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Abstract 

Background To develop a fully automatic framework for the diagnosis of cause for left ventricular hypertrophy (LVH) 
via cardiac cine images.

Methods A total of 302 LVH patients with cine MRI images were recruited as the primary cohort. Another 53 LVH 
patients prospectively collected or from multi‑centers were used as the external test dataset. Different models based 
on the cardiac regions (Model 1), segmented ventricle (Model 2) and ventricle mask (Model 3) were constructed. 
The diagnostic performance was accessed by the confusion matrix with respect to overall accuracy. The capability 
of the predictive models for binary classification of cardiac amyloidosis (CA), hypertrophic cardiomyopathy (HCM) or 
hypertensive heart disease (HHD) were also evaluated. Additionally, the diagnostic performance of best Model was 
compared with that of 7 radiologists/cardiologists.

Results Model 3 showed the best performance with an overall classification accuracy up to 77.4% in the external 
test datasets. On the subtasks for identifying CA, HCM or HHD only, Model 3 also achieved the best performance with 
AUCs yielding 0.895–0.980, 0.879–0.984 and 0.848–0.983 in the validation, internal test and external test datasets, 
respectively. The deep learning model showed non‑inferior diagnostic capability to the cardiovascular imaging expert 
and outperformed other radiologists/cardiologists.

Conclusion The combined model based on the mask of left ventricular segmented from multi‑sequences cine MR 
images shows favorable and robust performance in diagnosing the cause of left ventricular hypertrophy, which could 
be served as a noninvasive tool and help clinical decision.

Key Points 

1. Multi-view cine images provide a potential etiology diagnosis tool for LVH.
2. AI-based myocardium spatial–temporal features extracted from images is helpful in diagnosis.
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3. AI demonstrated higher accuracy and greater robustness with human experience added.

Keywords Cardiac cine MRI, Left ventricular hypertrophy, Case prediction, Deep learning

Introduction
Early and accurate recognizing the etiology of left 
ventricular hypertrophy (LVH) is key to downstream 
clinical management and prognosis prediction [1, 2]. 
Hypertrophic cardiomyopathy (HCM), cardiac amyloi-
dosis (CA) and hypertensive heart disease (HHD) are 
the common etiologies for LVH while differentiation 
diagnosis among them can be difficult [3]. Currently, 
cardiac magnetic resonance imaging (MRI) is one of 
the important imaging modalities in the work up for 
LVH etiology classification [4, 5]. A successful, thor-
ough and multi-sequence enhanced MRI examination 
can help differentiate HCM, or CA from each other, 
but cardiovascular imaging expert and experience is 
required [6]. Furthermore, features such as reduced 
diastolic function, global strain, and presence of late 
Gadolinium enhancement (LGE) can be found in all of 
the three diseases. These significant overlap clues and 
deficiency of definite criteria make the etiology diagno-
sis even harder. In addition, mapping sequences would 
usually require additional post-processing analysis 
using commercial software or experienced cardiovas-
cular imaging doctors to achieve a correct interpreta-
tion [7]. Thus, a rapid, simple and noninvasive tool is 
surely desired.

Artificial intelligence (AI) brew new life into medi-
cine during recent years [8, 9]. The very complex heart 
structure has spawned numerous innovations in arti-
ficial intelligence in this area [10, 11]. Deep learning 
(DL)-based disease diagnosis algorithm has proved 
superb ability in diagnosis of arrhythmia, recognition of 
myocardial infarction lesion and prediction of coronary 
artery disease [12–14]. Cine images play a basic and 
key role in heart disease diagnosis as it provides both 
direct observation and accurate quantification of mor-
phology and function features [15]. Thus, cine-based 
AI model can potentially serve as an early and rapid 
screening tool to triage patients with high suspicion 
of HCM or CA. However, past cardiac AI models are 
rarely based on cine images. Possible reason might be 
the large amount of human labor needed for drawing 
region of interest (ROI) on cine images since segmenta-
tion is the first and often the most labor-intensive step 
[16]. In addition, how to borrow the diagnostic logics 
from doctors by extracting both the three-dimensional 
based spatial information and cardiac motion informa-
tion from the cine images remains a challenge.

Thus, we sought to develop a DL-based fully automatic 
framework for myocardium segmentation and etiology 
diagnosis for patients diagnosed with LVH on multi-view 
cine MRI images through retrospectively collected data. 
The performance of the final model on diagnosis effi-
ciency would be validated through another prospectively 
collected independent testing cohort and compared 
against human radiologists and cardiologist.

Materials and methods
This study was approved by the center’s Biomedical 
Research Ethics Committee. Informed consent of ret-
rospectively included data was waived and those of 
prospective collected data were acquired at the corre-
sponding hospital.

Patient enrollment
The patients used as primary cohort in this study were 
retrospectively collected from January 2014 through 
January 2021. Another dataset used for external testing 
were prospectively collected from the same center and 
another three tertiary hospitals. All the cine images were 
performed as part of the routine cardiac MRI for patients 
referred to this examination (Details in Additional file 1: 
Supplemental methods).

For all the included cases, the inclusion criteria were 
(1) adult patients (age ≥ 18  years), (2) patients with a 
diagnosis of LVH (defined as with the diastolic wall 
thickness of at least one segment ≥ 13 mm), and (3) with 
noted clinical diagnosis based on established diagnostic 
criteria and MRI measurements of HCM, CA and HHD 
were included (Details in Additional file 1: Supplemental 
methods) [4, 17–19]. Those (1) whose diagnosis cannot 
be confirmed or didn’t belong to the above three catego-
ries, (2) whose image data is unavailable for analysis or 
with poor quality for cine images (3) which were repli-
cated or follow-up examination (namely, one patient had 
only one examination for this study) were excluded.

Ultimately, a total of 302 LVH patients from our center 
were used as primary cohort and were randomly divided 
into the training (53 CA, 82 HCM and 56 HHD, n = 191), 
validation (13 CA, 24 HCM and 11 HHD, n = 48) and 
internal test (18 CA, 27 HCM and 18 HHD, n = 63) data-
sets. In addition, 22 LVH patients prospectively from the 
same center and 31 LVH patients from another three 
hospitals were used as the external test dataset (16 CA, 
20 HCM and 17 HHD, n = 53) (Fig. 1).
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Left ventricular myocardium segmentation
The open-source software ITK-SNAP (3.8.0, www. itksn 
ap. org) was used for the myocardium segmentation. ROIs 
containing the left ventricular (LV) myocardium from the 
two-chamber (2CH), four-chamber (4CH) and one short 
axis (SAX) at the middle LV level cine images were manu-
ally labeled by a radiologist with over five years of experi-
ence. The segmented ROIs were confirmed and modified 
by another senior radiologist with over ten years of expe-
rience. Both radiologists were blind to the clinical infor-
mation and imaging diagnosis report.

Development of the DL models
Reconstruction was performed before model develop-
ment and all the cineMR images were reconstructed to 
a resolution of 1 mm × 1 mm × 1 mm. We first devel-
oped a modified 2D Res-Unet model to automatically 
segment myocardium region from cineMR images 
(Additional file  1). Since there were barely image 
changes beyond the heart area in cineMR images, we 
only focused on investigating the myocardium regions 
in this study. Based on the myocardium that segmented 

by the Res-Unet model, three classification model were 
proposed: the model based on the automatic generated 
2D patch containing the myocardium regions (Model 
1), the model based on the ROI (Model 2), and the 
model based on the segmentation mask (Model 3). The 
size of input images was 96 × 96 pixels for all models, 
which was based on the size of the largest ROI. The 
exemplar of the automatic generated input images for 
Model 1, Model 2 and Model 3 is shown in Fig. 2.

In order to incorporate the series of time-dependent 
slices from the 2CH, 4CH and SAX sequences of cine 
MR images, a multi-channel RNN model was proposed 
to predict the cause of LVH. The convolutional long-
short time memory (ConvLSTM) unit was used to deal 
with the spatial–temporal features extracted from the 
images in the time-dependent slices (Additional file 1). 
Finally, a support vector machine classifier was used 
to integrate the predicted results from multi-sequence 
cine MR images. The working flow of the fully auto-
matic classification framework is presented in Fig. 3.

The details of model performance evaluation were 
presented in the Additional file 1.

Fig. 1 Patient enrollment and study design. HCM—hypertrophic cardiomyopathy, CA—cardiac amyloidosis, HHD—hypertensive heart disease, 
DL—deep learning

http://www.itksnap.org
http://www.itksnap.org
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Performance comparison between artificial intelligence 
and the radiologists/cardiologists
The external test dataset was then used for the com-
parison of diagnostic performance between the best AI 
model and radiologists/cardiologists. Three radiolo-
gists (1 senior with over 10 years of experience, 2 juniors 
with 3 years of experience), three cardiologists (1 senior 
with over 10  years of experience, 2 juniors with 3  years 
of experience) and a cardiovascular imaging expert with 
more than 10  years of experience were recruited. All 
radiologists/cardiologists were aware that the patients 
suffered from LVH, but they were blind to the diagnostic 
report.

Statistical analysis
The differences of continuous variables were evaluated 
through the student’s t-test or Mann–Whitney U test, 
where appropriate. The categorical variables and the 
comparison of accuracies were evaluated with the Chi-
square test. The three-class diagnostic performance was 
assessed by Cohen’s kappa. Speed of the DL model for 
diagnosing the cause of LVH was recorded as reported as 
the mean duration for each case with standard deviation.

The difference between two AUCs of different models 
were assessed by using Delong’s test [20]. A P value less 
than 0.05 was considered statistically significant. Statisti-
cal analysis was performed with R project (v. 3.3.1), the 

Fig. 2 Illustration of data pretreatment for the development of Model 1, Model 2 and Model 3. ROI—region of interest

Fig. 3 Schematic of the fully automatic framework for predicting the cause of left ventricular hypertrophy through cine MR images. 2CH—
two‑chamber, 4CH—four‑chamber, SAX—short axis
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SPSS software (version 23.0) and MedCalc software (ver-
sion 20.0).

Results
Patient characteristics
The mean age for the cases used in training, validation 
and internal test was 53.3 ± 14.0 years, composed of 181 
males and 121 females. The mean age for the included 
patients of external testing group was 54.6 ± 13.5  years, 
composed of 31 males and 22 females. There were no sig-
nificant differences in age (p = 0.52) or gender (p = 0.84) 
between the internal and external patients. The HCM 
cohort consisted of 63/133 (47.4%) cases with hyper-
trophic obstructive cardiomyopathy, 21/133 (15.8%) cases 
with apical hypertrophy, and 49/133 (36.8%) cases with 
other types. The CA cohort consisted of 82/84 (97.6%) 
cases with light chains, 1/84 (1.2%) case with serum amy-
loid A and 1/84 (1.2%) cases with transthyretin.

Automated myocardium segmentation
As shown in Table  1, The Res-Unet model showed 
favorable myocardium segmentation performance in the 
validation dataset. The robustness of the Res-Unet model 
was also confirmed in the internal test dataset. The 
detailed description of DSCs and HDs were presented in 
the Additional file 1: Supplemental results.

Correlation coefficient and Bland–Altman analysis 
showed high accuracy of the Res-Unet model when com-
pared with human’s performance. (Details in Additional 
file 1: Supplemental results and Figures S3, S4 and S5).

Overall accuracy of LVH cause prediction
The speed of the DL model for diagnosing the cause 
of LVH was very fast, with the average analysis time of 
roughly 1  s (0.91 ± 0.11, 1.02 ± 0.09 and 0.98 ± 0.10  s in 
the validation, internal test and external test datasets, 
respectively).

All three models showed good classification perfor-
mance in the validation dataset, with the Cohen’s kappa 

achieving 0.840, 0.814, and 0.814 for Model 1, Model 2 
and Model 3, respectively (Fig.  4 A-C). It seemed that 
Model 1 suffered from overfitting as the kappa decreased 
to 0.539 and 0.604 in the internal and external test data-
sets, respectively. On the contrast, Model 2 and Model 
3 exhibited more robust classification performance. 
The kappa of Model 2 was 0.653 and 0.626 in the inter-
nal and external datasets, respectively. The performance 
of Model 3 was further improved with the kappa up to 
0.711 and 0.693 in the internal and external test datasets, 
respectively. However, the differences in the three-class 
accuracy of Model 3 compared to other two models were 
not statistically significant (Chi-square test, p = 0.073 
vs Model 1 and p = 0.526 vs Model 2 in the internal test 
dataset, p = 0.378 vs Model 1 and p = 0.504 vs Model 2 in 
the external test dataset).

The detailed results for comparison of binary classifica-
tion performance for CA, HCM or HHD across different 
models were presented in Additional file 1: Supplemental 
results.

Comparison between the DL model 3 and radiologists/
cardiologists in the external test dataset
The performance of Model 3 was used to compare 
against that of radiologists/cardiologists in the exter-
nal test dataset (Table  2). Chi-square analysis indicated 
that the overall classification accuracy of Model 3 was 
almost equivalent with the expert cardiovascular radiolo-
gist (p = 0.814), and outperformed the other doctors (all 
p < 0.05) except the senior radiologist 1 (p = 0.276). The 
individual observer variability analysis indicated that the 
agreement was moderate for the Model 3 compared with 
the expert cardiovascular radiologist (kappa = 0.552) and 
the senior radiologist (kappa = 0.502), while the agree-
ment between the Model 3 and other radiologists/cardi-
ologists was poor (all kappa < 0.2). The confusion matrix 
of the DL model and the radiologists/cardiologists is 
shown in Fig. 5.

Table 1 Detailed performance of the Res‑Unet model in the validation and internal test dataset

2CH—two-chamber, 4CH—four-chamber, SAX—short axis, HD—Hausdorff distance, SD—standard deviation

Cine MRI Validation dataset (N = 48) Internal test dataset (N = 63)

sequence Dice (Mean ± SD) HD (mm, Mean ± SD) Dice (Mean ± SD) HD (mm, Mean ± SD)

Per‑slice level 2CH 0.934 ± 0.033 2.919 ± 1.740 0.921 ± 0.124 3.111 ± 2.506

4CH 0.933 ± 0.044 2.975 ± 2.254 0.944 ± 0.037 2.441 ± 2.009

SAX 0.941 ± 0.040 2.470 ± 2.046 0.944 ± 0.043 2.087 ± 1.141

Per‑case level 2CH 0.935 ± 0.028 3.735 ± 1.476 0.921 ± 0.122 4.021 ± 2.077

4CH 0.934 ± 0.040 4.170 ± 2.286 0.945 ± 0.031 3.531 ± 1.670

SAX 0.941 ± 0.031 4.510 ± 5.357 0.945 ± 0.031 2.884 ± 1.322
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Concerning the binary-classification-level com-
parison (Fig. 6), the AUC of Model 3 was significantly 
higher than that of the radiologists and cardiologists in 
discriminating CA from non-CA (all p < 0.05), except 
for the expert cardiovascular radiologist (p = 0.190). 
For the discrimination of HCM from non-HCM, the 
Model 3 showed non-inferior performance with the 
expert cardiovascular radiologist (p = 0.328), and had 

achieved higher AUC than other doctors (p = 0.127 vs 
senior radiologist, and all p < 0.05 vs the others). The 
DL model also showed good performance for the dis-
crimination of HHD from non-HHD, with the AUC 
competitive with the expert cardiovascular radiologist 
(p = 0.661) and senior cardiologist (p = 0.277), and sig-
nificantly higher than other doctors (all p < 0.05). The 
detailed performance comparison was summarized in 
Additional file 1: Tables S1 and S2.

Fig. 4 Confusion matrix comparison across Model 1 (A–C), Model 2 (D–F) and Model 3 (G–I) in the validation, internal test and external test 
datasets, respectively. Note that all models noticeably confuse HCM and HHD in the external test dataset. HCM, hypertrophic cardiomyopathy, CA, 
cardiac amyloidosis, HHD, hypertensive heart disease
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Discussion
In this paper, we introduce a DL-based fully automati-
cally myocardium segmentation and LVH etiology clas-
sification AI model working with cine MRI images. The 
segmentation model achieved robust accuracy in both 
internal and external validation tests. The diagnostic 
model achieved cardiovascular imaging expert level and 
surpassed junior radiologists or cardiac doctors in recog-
nizing LVH etiology in external validation test in a very 
short time. In addition, comparison among the perfor-
mances from different subtypes models demonstrated 

that the DL model with learning based simply on mor-
phology and motion features of the LV myocardium dur-
ing a cardiac cycle had the highest accuracy and stability. 
This result supports the idea that training a DL model 
with human-recognized or acknowledged key features 
can achieve near-to-expert performance with high effi-
ciency when only limited data is available, and thus help 
pave the way for further AI research and clinical applica-
tion in this field.

Our study further clarified the feasibility of cine MRI 
images in differential diagnosis through DL model 
for LVH. Zhang et  al. developed a chronic myocardial 

Table 2 Three‑class diagnostic performance of the Model 3 and radiologists/cardiologists in the external test dataset

Italic indicates the results of DL model 3 as the reference, and report if the performance of any other rater (radiologists or cardiologists) had any difference from DL 
model 3

Three-class Cohen’s 
kappa

Three-class overall 
accuracy

p value (vs model 3) Reader 
agreement (vs 
model 3)

DL model 3 0.693 77.4% (41/53) Reference Reference

Expert cardiovascular radiologist 0.717 79.2% (42/53) 0.814 0.552

Senior radiologist 0.582 67.9% (36/53) 0.276 0.502

Junior radiologist 1 0.355 45.3% (24/53)  < 0.001 0.162

Junior radiologist 2 0.340 43.4% (23/53)  < 0.001 0.163

Senior cardiologist 0.478 58.5% (31/53) 0.037 0.134

Junior cardiologist 1 0.405 50.9% (27/53) 0.005 0.147

Junior cardiologist 2 0.352 45.3% (24/53)  < 0.001 0.195

Fig. 5 Comparision of the confusion matrix between the senior cardiovascular imaging cardiologist (A), senior radiologist (B), junior radiologist 1 
(C), junior radiologist 2 (D), senior general cardiologist (E), junior cardiologist 1 (F), junior cardiologist 2 (G) and the Model 3 (H) in the external test 
dataset
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infarction diagnosis DL model on cine MRI with high 
accuracy by referring to the LGE result, raising the pos-
sibility of training DL model to “learn” motion features 
from cine images [13]. For LVH, numerous studies inves-
tigating volume and wall motion parameters have noticed 
single or combined global morphology and motion 
indexes can be very valuable in diagnosis of CA and 
HCM, and HHD [21–23]. Although enormous details in 
myocardium can now be quantified through meticulous 
post-processing, it will be very hard for human beings to 
read and directly interpret such great number of param-
eters, as shown in the relatively bad performance for the 
junior doctors. In fact, only global and peak strains are 
regularly used currently [4, 24]. One of the core compe-
tencies of AI compared to human is to extract informa-
tion from images that is not apparent to the naked eye 
[25], thus, it is reasonable that DL models developed 
using cine images can have the capacity of differentiat-
ing between these three diseases. In addition, DL model 
developed in this study worked with a very high speed, 
which is another inbuilt but nonnegligible merit of AI 
algorithm. Such advantages made the DL model an ideal 
fast triage tool for patients suspected with LVH and 
referred to MRI examination.

Studies have been done to identify LVH through 
echocardiogram or echocardiography by DL models [26, 
27]. Nevertheless, information provided by echo or EKG 
is limited especially the lack of tissue characterization, 
which usually provide key factors in further differentia 
diagnosis or risk stratification for patients with LVH [15, 
28]. Study by Khurshid et al. demonstrated the ability of 
predicting genomic variations through CMR-derived 
LVMI using DL models. Neisius U’s study demonstrated 
that radiomic analysis of native T1 images could dis-
criminate HHD from HCM with an accuracy of 80.0% in 

test sets [29]. Another study by Martini N et al. trained 
a DL model using LGE images showed accuracy of 88% 
in detecting CA from other patients [30]. Our study 
achieved comparable accuracy and added by providing 
the possibility of morphology-and-motion-feature-based 
DL model in LVH diagnosis. Combination of morphol-
ogy, motion and tissue characterization to train DL 
model may achieve more ideal results and such studies 
are warranted.

Interestingly, when “less” information was put in to 
train the AI model, outcome turned out to be better. In 
our study, model 3 outperformed the other two models in 
both accuracy and robustness. Compared to model 1 and 
model 2, model 3 was more concentrated on extracting 
the morphology and motion features by using the mask of 
the segmented LV myocardium instead of the LV region 
(model 1) or the myocardium (model 2). Theoretically, 
MRI process was susceptible to a wide range of artifacts 
and variability, including but not limited to the manu-
facturer and scanner, scanning protocol and acquisition 
parameters. Those artifacts and variability were consider-
able for the generalization of neural networks (that is, the 
model 1 and model 2 in this study) on different datasets. 
On the contrast, the variability of image quality was min-
imized by the binarization processing of the segmented 
LV myocardium ROIs in model 3. Contents “learned” 
to build model 3 is expected to be only the shape of the 
heart and how this shape is changing throughout the car-
diac cycle (Fig. 7). Although the information is simplified, 
it is also cleaned and purified, which might be the reason 
for the improved model robustness in the external test 
dataset. Although the learning process of DL model is 
like a “black box,” through prespecified information feed-
ing, the training efficiency seems to be improved [31, 32]. 
Similar comparison could be found in Cao et al.’s study, 

Fig. 6 Comparison between the deep learning model (Model 3) and radiologists/cardiologists for the binary classification of CA (A), HCM (B) 
or HHD (C) in the external test dataset. HCM, hypertrophic cardiomyopathy, CA, cardiac amyloidosis, HHD, hypertensive heart disease, DL, deep 
learning
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where the author developed a step-by-step aorta dissec-
tion AI segmentation model and proved its superior to 
the traditionally trained model developed by simple data 
feeding [33]. As MRI, especially cardiac MRI is relatively 
time-consuming process and more expensive, resulting 
in a limited number of data available. Our study contrib-
uted by providing a new and efficient way to train the DL 
model.

Last but not least, our segmentation results were con-
sisted with these previous studies and had achieved 
higher dice values [34, 35]. We added by updating the 
architecture in our segmentation model. Compared with 
other DL-based segmentation models (e.g., Mask R-CNN, 
FCN and DSN), U-Net was widely used in medical image 
segmentation and had been proved to be an outstanding 
network with good performance in small datasets due to 
the successful combination of low-level and high-level 
information [36], and the incorporation with ResNet 
could further improve the efficiency in feature extraction 
and facilitate more accurately segmentation.

Limitation
Several limits should be mentioned here. First, limited 
number of patients were included for this study. How-
ever, for this MRI-based study, the number of the data 
used is comparable to previous published ones and we 
performed external validation and human-level com-
parison to further validate our results. Second, LVH 
manifestation can show up in other diseases including 
iron-deposition, Anderson-Fabry disease, eosinophilic 
cardiomyopathy or other inflammatory process in myo-
cardium. In consideration of the number of cases avail-
able, we only included three most common etiologies 
in our center for LVH classification task in this study. 
Thus, the direct clinical application of the DLAD model 

developed in this study is limited. Another limitation of 
our model is the lack of clinical variables or other MRI 
sequences, which might be also the cause for the rela-
tively unsatisfactory performance of junior cardiologists/
radiologists, as they have been used to diagnosing the 
disease with more information. Especially, whether the 
performance of such AI model could surpass the diag-
nostic ability of T1 mapping would require further vali-
dation in future studies. Nevertheless, for this study we 
are trying to build a model based on morphology and 
motion features extracted from cine images. Further 
studies with more sequences involved and clinical vari-
ables are warranted.

Conclusion
A fully automatically myocardium segmentation and spa-
tial–temporal morphology feature based LVH etiology 
diagnosis deep learning framework using cardiac cine 
MRI was described, with non-inferiority to cardiovas-
cular imaging expert and robust performance in multi-
center data. The proposed AI framework could at least 
facilitate initial LVH etiology diagnosis and potentially, 
we provided an efficient way to develop a DL model when 
only limited data is available.
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