  mm expansion in T2WI and DWI, respectively. After 
Mann–Whitney U test, there were 676, 442, 409, 462 and 
645, 387, 298, 285 radiomics features that were selected 
with intra-, peritumoral ROIs with 3  mm, 5  mm, and 
7 mm expansion in T2WI and DWI. By applying LASSO 
method, a total of 17, 12, 12, 12 and 9, 15, 5, 11 opti-
mal radiomics features were remained, respectively. The 
details are shown in Additional file 1: Fig. S1. Additional 
file  1: Table  S1 shows the selected radiomics features 
and their corresponding nonzero coefficients. Radiom-
ics score (Radscore) was calculated by multiplying the 
features with their corresponding nonzero coefficients 
and then adding them together. The Radscore based on 
intra-, peritumoral ROIs with 3  mm, 5  mm, and 7  mm 

Fig. 2 The intra- and peritumoral ROIs in this study. a is on sagittal T2WI; b is on DWI. The green line represents the boundary of the tumor; c-e are 
the example (3, 5, 7 mm expansion dimension) of the dilated MRI with various radial dilation distances outside the original masks in the MRI. The red 
rings indicate the peritumoral regions
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expansion in T2WI and DWI for each patient is shown in 
Additional file 1: Fig. S2.

The AUCs of radiomics signature with features from 
tumors in T2WI and DWI were 0.841 (0.779–0.904) vs. 
0.791 (0.718–0.865) and 0.820 (0.715–0.926) vs. 0.771 
(0.664–0.879) in the training and testing sets, respec-
tively. The best performance of radiomics signature with 
features extracted from peritumoral ROIs was peritu-
moral 3 mm expansion in T2WI and DWI with an AUC 
of 0.786 (0.669–0.903) and 0.734 (0.623–0.846) in the 
testing sets, respectively. Combining radiomics with fea-
tures from tumor and peritumoral expansion achieved a 
best AUC of 0.837 (0.733–0.940) and 0.768 (0.659–0.877) 
in the testing set for tumor plus peritumoral 3  mm 
expansion in the T2WI and DWI, respectively. Combined 
radiomics signature from tumors in the T2WI, DWI and 
peritumoral 3 mm expansion in T2WI achieved an AUC 
of 0.868 (0.809 -0.915) and 0.846 (0.753–0.940) in the 
training and testing sets, respectively. Detailed perfor-
mance of these models is presented in Table 2 and Fig. 3.

As shown in Table 3, the univariate analysis of clinical 
factors that associated with LNM of ECC, age and MTD 
were selected and combined with radiomics signature to 
develop a nomogram using multivariate logistic regres-
sion to further improve the prediction on the LNM status 
for ECC. The lymph-vascular space invasion (LVSI) was 
not included as it can be obtained only postoperatively. 
As shown in Fig. 4a, the nomogram achieved a C-index 
of 0.884 (95% CI,0.831–0.937) in the prediction of LNM 

for patients with ECC. The calibration curves are shown 
in Fig.  4b, c with no statistical significance observed in 
the H–L test (p = 0.55 and p = 0.14).

Discussion
In this study, radiomics features extracted from the 
tumor regions in T2WI and DWI achieved an AUC of 
0.820 and 0.771, respectively, in the prediction of LNM 
for patients with ECC. Combined features from tumor 
regions with additional features extracted from peritu-
moral 3  mm expansion in T2WI improved the AUC to 
0.846 in the LNM prediction. A C-index of 0.884 was 
achieved with a nomogram integrating combined radi-
omics signature with clinical factors in the prediction of 
LNM for patients with ECC.

LNM is one of the most important prognostic factors 
for patients with ECC with a reported 5-year survival rate 
of 55% vs. 90% for patients with vs. without LNM [27]. 
LNM is also important evidence for treatment decision 
with chemoradiation rather than surgery as their first 
choice to avoid possible serious complications [28]. In 
this study, 79 (31.9%) of the enrolled 247 patients were 
confirmed with LNM, which is a bit higher than reported 
statistics of less than 30% of ECC with LNM [28]. This 
may be due to that 134 out of 247 ECC patients (54.24%) 
enrolled in this study were of FIGO stage II or patients 
selection bias due to a large number of patients excluded 
because of image quality or incomplete MRI sequences. 
Therefore, accurately identifying the LNM preoperatively 

Table 1 Characteristics of the enrolled patients in the training and testing sets

LNM: lymph node metastasis; Non-LNM: without lymph node metastasis; SD: standard deviation; FIGO: International Federation of Gynecology and Obstetrics; MTD: 
maximum tumor diameter; SCC: Squamous cell carcinoma; AC: Adenocarcinoma; LVSI: lymph-vascular space invasion

Characteristic Training set (n = 172) p Testing set (n = 75) p

LNM (n = 55) Non-LNM (n = 117) LNM (n = 24) Non-LNM (n = 51)

Age (mean ± SD) 0.083 0.64

 Mean 51.80 54.91 55.54 54.04

 SD 11.68 8.79 10.77 10.23

FIGO stage 0.69 0.64

 I 25 (45.45%) 57 (48.72%) 9 (37.5%) 22 (43.14%)

 II 30 (54.55%) 60 (51.28%) 15 (62.5%) 29 (56.86%)

Pathological type 0.95 0.086

 SCC 46 (83.64%) 99 (84.61%) 20 (83.34%) 43 (84.31%)

 AC 5 (9.09%) 8 (6.84%) 2 (8.33%) 8 (15.69%)

 Others 4 (7.27%) 10 (8.55%) 2 (8.33%)

MTD 0.016 0.009

 ≤ 4 cm 36 (65.45%) 96 (82.05%) 15 (62.50%) 45 (88.24%)

 > 4 cm 19 (34.55%) 21 (17.95%) 9 (37.50%) 6 (11.76%)

LVSI  < 0.001 0.01

 Negative 27 (49.09%) 91 (77.78%) 13 (54.17%) 42 (82.35%)

 Positive 28 (50.91%) 26 (22.22%) 11 (45.83%) 9 (17.65%)
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is of critical clinical importance in the management of 
patients with ECC.

T2WI, contrasted-enhanced TIWI and DWI have long 
been applied for the diagnosis of LNM with a relatively 
low sensitivity of 38%-56% reported [29, 30]. In this 
study, the sensitivity for LNM prediction was improved 
from 0.647 to 0.898, and 0.451 to 0.725 for radiomics 
models with features from T2WI and DWI in the testing, 
respectively. Models with combined features from tumor 
and peritumoral regions did not improve the sensitivity 
in this study. This is inconsistent with the study of Wu 
et al. [21] in which the sensitivity was increased from 43% 
to 85.7% for models with features extracted from tumor 
or peritumoral regions alone compared with models with 
combined tumor and peritumoral regions features in 
T2WI. For features extracted from DWI, the combined 
model showed a worse sensitivity compared with mod-
els with features extracted from tumor or peritumoral 
regions. This may be due to the differences in the defini-
tion of peritumoral regions between two studies. Auto-
matic expansion with 3–7 mm margin was applied in this 
study, instead of a manual segmentation of peritumoral 
regions in the study of Wu et al. [21].

In this study, the AUCs of radiomics model with fea-
tures extracted from tumors in the T2WI and DWI were 
0.841, 0.791 and 0.820, 0.771 in the training and testing 
sets, respectively. This is higher than reported AUC of 

0.763, 0.829 and 0.699, 0.613 in the training and valida-
tion sets with T2WI and ADC, respectively, in the study 
of Hou et  al. [17] for the prediction of LNM for ECC. 
Combined T2WI and DWI model in this study achieved 
an AUC of 0.836 in the testing sets which is close to 
the reported AUC of 0.833 with combined T2WI, ADC 
and contrast-enhanced T1WI in the study of Hou et  al. 
[31]. However, Yu et al. [20] demonstrated that radiom-
ics features extracted from ADC maps alone were able 
to achieve an AUC of 0.870 in the predicting of LNM for 
early-stage cervical squamous cell carcinoma. This indi-
cated that radiomics features extracted from DWI and 
ADC maps revealed different messages although ADC 
maps were calculated from DWI and the selection of 
b-values may significantly affect texture analysis on DWI 
images [31].

The radiomics models with features extracted from per-
itumoral regions in T2WI and DWI also demonstrated 
reasonable an AUC from 0.755 to 0.786, and from 0.696 
to 0.734 in the testing sets, respectively. This indicated 
that peritumoral regions may hold information regard-
ing the LNM status as pointed out that tumor cells tend 
to migrate from the primary tumor to the peritumoral 
regions and lead to morphological changes in MRI [32]. 
However, the prediction performance did not improve 
with increasing peritumoral region and the peritumoral 
3 mm in T2WI and DWI achieved the highest prediction 

Table 2 Performance of radiomics signature with features extracted from tumor and peritumoral regions of interest

T2WI: T2 weighted imaging; DWI: diffusion-weighted imaging; AUC: area under curer; ACC: accuracy; SEN: sensitivity; SPE: specificity; T + xmm: tumor plus peritumoral 
x mm expansion;

Models Training sets Testing sets

AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

T2WI

 Tumor 0.841 (0.779–0.904) 0.791 0.778 0.818 0.820 (0.715–0.926) 0.760 0.706 0.875

 Peritumoral 3 mm 0.775 (0.702–0.847) 0.733 0.684 0.836 0.786 (0.669–0.903) 0.720 0.647 0.875

 Peritumoral 5 mm 0.795 (0.724–0.866) 0.762 0.761 0.764 0.783 (0.664–0.903) 0.720 0.783 0.833

 Peritumoral 7 mm 0.795 (0.727–0.862) 0.762 0.798 0.680 0.755 (0.624–0.886) 0.787 0.898 0.577

DWI

 Tumor 0.791 (0.718–0.865) 0.773 0.829 0.650 0.771 (0.664–0.879) 0.680 0.608 0.833

 Peritumoral 3 mm 0.810 (0.743–0.876) 0.738 0.727 0.764 0.734 (0.623–0.846) 0.613 0.451 0.958

 Peritumoral 5 mm 0.745 (0.666–0.825) 0.750 0.812 0.618 0.725 (0.605–0.844) 0.600 0.451 0.917

 Peritumoral 7 mm 0.803 (0.733–0.873) 0.720 0.65 0.873 0.696 (0.567–0.826) 0.720 0.725 0.708

 T + 3 mm T2WI 0.851 (0.790–0.912) 0.797 0.795 0.800 0.837 (0.733–0.940) 0.813 0.784 0.875

 T + 5 mm T2WI 0.865 (0.807–0.923) 0.780 0.701 0.945 0.818 (0.710–0.926) 0.733 0.647 0.917

 T + 7 mm T2WI 0.830 (0.765–0.896) 0.750 0.667 0.927 0.811 (0.702–0.921) 0.747 0.706 0.833

 T + 3 mm DWI 0.784 (0.710–0.860) 0.744 0.752 0.727 0.768 (0.659–0.877) 0.693 0.627 0.833

 T + 5 mm DWI 0.781 (0.705–0.856) 0.721 0.786 0.691 0.767 (0.657–0.877) 0.707 0.647 0.833

 T + 7 mm DWI 0.779 (0.703–0.855) 0.750 0.761 0.727 0.765 (0.655–0.874) 0.707 0.647 0.833

 T (T2WI) + T(DWI) 0.867 (0.810–0.924) 0.802 0.829 0.746 0.836 (0.741–0.931) 0.760 0.706 0.875

 T + T + 3 mm T2WI 0.868 (0.809–0.915) 0.800 0.803 0.817 0.846 (0.753–0.940) 0.808 0.784 0.833
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Fig. 3 ROC curves of intra- and peritumoral regions with (3, 5, 7 mm) expansion dimension, intra-tumoral region plus peritumoral regions with (3, 5, 
7 mm) expansion dimension on T2WI and DWI, combining intra-tumor regions in T2WI and DWI, combined radiomics signature from tumors in the 
T2WI, DWI and peritumoral 3 mm expansion in T2WI in the (a-d) training and (a1-d1) testing sets, respectively
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performance, which may suggest that the increase in 
peritumoral region brings some irrelevant information; 
for example, the peritumoral 5 mm and 7 mm regions of 

some FIGO II stage patients may contain other tissues 
affecting the prediction performance. Combined radi-
omics models with tumor and peritumoral 3 mm regions 
further improved the performance in both T2WI and 
DWI in this study with a highest AUC of 0.868 and 0.846 
achieved in the training and testing sets, respectively. 
This is consistent with the study of Shi et al. [23] in which 
both intra- and peritumoral regions of contrast-enhanced 
T1WI and T2WI were combined to achieve an AUC of 
0.830 and 0.853.

Radiomics nomogram with multi-parametric MRI, 
such as T1WI, T2WI, contrast-enhanced, DWI, and 
ADC, has been reported to achieve a good performance 
for LNM prediction with a C-index of 0.882 in the pri-
mary cohorts [18]. Similarly, the nomogram in this study 

Table 3 Univariate analysis of clinical factors that were 
associated with lymph node metastasis

FIGO: International Federation of Gynaecology and Obstetrics; MTD: maximum 
tumor diameter; LVSI: lymph-vascular space invasion

Variables Odds ratios 95% confident interval p

Age 0.968 0.936–1.001 0.056

FIGO stage 1.140 0.599–2.168 0.69

Pathological type 0.996 0.608–1.631 0.99

MTD 2.413 1.164–5.003 0.018

LVSI 3.630 1.829–7.201  < 0.001

Fig. 4 Nomogram was developed by integrating the clinical factors (age and MTD) and combined radiomics signature in the training set (a); 
Calibration curve of the radiomics nomogram for predicting LNM in the (b) training set (p = 0.55) and in the (c) testing set (p = 0.14)
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achieved a C-index of 0.884 and calibration curve analy-
sis further confirmed the clinical usefulness of our nom-
ogram for the preoperative LNM prediction. Except for 
MRI based radiomics, ultrasound images [33], 18fluoro-
deoxyglucose positron emission tomography/computed 
tomography (PET/CT) had also been investigated for the 
preoperative prediction of LNM for ECC [34]. Nomo-
gram with radiomics features from multiple imaging 
modalities needs further investigation. Recently, deep 
learning models had also been investigated to predict 
the LNM of ECC to avoid time consuming target deline-
ations in radiomics, whose clinical application and inte-
gration with radiomics worth further investigation [19].

The limitations of this study include that it is a retro-
spective study in single center, fewer patients recruited 
and lacking of the external validation may lead to over-
fitting of the models, larger sample size from multi-
center is needed to improve the robust of the models; 
large number of patients excluded due to artifacts and 
incomplete MRI sequences may lead to bias in patients 
selection, and the scanning technique needs to be further 
improved and standardized; lacking of doing intraclass 
correlations coefficient analysis may affect the stability of 
feature selection and the robust of the model, and it will 
be improved in the following study; contrast-enhanced 
T1WI and ADC maps were not included in this work; 
automatic segmentation needs further investigation to 
improve the efficiency of radiomics study.

Conclusions
Radiomics features extracted from both intra- and peri-
tumoral regions in T2WI and DWI are feasible and 
promising for the preoperative prediction of LNM for 
patients with ECC.
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