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Abstract 

Background Timely differentiating between pulmonary tuberculosis (TB) and nontuberculous mycobacterial lung 
disease (NTM‑LD), which are radiographically similar, is important because infectiousness and treatment differ. This 
study aimed to evaluate whether artificial intelligence could distinguish between TB or NTM‑LD patients by chest 
X‑rays (CXRs) from suspects of mycobacterial lung disease.

Methods A total of 1500 CXRs, including 500 each from patients with pulmonary TB, NTM‑LD, and patients with 
clinical suspicion but negative mycobacterial culture (Imitator) from two hospitals, were retrospectively collected and 
evaluated in this study. We developed a deep neural network (DNN) and evaluated model performance using the 
area under the receiver operating characteristic curves (AUC) in both internal and external test sets. Furthermore, we 
conducted a reader study and tested our model under three scenarios of different mycobacteria prevalence.

Results Among the internal and external test sets, the AUCs of our DNN model were 0.83 ± 0.005 and 0.76 ± 0.006 
for pulmonary TB, 0.86 ± 0.006 and 0.64 ± 0.017 for NTM‑LD, and 0.77 ± 0.007 and 0.74 ± 0.005 for Imitator. The 
DNN model showed higher performance on the internal test set in classification accuracy (66.5 ± 2.5%) than senior 
(50.8 ± 3.0%, p < 0.001) and junior pulmonologists (47.5 ± 2.8%, p < 0.001). Among different prevalence scenarios, the 
DNN model has stable performance in terms of AUC to detect TB and mycobacterial lung disease.

Conclusion DNN model had satisfactory performance and a higher accuracy than pulmonologists on classifying 
patients with presumptive mycobacterial lung diseases. DNN model could be a complementary first‑line screening 
tool.

Key points 

• The DNN model showed significantly higher classification accuracy compared to pulmonologists.
• The DNN model has stable performance in different mycobacteria prevalence scenarios.
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• DNN model could be a screening tool for mycobacterial lung diseases.

Keywords Nontuberculous mycobacteria, Tuberculosis, Chest radiography, Deep learning, Artificial intelligence

Background
Pulmonary diseases caused by mycobacteria, includ-
ing Mycobacterium tuberculosis and non-tuberculous 
mycobacteria (NTM), can cause a significant impact 
on human health [1]. Tuberculosis (TB) remains one 
of the most important infectious diseases worldwide, 
leading to significant mortality and morbidity [2]. How-
ever, a paradoxical trend of decreasing TB and increas-
ing NTM-lung disease (NTM-LD) patients was found 
in many countries [3]. Simultaneously, several reports 
have found the NTM-LD prevalence was much higher 
than expectation and even more than pulmonary TB 
[4–6].

Timely differentiating between TB and NTM lung 
disease is crucial because therapeutic regimens differ 
between these two diseases, and it is necessary to con-
duct isolation and contact investigations for patients 
with pulmonary TB [4, 7, 8]. Distinguishing pulmo-
nary TB from NTM-LD, however, remains challenging 
because of considerable overlap in the clinical and radi-
ographic findings even if chest computed tomography 
(CT) is performed [9]. Nevertheless, existing diagnostic 
tools have some undesirable weaknesses. For instance, 
the turnaround time of mycobacterial culture may take 
up to several weeks [1]. While molecular techniques 
including the cartridge-based nucleic acid amplification 
test or line probe assays are less time-consuming, they 
are more expensive and likely to struggle with pauci-
bacillary specimens [10]. Thus, an efficient and low-
cost tool to distinguish between pulmonary TB and 
NTM-LD is demanded.

In recent years, fast evolution of artificial intelligence 
has demonstrated promising results in the detection 
of pulmonary TB on chest X-ray (CXR) [11, 12]. How-
ever, these reports only demonstrated machines’ util-
ity on classification between TB and relatively healthy 
patients. The previous results therefore may deviate 
from clinicians’ experience in which they need to make 
hard diagnosis between TB, NTM-LD, and suspects 
of mycobacterial lung disease who were later excluded 
because of negative mycobacterial surveillance.

Hence, in this study, we aim to provide evidence to 
close this gap. We recruited patients with TB, NTM-
LD, and other presumptive mycobacterial lung diseases, 
and develop deep neural network (DNN) models to dis-
tinguish them. We also carefully estimate models’ per-
formance in environments with different mycobacteria 

prevalence and evaluate the application limitation of 
not including NTM-LD in the training cohort.

Methods
Study design and data collection
This study was conducted in two hospitals. To investi-
gate the performance of the DNN model in patients with 
presumptive mycobacterial lung disease, we enrolled 
patients with pulmonary TB, NTM-LD, or presump-
tive mycobacterial lung diseases who have at least three 
consecutive negative sputum cultures for mycobacte-
ria (imitators of mycobacterial lung diseases, the Imita-
tor group). The pulmonary TB was diagnosed based on 
mycobacterial cultures from respiratory specimens. The 
diagnosis of NTM-LD was made for those that had met 
the clinical, radiographic and microbiologic criteria, 
according to the current NTM-LD guideline [13].

CXR datasets
CXRs used in this study were stored in digital films for 
clinical use from patients who visited these two hospitals 
(internal and external cohort) from September 2008 to 
December 2019. Figure 1 shows the flowchart of dataset 
creation. The interval between a selected CXR and the 
date of respiratory specimen for the mycobacterial study 
was restrained to less than one month. The CXRs with 
anteroposterior views or visible medical devices were 
excluded. Two experienced pulmonologists, who were 
blinded to the clinical information, evaluated the charac-
teristics of each CXR respectively, including the pattern 
(consolidation, cavitation, pleural effusion or others) and 
extent (multifocal or focal) according to standard pro-
tocol [14]. In cases of discrepancy, a final decision was 
achieved through consensus.

To ensure that the model could fairly learn from each 
diagnosis, we randomly and equally collected 300 CXRs 
for each TB/NTM-LD/Imitator group and 200 CXRs 
for each TB/NTM-LD/Imitator group from the internal 
and external cohort, respectively. A total of 900 CXRs 
in the internal cohort were randomly assigned to one of 
the three datasets: training (n = 220 for each TB/NTM-
LD/Imitator group), internal validation (n = 40 for each 
TB/NTM-LD/Imitator group), and internal test (n = 40 
for each TB/NTM-LD/Imitator group). In the exter-
nal cohort, 600 CXRs (n = 200 for each TB/NTM-LD/
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Imitator group) were kept untouched until testing the 
trained model (external test). Each image was then 
resized to 320 by 320 pixels before feeding the DNN 
model.

We also included CXRs from two public databases for 
model pretraining. In the end, 248,285 CXR images from 
MIMIC-CXR [15] and 189,892 CXR images from CheX-
pert [16] databases were recruited. Similarly, images from 
MIMIC and CheXpert contain labels of 14 common radi-
ographic observations, which do not explicitly include 
TB, NTM-LD, or Imitator.

Development of the DNN model
To develop DNN models, we used the Tensorflow and 
Keras modules in python and selected the built-in 
DenseNet121 [17] structure as our DNN’s backbone. 
All computation process was completed on Google 
Cloud Platform. Figure  2A summarizes the architec-
ture of our final DNN. Firstly, CXRs from MIMIC 
(MMC) and CheXpert (CXP) were separately used to 
pre-train the DenseNet backbone. The result DenseN-
ets were called pre-model-MMC and pre-model-CXP 
respectively. We then froze the encoders of the two pre-
models and replaced their decision layer with a multi-
layer perceptron consisting of two 512-neuron layers. 

The two pre-models were then trained on our in-house 
datasets to recognize TB, NTM-LD, and Imitator. They 
were finalized as model-MMC and model-CXP respec-
tively. A detailed discussion about this transfer learn-
ing process can be found in Additional file 1: Appendix 
A. At prediction phase, we utilized these two models as 
components and applied ensemble learning to establish 
our final DNN model. Namely, to produce the final pre-
dictions, the output predictions from the two models 
were weight-averaged based on models’ performance on 
the training set. More details about pre-training can be 
found in Additional file 1: Appendix A. Figure 2B details 
the data (CXR) flow. After training, the internal valida-
tion set was used to evaluate whether the training result 
was satisfactory and then select the best-performing 
model (see Additional file 1: Appendix B). The 120 CXRs 
in the internal test set were simultaneously used to test 
our model and the participating physicians.

Model performance and reader study
In-house DNN performance was assessed using 120 
CXRs in the internal test set whereas the 600 CXRs 
in the external test set were used to evaluate the exter-
nal generalizability of the model (Fig.  2B). We used 
the one-versus-others type of area under the receiver 

Fig. 1 Flowchart of dataset establishment from patients with presumptive mycobacterial lung diseases is presented. In brief, a total of 2987 and 
1887 patients with tuberculosis (TB), non‑tuberculous mycobacteria lung disease (NTM‑LD) or suspicious of mycobacterial lung disease whose 
sputum cultures were negative for mycobacteria (Imitator) were identified in the internal and external cohort, respectively. After excluding patients 
with anteroposterior chest X‑ray (CXR) or with visible medical devices on CXR, 1314 and 971 patients were enrolled in the internal and external 
cohort. Then, we randomly and equally collected 300 patients for each TB/NTM‑LD/Imitator group in the internal cohort, and 200 patients for each 
TB/NTM‑LD/Imitator group in the external cohort to ensure our model could fairly learn from each diagnosis. Finally, 900 patients in the internal 
cohort were randomly assigned to one of the three datasets: training, internal validation and internal test
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operating characteristic curve (AUC) to assess models’ 
performance.

In parallel, we conducted a reader study to compare 
the performance between our DNN model and pulmo-
nologists when making the hard radiological diagnosis 
from similar mycobacterial diseases. We recruited 12 
board-certified pulmonologists including 6 senior physi-
cians with more than 10 years of experience on managing 
patients with mycobacterial lung diseases and 6 junior 
physicians with less than 10  years of experience from 9 
hospitals. These physicians, who were blinded to the clin-
ical information, were asked to independently assess the 
same 120 CXR in the internal test set and make a diag-
nosis among TB, NTM-LD, or Imitator based on CXR 
findings.

Evaluation of the model as a screening tool in different 
mycobacteria prevalence
To evaluate model’s potential of assisting in mycobacteria 
screening in the real world, we simulated three scenarios 
with different disease prevalence: low TB burden (3.3% 
TB, 16.7% NTM-LD, 80% Imitator), medium TB burden 
(5% TB, 5% NTM-LD, 90% Imitator), and high TB bur-
den (12.5% TB, 4.2% NTM-LD, 83.3% Imitator). For each 
scenario, we followed the standard Bootstrap protocol 
[18] and sampled 120 patients with replacement from the 
internal test set according to the given disease prevalence 

and repeated the entire process for 100 times. The DNN 
model was required to complete two tasks. The “TB test” 
required the model to determine whether a patient is a 
TB patient from NTM-LD and Imitator. The “Myco-
bacteria test” required the model to differentiate myco-
bacterial lung disease including TB and NTM-LD from 
Imitator. We calculated AUC, sensitivity, specificity, posi-
tive predictive value, negative predictive value to repre-
sent DNN’s capability as a screening tool. Furthermore, 
“reduced further test” computes percentage of patients 
that this screening tool saves from requesting further 
examination including mycobacterial culture or nucleic 
acid amplification test for Mycobacterium tuberculosis 
complex (TB-PCR). “Number needs to screen” repre-
sents the number of mycobacterial cultures required to 
catch a confirmed case in the “positive” group selected 
by the DNN. Lastly, “Misclassified” denotes the number 
incorrectly predicted by the model.

Evaluation of DNN models with and without NTM‑LD 
in model development
A distinct feature of this study is our inclusion of NTM-
LD patients for developing models. To illustrate its 
importance, we developed an additional counterpart 
model (DNN model analogue) using only TB and Imita-
tor patients in the training set, which is a commonly used 

Fig. 2 a presents the architecture of the deep neural network (DNN). This ensemble learning framework relies on pretraining two DenseNet 
models separately on two large public datasets (MIMIC and CheXpert) and fine‑tuning them on our in‑house mycobacterial datasets. b illustrates 
the developing process of our DNN and the data flow. The validation set was used to select the best DNN models. Patients in the internal test set 
came from the same data distribution as the internal training set. Patients in the external test set came from a different data distribution, bringing 
more challenges to the model
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patient configuration for training TB DNN model in the 
past research [19]. Then, we repeated the “TB test” and 
“Mycobacteria test” using this DNN model analogue and 
compared the performance to our DNN’s under three 
clinical scenarios with low, medium and high TB burden 
as mentioned above.

Statistical analysis
All variables were expressed as numbers (percentages) 
or mean ± standard deviation as appropriate. The one-
way analysis of variance (ANOVA) was used to analyze 
intergroup differences for continuous variables. The chi-
square test was used for categorical variables. To evaluate 
DNN performance and match the number of recruited 
doctors, we repeated the whole model training process 
12 times with different initial random seeds and calcu-
lated standard deviation. For the human–machine com-
parison, we used the diagnosis accuracy and confusion 
matrices to present the performance of our DNN and 
pulmonologists. All p values were two-sided and statisti-
cal significance was set at p < 0.05.

Model visualization
To better understand how our model differentiated 
between these three confusing groups, we visualized our 
model’s attention by using Grad-cam [20]. We presented 
representative cases of the resulting heatmap among the 
TB, NTM-LD and Imitator group.

Results
Clinical characteristics of the enrolled patients
The clinical characteristics of enrolled patients in the 
internal training set, internal test set, and external test 
set are listed in Table 1. The characteristics of patients in 
internal validation set are described in Additional file 1: 
Appendix D. In comparison of patients with TB, NTM-
LD, and Imitator, patients with TB consisted of a higher 
percentage of males in all datasets. Regarding CXR pat-
tern, patients with TB had a higher rate of pleural effu-
sion. By contrast, patients with NTM-LD were more 
likely to have bronchiectasis.

Performance of DNN
Receiver operating characteristic (ROC) plots summa-
rizing DNN performance on classifying mycobacterial 
lung diseases are illustrated in Fig. 3A and B. Our model 
achieved similar AUCs on each disease group. On the 
internal test set, it acquired AUCs of 0.83 ± 0.005 for TB, 
0.86 ± 0.006 for NTM-LD, and 0.77 ± 0.007 for Imitator. 
When tested on the external test set, our model achieved 
AUCs of 0.76 ± 0.006 for TB, 0.64 ± 0.017 for NTM-LD, 
and 0.74 ± 0.005 for Imitator.

Results of reader study
The individual diagnosis accuracy rate for each sepa-
rate group was recorded in Table  2. The DNN model 
achieved a higher average accuracy rate of 66.5 ± 2.5% of 
the 3-class classification compared with human experts 
(49.2 ± 3.4%, p < 0.001). The 6 senior physicians achieved 
an average accuracy rate of 50.8 ± 3.0% (p < 0.001, com-
pared to DNN) and the 6 junior physicians achieved an 
average accuracy rate of 47.5 ± 2.8% (p < 0.001, compared 
to DNN). When looking at the three individual groups, 
DNN has generally 18% more accurate cases on TB pre-
diction (74.0% vs. 55.6%, p < 0.001) and is twice as accu-
rate on NTM-LD detection (65.0% vs. 32.7%, p < 0.001) 
than physicians. By contrast, no significant difference was 
detected between physicians and our DNN on the Imita-
tor prediction (59.2% vs. 60.6%, p = 0.816).

Also, the relationship between predictions and the 
true diagnoses of the DNN (Fig. 3C) and pulmonologists 
(Fig.  3D) on the internal test set were presented as two 
confusion matrices. It is worth mentioning that human 
experts tended to equally allocate true NTM-LD cases 
into one of the three possible groups (36.4% [0.12/0.33] as 
Imitator, 30.3% [0.10/0.33] as TB, and 33.3% [0.11/0.33] 
as NTM-LD). Finally, to realize individual variance of 
prediction on the same cases, we further examined the 
inter-rater correlation coefficient (ICC) of physicians and 
DNNs (Additional file  1: Appendix E). On the internal 
test set, the ICC score is 0.244 (95% Confidence interval 
[CI]: 0.188–0.312) of the 12 physicians and 0.799 (95% 
CI: 0.754–0.841) of our DNNs.

Class activation heatmap
Figure 4 demonstrates three activation heatmaps for TB, 
NTM-LD, and Imitator, respectively. In these three rep-
resentative cases, the DNN model correctly localized 
lesions and classified the CXRs into TB, NTM-LD, and 
Imitator, respectively.

DNN as a screening tool in different mycobacteria 
prevalence
Among different TB prevalence in “TB test”, our model 
has stable performance in terms of AUC (0.77–0.77), sen-
sitivity (0.62–0.66), and specificity (0.77–0.78) (Table 3). 
Using DNN as a screening tool for TB detection could 
save 77%, 76%, and 72% of further tests with a total loss 
of 2%, 2%, and 6% of confirmed TB cases among low, 
medium and high TB prevalence, respectively.

On the other hand, in “Mycobacteria test”, our model 
also has stable AUC (0.74–0.77), sensitivity (0.76–0.79), 
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and specificity (0.59–0.61) in the setting of different TB 
prevalence. Using DNN as a screening tool for myco-
bacteria detection could save 53%, 56%, and 54% of 
further tests with a total loss of 8%, 4%, and 7% of con-
firmed cases with mycobacterial lung disease among low, 
medium and high TB prevalence, respectively.

Performance of our DNN model and the DNN model 
analogue
Table  3 summarizes the screening performance of our 
DNN and the DNN model analogue in “TB and Myco-
bacteria test”. Compared to the DNN model analogue, 
our model has similar performance in terms of AUC 

Fig. 3 One‑vs‑others receiver operating characteristic (ROC) plots of our deep neural network (DNN) tested in the internal (a) and external (b) test 
sets are presented. Overall, the model showed acceptable generalizability for Imitator and tuberculosis (TB) predictions between the two tests. 
While the model was best at predicting non‑tuberculous mycobacteria (NTM) in the internal cohort, it achieved the worst result in external cohort. 
This finding might come from great heterogeneity between NTM groups in the internal and external test sets. c, d demonstrates confusion matrices 
of DNN’s performance (c) and the pooled performance of the 12 pulmonologists (d) on the internal test set. The major distinction between human 
experts and machines can be found in NTM prediction. Even though the recruited pulmonologists are experts of mycobacterial diseases, they 
tended to make random guesses when chest X‑rays (CXRs) of NTM were presented to them
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(0.77–0.77 vs. 0.76–0.77) and sensitivity (0.62–0.66 
vs. 0.64–0.66), but lower specificity (0.77–0.76 vs. 
0.82–0.84) in “TB test”. Although our model reduces 
less patients needing further tests (72–77% vs. 78–81% 
using the DNN model analogue), it significantly avoids 
incorrectly predicting NTM-LD patients as TB (mis-
classification rate: 14–16% vs. 31–36%).

On the other hand, in “Mycobacteria test”, our model 
has similar AUC (0.74–0.77 vs. 0.67–0.73), better sen-
sitivity (0.76–0.79 vs. 0.38–0.55) but worse specificity 
(0.59–0.61 vs. 0.85–0.85) compared to the DNN model 
analogue. After breaking down, our model consistently 
has lower misclassification rate on incorrectly predicting 
TB as Imitator (26–26% vs. 33–38%) and wrongly pre-
dicting NTM as Imitator (18–21% vs. 67–70%).

Discussion
Our study revealed that the deep learning algorithm was 
able to distinguish TB and NTM-LD patients by CXRs 
and significantly outperformed experienced pulmonolo-
gists. Also, we demonstrated that our model was capable 
of providing consistent performance even in environ-
ments with different mycobacteria prevalence and had 
significantly lower misclassification rate for patients with 
clinical suspicion of mycobacterial lung disease. These 

observations provide more solid grounds for future roles 
that DNN-based models may play for mycobacterial dis-
ease management in clinical practice and public health.

In the past, much attention has been placed on pulmo-
nary TB, which has led to under-recognition of NTM-LD 
[21]. Many patients with NTM-LD have received empiric 
treatment for TB until culture result available [22]. How-
ever, NTM are often resistant to many of the first- and 
second-line anti-TB drugs [23]. Inappropriate treatment 
for NTM-LD might place the patient at increased risk for 
developing drug-resistant infections, which could carry 
a dismal outcome [24]. Additionally, falsely presumptive 
diagnosis usually causes unnecessary airborne isolation 
and prolonged hospitalization and leads to waste of med-
ical resources [25].

Our study provides a new solution to meet these clini-
cal needs. The model outperformed participating physi-
cians and was robust under different circumstances even 
though it was widely perceived that no radiographic char-
acteristics could reliably distinguish NTM-LD from pul-
monary TB [26]. Furthermore, we decoded the rationale 
inside the DNN with visualization heatmaps, which can 
help future physician users either discover undetected 
lesions or deny impossible decisions made by the DNN. 
Performance-wise, our model acquired AUCs of 0.83 and 
0.86 for recognizing TB and NTM-LD, which are compa-
rable to the state-of-the-art study using chest CT images 
and achieving an AUC for differentiating NTM-LD from 
TB [21]. However, given the better accessibility, lower-
cost, and faster image processing time, we argue that our 
approach using CXRs can provide better assistance for 
clinicians as a first-line screening tool.

Special attention, however, should still be paid to the 
generalizability of DNN models, especially when patient 
population and characteristics differ geographically. In 
our study, for instance, the drop of the DNN model per-
formance from internal to external cohort may result 
from the difference of patient age, mycobacteria load 
and radiographic patterns between cohorts, especially 
in the NTM-LD group (comparing with NTM-LD in the 
internal test set, NTM-LD in the external test set were 
younger (p = 0.001), more likely to be acid-smear nega-
tive (p = 0.023), having nodule or mass (p = 0.001), hav-
ing consolidation (p = 0.003) and having pleural effusion 
(p = 0.027)). In practical application, a possible solution 

Table 2 Diagnostic accuracy of reader study

DNN, deep neural network; AFS, acid-fast smear; TB, tuberculosis; NTM-LD, 
nontuberculous mycobacterial lung disease

p* compared between all doctors and DNN on diagnosis accuracy

Internal test

All doctors Senior Junior DNN p*

Overall 49.2 ± 3.4% 50.8 ± 3.0% 47.5 ± 2.8% 66.5 ± 2.5%  < 0.001

AFS

 AFS 
( +)

46.8 ± 9.0% 47.1 ± 11.8% 46.6 ± 4.9% 73.0 ± 3.8%  < 0.001

 AFS (‑) 50.1 ± 5.4% 52.3 ± 5.4% 47.9 ± 4.4% 64.0 ± 2.9%  < 0.001

Diagno‑
sis

 Imita‑
tor

59.2 ± 19.7% 61.2 ± 19.5% 57.1 ± 19.7% 60.6 ± 5.1% 0.816

 TB 55.6 ± 13.5% 56.7 ± 8.0% 54.6 ± 17.3% 74.0 ± 6.7%  < 0.001

 NTM‑
LD

32.7 ± 12.5% 34.6 ± 15.5% 30.8 ± 8.0% 65.0 ± 5.5%  < 0.001

Fig. 4 Chest radiography and the class activation heatmaps for tuberculosis (TB), nontuberculous mycobacterial lung disease (NTM‑LD), and 
Imitators. The colours on the heatmap represent the diagnostic weights of determining the class in interest. The hotter the colours are (red and 
yellow), the more important the areas are to the final decision in the deep neural network (DNN). a demonstrates patchy and poorly defined 
consolidation with cavities at the left upper and lower lobes that are highly suggestive for pulmonary TB. In b, the chest radiography reveals 
bilateral bronchiectasis with nodular infiltrations, which termed nodular bronchiectasis is a typical presentation of NTM‑LD. c shows bronchiectasis 
at bilateral lung fields

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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to the decreased performance of the model in exter-
nal cohort is to use a small number of images in exter-
nal cohort to fine-tune the model (see Additional file 1: 
Appendix C).

This study also puts emphasis on the presence of NTM 
patients in developing models. Compared to the “DNN 
model analogue”, our model showed a lower rate of mis-
classifying NTM patients to TB in the “TB analysis”. This 
finding highlights the potential of DNN-based model as 
a screening tool for reducing unnecessary airborne iso-
lation and inappropriate treatment among patients with 
NTM-LD. In addition, our model was more resistant to 
misclassifying the highly mimicking Imitator while the 
DNN model analogue fails to provide satisfactory sensi-
tivity rate in ‘mycobacteria test’. Therefore, even though a 
model is only developed for identifying TB patients from 
other common lung diseases, we suggest that the devel-
oper should still consider including NTM-LD patients in 
the training set given its non-negligible presence in the 
real world.

Another major strength of this study is the inclusion 
of the Imitator group as our control. Several past stud-
ies have shown the potential of applying deep learning 
models to assist TB screening. Most of the study used 

relatively healthy patients as their control group against 
the TB patients for screening [11, 12]. In real-world clini-
cal practice, however, physicians need to distinguish TB 
and NTM-LD from multiple mimicking diseases such as 
structural lung diseases with secondary bacterial infec-
tion, cavitating lung cancer, or chronic pneumonia [27–
29]. Therefore, we decided to include the Imitator group 
and made a more challenging but commonly faced test 
setting, for both physicians and our DNN.

Our study also has limitations. First, we did not include 
a healthy control group. We, however, also considered 
this as a major distinction of our study since previous 
studies have already demonstrated that discriminating 
between CXRs of healthy and TB participants is not dif-
ficult for DNN. Secondly, patients with TB and NTM-LD 
co-infection were not enrolled in this study. Nevertheless, 
the incidence rate of NTM–TB coinfection was relatively 
low in real world [30]. Thirdly, the reader study was based 
on pulmonologists rather than experienced radiologists. 
Furthermore, we did not provide extra training cases to 
pulmonologists before the reader study since these phy-
sicians have been diagnosing and treating patients with 
suspects of mycobacterial lung diseases in their routine 
clinical practice. Therefore, the accuracy metric might be 

Table 3 Comparison between different deep neural network models on tuberculosis (A) and mycobacteria (B) detection

DNN, deep neural network; TB, tuberculosis; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; 
NTM-LD, nontuberculous mycobacterial lung disease

Our DNN model DNN model analogue

Low TB burden Medium TB burden High TB burden Low TB burden Medium TB burden High TB burden

(A)

AUC 0.77 ± 0.14 0.77 ± 0.11 0.77 ± 0.06 0.76 ± 0.11 0.76 ± 0.09 0.77 ± 0.06

Sensitivity 0.62 ± 0.23 0.66 ± 0.20 0.66 ± 0.12 0.64 ± 0.22 0.65 ± 0.16 0.66 ± 0.11

Specificity 0.78 ± 0.04 0.78 ± 0.04 0.77 ± 0.04 0.82 ± 0.03 0.84 ± 0.03 0.84 ± 0.04

PPV 0.09 ± 0.04 0.14 ± 0.04 0.30 ± 0.05 0.11 ± 0.05 0.18 ± 0.05 0.38 ± 0.07

NPV 0.98 ± 0.01 0.98 ± 0.01 0.94 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.95 ± 0.02

Reduced further test (%) 77 ± 4 76 ± 4 72 ± 4 81 ± 3 82 ± 3 78 ± 3

Number needs to screen 12.67 ± 5.93 8.33 ± 3.87 3.47 ± 0.57 10.03 ± 4.91 5.98 ± 2.02 2.77 ± 0.62

Misclassified NTM‑LD as TB (%) 14 ± 7 16 ± 16 14 ± 15 31 ± 10 36 ± 21 32 ± 21

(B)

AUC 0.77 ± 0.05 0.76 ± 0.07 0.74 ± 0.05 0.67 ± 0.06 0.71 ± 0.07 0.73 ± 0.07

Sensitivity 0.79 ± 0.08 0.78 ± 0.12 0.76 ± 0.09 0.38 ± 0.10 0.49 ± 0.13 0.55 ± 0.11

Specificity 0.61 ± 0.04 0.59 ± 0.05 0.60 ± 0.05 0.85 ± 0.03 0.85 ± 0.04 0.85 ± 0.03

PPV 0.34 ± 0.03 0.18 ± 0.03 0.28 ± 0.03 0.39 ± 0.08 0.27 ± 0.08 0.43 ± 0.08

NPV 0.92 ± 0.03 0.96 ± 0.02 0.93 ± 0.03 0.85 ± 0.02 0.94 ± 0.02 0.91 ± 0.02

Reduced further test (%) 53 ± 4 56 ± 5 54 ± 4 80 ± 3 82 ± 4 79 ± 3

Number needs to screen 2.99 ± 0.30 5.81 ± 1.11 3.67 ± 0.47 2.70 ± 0.60 4.07 ± 1.45 2.40 ± 0.49

Misclassified TB as imitator (%) 26 ± 21 26 ± 17 26 ± 11 38 ± 24 33 ± 19 37 ± 14

Misclassified NTM‑LD as imita‑
tor (%)

20 ± 8 18 ± 15 21 ± 17 67 ± 10 70 ± 19 68 ± 19
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misleadingly low for pulmonologists. Lastly, the reader 
study was only conducted on the 120 CXRs in the inter-
nal test set. We could not exclude the possibility that pul-
monologists may achieve better or even surpass the DNN 
in terms of classification accuracy on the external test set, 
especially considering the decline in performance of the 
DNN model on the external test set.

Conclusion
In conclusion, we demonstrate that our DNN model is 
more accurate than experienced physicians on classify-
ing suspects of mycobacterial diseases and can robustly 
reduce the requirements for further confirmation test. 
These results indicate that DNN-based models could 
potentially become great first-line screening tools to 
compensate for physicians and unload them from diag-
nosing and differentiating mycobacterial lung diseases.
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