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Abstract 

Background  Recent advanced in radiomics analysis could help to identify breast cancer among benign mammary 
masses. The aim was to create a radiomics signature using breast DCE-MRI extracted features to classify tumors and to 
compare the performances with the BI-RADS classification.

Material and methods  From September 2017 to December 2019 images, exams and records from consecutive 
patients with mammary masses on breast DCE-MRI and available histology from one center were retrospectively 
reviewed (79 patients, 97 masses). Exclusion criterion was malignant uncertainty. The tumors were split in a train-set 
(70%) and a test-set (30%). From 14 kinetics maps, 89 radiomics features were extracted, for a total of 1246 features 
per tumor. Feature selection was made using Boruta algorithm, to train a random forest algorithm on the train-set. 
BI-RADS classification was recorded from two radiologists.

Results  Seventy-seven patients were analyzed with 94 tumors, (71 malignant, 23 benign). Over 1246 features, 17 
were selected from eight kinetic maps. On the test-set, the model reaches an AUC = 0.94 95 CI [0.85–1.00] and a 
specificity of 33% 95 CI [10–70]. There were 43/94 (46%) lesions BI-RADS4 (4a = 12/94 (13%); 4b = 9/94 (10%); and 
4c = 22/94 (23%)). The BI-RADS score reached an AUC = 0.84 95 CI [0.73–0.95] and a specificity of 17% 95 CI [3–56]. 
There was no significant difference between the ROC curves for the model or the BI-RADS score (p = 0.19).

Conclusion  A radiomics signature from features extracted using breast DCE-MRI can reach an AUC of 0.94 on a test-
set and could provide as good results as BI-RADS to classify mammary masses.

Key points 

•	 The semi-automated breast tumor segmentation method allows extraction of radiomic features.
•	 A radiomics signature could be extracted from breast DCE-MRI and reach an AUC of 0.94 95%CI [0.85–1.00] 

on a test-set.
•	 There was no significant difference between the AUC ROC curves for the model (0.94) or the BI-RADS MRI 

(0.84) score (p = 0.19).
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Background
Breast cancer is the most widespread cancer affecting 
women worldwide with around 2 million cases diag-
nosed each year [1]. A breast MRI is indicated as a 
second line of imaging because of a high negative pre-
dictive value in the detection of malignant lesions [2]. 
Breast MRI is recommended in patients with a high-
risk of cancer, presenting with a high-risk genetic muta-
tion (BRCA-1, BRCA-2, and TP53), and for those with 
very dense breasts or in case of discordance between 
the clinical and radiological signs [3]. The main limita-
tion of MRI is its low specificity in the discrimination 
between benign and malignant lesions, which varies 
between 47 and 97% according to the literature [4]. This 
leads to complementary examinations (second-look 
ultrasound and complementary mammography) and a 
significant number of biopsies of benign lesions. How-
ever, breast MRI is currently the imaging technique that 
provides the best decision-making performance in the 
characterization of a benign or malignant lesion based 
on the BI-RADS criteria [3, 5], but these criteria have a 
significant degree of inter-observer variability [6].

Radiomics applied to MRI can be defined as a quanti-
tative measurement of the texture parameters extracted 
from radiological images. These parameters correspond 
to mathematical descriptors characterizing the shape 
and heterogenicity of a tumor to a level that is not vis-
ible to the naked eye [7]. Radiomics seems to emerge as 
a new tumoral biomarker for histological or molecular 
heterogeneity. It could be used to predict the biologi-
cal nature of a tissue, its therapeutical response or the 
prognosis for a tumoral lesion [8, 9].

Previous studies have shown the promising results 
of radiomics in breast MRI in the evaluation of the 
tumoral response under neoadjuvant chemotherapy, 
or in the prediction of a histological sub-type of can-
cer [10, 11], or a molecular sub-type [12]. Other stud-
ies have investigated the risk factors of over-expression 
of the estrogen receptor [13], and lastly others looked 
into a prognostic analysis linking genomics and radi-
omics [14]. More recently, studies have used radiomics 
in the characterization of a benign or malignant lesion 
by multiparametric MRI with diffusion and perfusion 
sequences [15], also with high-resolution sequences 
[16]. Few of these studies concerned standard MRI 
protocols commonly used to diagnose breast masses 
(T1-weigthed, T2-weigthed, and dynamic contrast 
enhancement).

The goals of this study were (1) to develop a new radi-
omics model suitable for breast MRI to characterize 
mammary masses, (2) to compare the performance of 
this model with the BI-RADS classification using histol-
ogy as gold standard.

Methods
Population
This study is a single-center retrospective study car-
ried out in the radiology department of La Timone Uni-
versity Hospital (Marseille–France). All consecutive 
patients who had a breast MRI between September 2017 
and December 2019 and presented with a mammary 
mass and histological documentation available were 
included in the study. According to the BI-RADS clas-
sification, a mass is defined as a lesion occupying a vol-
ume that is round, oval, or irregular in shape in all three 
anatomical planes (with convex edges) and visible on the 
T1-weighted and T2-weighted anatomical sequences. 
Seventy-nine patients were included, accounting for 
97 masses. Three of these mammary masses, histologi-
cally classified B3, meaning borderline lesions that were 
uncertain to be malignant, were excluded. Seventy-six 
patients for a total of 94 masses were analyzed (Fig.  1). 
The study was approved by the institutional review board 
(Comité d’Ethique pour la Recherche en Imagerie Médi-
cale n°CRM-2106-171).

MRI acquisition parameters
All the patients had breast MRI on the same MR device 
(Ingenia 1.5 T, Philips medical imaging, Best, the Neth-
erland). The rationale is detailed in Additional file  1: 
Appendix 1. The DCE sequences were performed before, 
then 1, 2, 3, 4, and 5 min after intra-venous injection of 
gadolinium (DOTAREM: 0.2 cc/kg, Guerbet, Aulnay sous 
Bois, France). Native reconstructions were performed for 
each acquisition time (DCEn 0, DCEn 1, DCEn 2, DCEn 
3, DCEn 4, and DCEn 5). Subtractions were also made 
between the post-contrast and pre-contrast acquisitions, 
and the pre-contrast acquisition was used as a mask for 
each time-point (DCEs 1, DCEs 2, DCEs 3, DCEs 4, and 
DCEs 5). The native T1-weighted, T2-weighted, DCEn, 
and DCEs sequences were used for the segmentations of 
the lesions and analysis performed by the radiologists.

Data processing (image processing)
The images were post-processed using the breastscape® 
software package (Olea Medical, La Ciotat, France). The 

Fig. 1  Flowchart of the study
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masses were segmented semi-automatically on the DCEs, 
after analysis of the whole set of series in the protocols 
T1-weighted, T2-weighted, and DCEn. The DCEs series 
corresponding to the peak signal was used as a reference 

series for the segmentation. The segmentation of the 
lesions proposed in breastscape® enabled us to define 
the regions of interest (ROI) which corresponded to the 
intra-mammary mass(es) (Figs.  2, 3 and 4). No image 

Fig. 2  Example of semi-automated segmentation in the axial plane for a grade II infiltrating carcinoma of the left breast on dynamic contrast 
enhancement subtraction with MIP reconstruction; dynamic contrast enhancement sequence merged with the PEI map; and dynamic contrast 
enhancement without subtraction

Fig. 3  Example of a fibroadenoma at the junction of the external quadrants of the right breast on the breastscape® segmentation software: a 
Dynamic contrast enhancement subtraction with MIP reconstruction; b Dynamic contrast enhancement sequence merged with the PEI map in the 
axial, coronal, and sagittal planes; c PEI map; d PEAK map; e T2-weighted sequence in axial view; f AUC map
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preprocessing technique, such as discretization of the 
images before calculation of the radiomics parameters, 
was used. Whenever necessary, the motion was corrected 
on the dynamic sequences [17].

Extracting the parameters
Texture parameters were extracted from the differ-
ent series: DCEs (DCEs 1, DCEs 2, DCEs 3, DCEs 4, and 
DCEs 5) and from eight maps based on signal enhance-
ment values calculated by the breastscape® software 
package referred to as kinetics by the software (Fig.  5). 

Details concerning the calculation of the kinetics maps 
are available in Additional file 1: Appendix 2. The texture 
parameters were extracted using the pyradiomics library 
(https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/). Based on 
this library, an executable parallel code, called breast fea-
tures, has been developed to extract the texture param-
eters available via Pyradiomics, using the semi-automatic 
segmentation as mask.

The texture descriptors are separated into three groups: 
the shape, the first order, and the texture descriptors. 
Shape descriptors refer to the contours and the morphol-
ogy of the lesion and to its size. Descriptors of the first-
order describe the distribution of intensity and levels of 
gray in the pixels or voxels based on a histogram that 
shows the distribution of the different parameters of the 
signal. Texture parameters of the second order describe 
the matrix of the different parameters of distribution of 
pixels in the image. The list of the different parameters 
extracted is available in Additional file 1: Appendix 3.

BI‑RADS analysis
Two senior radiologists specialized in breast imagin-
ing (P.S. 10-year experience, A.G. 5-year experience) 

Fig. 4  Example of a grade II infiltrating carcinoma of the left breast at the meeting point of the lateral quadrants: a T2-weighted sequence in axial 
view, b T1-weighted sequence in axial view, c Dynamic contrast enhancement 3 native, d Dynamic contrast enhancement 1 subtracted, e PEI map, 
f signal enhancement ratio map, g WASH IN map, h WASH OUT map, i TME map, j WASHOUT CURVE map, k AUC map, l Peak map

Fig. 5  Signal intensity curve over time

https://pyradiomics.readthedocs.io/en/latest/
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classified the mammary masses on breast MRI according 
to the BI-RADS classification; a mass classified BI-RADS 
2 or 3 was considered as benign or very probably benign 
and masses classified BI-RADS 4 or 5 as highly suspected 
of malignancy [18, 19] (Additional file 1: Appendix 4).

Histological analysis
The histological analysis was used as a diagnostic refer-
ence. An anatomopathological analysis was established by 
ultrasound-guided needle microbiopsy using a 14 Gauge 
needle or by analyzing the fragment obtained after tumor 
resection. To assess the pathologic-imaging concordance, 
a clip was deployed if the lesion size was < 1.5 cm or if the 
lesion had become no invisible immediately after biopsy. 
A mammary MRI was performed after clip deployment 
in cases of neoadjuvant chemotherapy, multiple lesions, 
or extreme fibroglandular tissue. The histological results 
were classified according to the European classification: 
B2 for benign lesions and B5 for malignant lesions. All 
benign lesion were controlled using ultrasound 3 months 
after the biopsy to ensure the non-malignancy.

Statistical analysis
Continuous data with a normal distribution are expressed 
as the mean ± standard deviation. Categorical data are 
expressed as frequencies or percentages. Pyradiomics 
extracted 89 features per tumor from 14 kinetics maps, 
for a total of 1246 features per tumor. The whole dataset 
comprising 94 masses was split in a train-set (70%) and 
a test-set (30%) with stratification on the histology. On 
the train-set, Boruta’s algorithm was used to select the 
most relevant descriptors among the 1246 extracted [20, 
21]. The importance of each descriptor was calculated by 
99 iterations which generated a mean importance value; 
the higher the score, the more important the descrip-
tor. The algorithm classified the descriptors according to 
three types: (1) confirmed, indefinite, or non-confirmed 
discriminatory descriptors. A random forest algorithm 
was used as the model, trained on the train-set and then 
applied on the test-set. The performances of the model 
included the ROC parameters: the area under the curve 
(AUC), the accuracy, sensitivity, specificity, according to 
a confidence interval (CI) at 95% for each dataset. The 
Bootstrap test compared the AUCs and the ROC curves. 
All the statistical analyses were performed using the R 
software package (version 4.1.0). A significant difference 
was obtained for a p-value < 0.05.

Results
Histological data
Seventy-six patients were included, accounting for 94 
masses. Seventy-one (75.5%) masses were malignant, and 
23 (24.5%) were benign. Among the malignant lesions, 

there were 3/71 (4.2%) infiltrating lobular carcinomas 
and 68/71 (95.8%) non-specific infiltrating carcinomas. 
Among the benign lesions, there were 7/23 (30.4%) 
fibroadenomas; 5/23 (21.7%) ductal ectasia; 5/23 (21.7%) 
adenosis or fibrotic lesions; 3/23 (13.0%) of ductal cysts; 
2/23 (8.7%) cytosteatonecrotic lesions; and 1/23 (4.4%) 
abscess (Table  1). The median lesion size was 24  mm 
(IQR = 47 mm). None of the 23 benign lesions had grown 
3 months after the biopsy.

Selected features
Out of the 1246 descriptors, 1228 were non-confirmed, 
6 were confirmed and 12 were considered as indefinite. 
We decided to keep the 6 that were confirmed and the 12 
indefinites for a total of 18 features, to make a predictive 
model. The radiomics signature contained: the “inverse 
difference moment normalized” (IDMN), “inverse dif-
ference normalized” (IDN), “low gray run emphasis” 
(LGRE), “long run low gray level emphasis” (LRLGLE), 
“short run low gray level emphasis” (SRLGLE), “informal 
measure of correlation” (IMC), “large area low gray level 
emphasis” (LALGLE), “long run high gray level empha-
sis” (LRHGLE), “maximum 3D diameter,” “total energy, 
major axis,” and “energy.” Only the subtracted dynamic 
maps DCE 1 s, DCEs 2, DCEs 4, and DCEs 5 and the kinet-
ics maps AUC, peak enhancement, signal enhancement 
ratio, and washout contained at least one descriptor that 
was useful for the creation of the model. Among the 18 
descriptors retained by the Boruta method, one descrip-
tor was excluded because the coefficient of importance 
was equal to zero. The model was finally created integrat-
ing 17 discriminatory descriptors: four were shape vari-
ables, two variables of the first order, and 11 variables of 
the second order.

Some descriptors were found several times in dif-
ferent maps or sequences, such as the shape descriptor 
«maximum 3D Diameter» or one of the second-order 

Table 1  Histological results of the masses studied

Data are given as number (percentages)

Type of tumor N = 94

Benign 23

Fibroadenoma 7 (30)

Duct ectasia 5 (22)

Adenosis, fibrosis 5 (22)

Duct cyst 3 (13)

Cytosteatonecrosis 2 (9)

Abscess 1 (4)

Malignant 71

Non-specific infiltrating carcinoma 68 (96)

Infiltrating lobular carcinoma 3 (4)
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descriptors such as IDN and IDNM. IDNM was discrimi-
natory for the DCE 1 and DCE 2 sequences. The descrip-
tors that enabled us to create the predictive model are 
given in Table 2.

Diagnostic performances of the radiomics predictive 
model and the BI‑RADS classification
The sensitivity of the model in characterization of malig-
nant lesion was 100% (95% CI [84.5‒100.0]) with a speci-
ficity of 33.3% (95% CI [9.7‒70.0]). The accuracy of the 
diagnosis was 85% (95% CI [66.3‒95.8]). The area under 
the curve (AUC) based on the test sample is 0.94 (95% CI 
[0.85‒1.00]) (Table 3).

Almost half 46/94 (48.9%) of the mammary masses 
were classified BI-RADS 5, typically malignant. There 

were only five masses classified typically benign or prob-
ably benign. The BI-RADS 4c included 22/94 (23.4%) 
tumors and 9/94 (9.6%) lesions BI-RADS 4b (Table  4). 
According to the BI-RADS criteria used by the radiolo-
gists, the sensitivity was 100% (95% CI [84.5, 100]), and 
the specificity was 16.7% (95% CI [3.0, 56.4]). The accu-
racy of the diagnosis was 81.5% (95% CI [63.3, 91.8]). 
The AUC was 0.84 (95% CI [0.73, 0.95]). The AUC of the 
model tended toward a relatively higher score than for 
BI-RADS, 0.94 versus 0.84 (p = 0.19) without significant 
difference (Fig. 6).

Discussion
That study enabled us to create a predictive model to 
characterize mammary masses as benign or malignant 
with a high AUC = 0.94 on a test-set. This level of AUC 
was not different from that of two experienced radiolo-
gists based on the BI-RADS criteria. There seems to be 

Table 2  Descriptors retained for the creation of the model to predict malignant or benign masses

AUC​ Area under curve; DCE Dynamic contrast enhancement; PE Peak enhancement; SER Signal enhancement ratio; WO Washout

Type of dynamic 
MRI card

Shape features First-order features Second-order features Importance 
coefficient

DCE1 Inverse difference normalized 97.9

Inverse difference moment normalized 62.3

DCE2 Maximum 3D diameter 18.3

Inverse difference normalized 91.9

Inverse difference moment normalized 100.0

DCE4 Maximum 3D diameter 13.1

DCE5 Informal measure of correlation 1 46.3

AUC​ Low gray level run emphasis 67.2

Long run low gray level run emphasis 59.4

Short run low gray level run emphasis 53.5

Inverse difference moment normalized 40.7

Long run high gray level run emphasis 33.9

PE Long run high gray level emphasis 32.2

SER Total energy 13.3

Energy 4.4

WO Major axis 7.2

Maximum 3D diameter 20.6

Table 3  Diagnostic performances of the radiomic predictive 
model and the BI-RADS analysis carried out by the radiologist

Radiomics 
model 
performance

BI-RADS performance

Sensibility 100% [85–100] 100% [95–100]

Specificity 33% [10–70] 17% [3–56]

Positive predictive value 84% [65–94] 80% [70–87]

Negative predictive value 100% [34–100] 100% [57–100]

Accuracy 0.85 [0.66–0.96] 0.82 [0.63–0.92]

AUC​ 0.94 [0.85–1] 0.84 [0.73–0.95]

Table 4  BI-RADS analysis

Data are given as number (percentages)

BI-RADS score N = 94 Malignant histology Benign histology

2 1 (1.0) 0 (0%) 1 (100%)

3 4 (4.3) 1 (25%) 3 (75%)

4a 12 (12.8) 5 (42%) 7 (58%)

4b 9 (9.6) 6 (66%) 3 (34%)

4c 22 (23.4) 12 (55%) 10 (45%)

5 46 (48.9) 45 (98%) 1 (2%)
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an improvement in specificity in comparison with BI-
RADS (33.0% (95% CI [9.7–70] against 16.7% (95% CI 
[3.0–56.4]) although the confidence intervals overlap.

The number of malignant lesions was superior to the 
number of benign lesion because the latter are less fre-
quently biopsied. The fact that benign lesions are found in 
the histological results shows quite clearly that too many 
histological samples are taken because of the low speci-
ficity of the methods used in current practice. It has been 
demonstrated that the morphological parameters such 
as shape and outline are essential on MRI for an accurate 
diagnosis of breast cancer, based on the BI-RADS crite-
ria [22]. But there is a high degree of inter-observer vari-
ability [6]. These shape and outline parameters that are 
present in the BI-RADS lexicon are also modeled in the 
shape descriptors in radiomics, such as elongation and 
sphericity. However, in this case, these were not the most 
significant variables retained by the selection algorithm. 
The only discriminatory morphological variables retained 
were the maximum 3D diameter and the major axis.

The final statistical model retained mainly descriptors 
of the second order (11/17). Some texture descriptors are 
present in several signal enhancement maps or series of 
dynamic images such as for IDN and DMN which have 
the highest coefficient of importance. In addition, their 
discriminatory nature is present in early DCEs (DCEs 
1 and DCEs 2). Fusco et  al. have already demonstrated 
the relationship between the kinetics maps of a lesion 
and its histological prognosis [23]. Many recent studies 
have been focused mainly on the early acquisition times 
in characterizing a malignant lesion as shown in Vande 

Perre et al. study on the characterization of a malignant 
or benign lesion at an early stage of injection [16]. Malig-
nant and benign tumors do not enhance in the same 
way. Even if the enhancement curves overlap, a benign 
lesion will enhance gradually (type III curve) [24]. This is 
explained by the neo-angiogenesis in malignant tumors 
and by an increase in capillary patency. These details 
apply mainly to infiltrating carcinoma with no specific-
ity, the predominant malignant histology in this study. 
Compared to infiltrating carcinoma, lobular carcinoma 
and ductal carcinoma show a later enhancement [25]. 
This highlights the relevance of dynamic analysis of the 
texture parameters [26]. Recent studies have looked into 
descriptors for perfusion-MRI that would be more repre-
sentative of tumoral capillary patency [15].

Another application of radiomics could be the pre-
diction of molecular sub-type and androgen recep-
tor expression using breast MRI. A recent study on 162 
patients showed the ability of multiparametric breast 
MRI to discriminate androgen receptor expression and 
molecular sub-types (AUC = 0.907 and 0.965, respec-
tively) using the multilayer perceptron algorithm which 
performed slightly better than the random forest algo-
rithm in their population (AUC = 0.905 and 0.897, 
respectively) [27].

The parameters that are not visible to the naked eye 
could be a major asset for the radiologists. In breast 
MRI, machine learning attempts to combine human 
interpretation based on the BI-RADS criteria and the 
radiologist’s knowledge with the data of multiparamet-
ric imaging. Despite the large number of studies on the 
topic, a lack of homogeneity in the data extraction and 
texture analysis are strong limits to use these algorithms 
into practice. The method used in this study has already 
been described in the literature [28].

Acquisitions were performed according to a stand-
ard rationale including morphological and dynamic 
sequences which came from the same center. We used 
a semi-automated segmentation software package 
(breastscape®, Olea Medical, La Ciotat, France). This 
technique has the advantage of having better reproduc-
ibility in the segmentation of texture parameters than 
manual segmentation [29].

Among all the texture parameters that exist in the lit-
erature, none alone can discriminate a lesion. The final 
statistical model contains only a few descriptors com-
pared to all the variables tested initially (17 out of 1246 
features), thanks to the exclusion of the redundant and 
non-reproducible parameters. We adapted the number of 
parameters to the number of lesions analyzed to reduce 
overfitting by machine learning [30].

Previous studies have already proven that machine 
learning algorithms could be successfully applied in 

Fig. 6  ROC curve of the BI-RADS score (continuous curve) and of the 
radiomics model (curve with circles)
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breast MRI [31] with the possibility of generating inter-
esting results but very few studies have reached an AUC 
of 0.94 [32]. The study of Nie et al. was based on the same 
type of study with an AUC at 0.82 but the number of 
descriptors analyzed was much lower.

This MRI rationales included a morphological T2 
sequence to confirm the nature of the mass and to help 
to establish the contours of the ROI. But the data analy-
sis was based only on the enhancement sequences. This 
aspect is interesting with the increasing development of 
fast sequences aimed at reducing the breast MRI proto-
cols, using in some cases only the injected sequences [33, 
34]. Conversely, some studies have shown that adding 
extra, combined sequences adds more overall accuracy 
in the discrimination between benign/malignant tumors, 
in particular in the case of diffusion sequences and the 
calculation of ADC which improves the specificity of the 
discrimination between a malignant and a benign tumor 
[35]. In Zhang et  al. study, the diagnostic performances 
of the multiparametric model had an AUC at 0.92 against 
0.84 when only injected sequences were used [15].

This study suffer from some limitations; the main is 
the lack of evaluation of the problematic subgroups: BI-
RADS IVa and IVb masses. Theses subgroups were too 
small to be analyzed with radiomics. This should be the 
main target of this model, in clinical practice. Charac-
terizing BI-RADS IVc and BI-RADS V masses with this 
radiomics model has a low clinical impact for trained 
breast radiologists. Similarly, the lack of evaluation of 
this radiomics model in case of small masses (< 10 mm) is 
another main limitation to clinical practice. A third limi-
tation is the lack of external validation on independent 
cohorts collected from other centers [36]. This limitation 
of clinical application is linked to the difficulty in obtain-
ing large cohorts of patients in each center. Breast MRI 
is often carried out as a second line examination after 
the patient has been screened by mammography and 
not all mammary masses are sampled. In addition, non-
mass enhancements were not taken into account in this 
study which was based only on lesions that were masses, 
keeping in mind the fact that many cancerous lesions are 
enhanced as non-mass [37].

Conclusion
This single-center study enabled us to create a predic-
tive algorithm based on radiomics to predict breast 
masses as benign or malignant with good perfor-
mances. The predictive model yields performances 
equivalent to those analyzed using the BI-RADS crite-
ria, with an AUC at 0.94 (95% CI [0.85–1.00]) on a test-
set. To improve the specificity of the BI-RADS criteria, 
this model could be a major asset for clinical practice, 

but the model needs to be evaluated on the BI-RADS 
IVa and IVb lesions in the future as these are the prob-
lematic categories in clinical practice. Multi-center 
studies with external datasets could allow us to assess 
whether this type of approach would decrease the num-
ber of unnecessary biopsies.
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