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Abstract 

Background  To evaluate the inter-observer and inter-vendor reliability of diffusion tensor imaging parameters in the 
musculoskeletal system.

Methods  This prospective study included six healthy volunteers three men (mean age: 42; range: 31–52 years) and 
three women (mean age: 36; range: 30–44 years).

Each subject was scanned using different 3 Tesla magnetic resonance scanners from three different vendors at three 
different sites bilaterally. First, the intra-class correlation coefficient was used to determine between-observers agree-
ment for overall measurements and clinical sites. Next, between-group comparisons were made through the non-
parametric Friedman’s test. Finally, the Bland–Altman method was used to determine agreement among the three 
scanner measurements, comparing them two by two.

Results  A total of 792 measurement were calculated. ICC reported high levels of agreement between the two 
observers. ICC related to MD, FA, and RD measurements ranged from 0.88 (95% CI 0.85–0.90) to 0.95 (95% CI 0.94–
0.96), from 0.85 (95% CI 0.81–0.88) to 0.95 (95% CI 0.93–0.96), and from 0.89 (0.85–0.90) to 0.92 (0.90–0.94).

No statistically significant inter-vendor differences were observed. The Bland–Altmann method confirmed a high cor-
relation between parameter values.

Conclusion  An excellent inter-observer and inter-vendor reliability was found in our study.

Key points 

1.	 Diffusion tensor imaging shows excellent inter-observer reliability.
2.	 Diffusion tensor imaging shows excellent inter-vendor reliability.
3.	 Quantitative results in musculoskeletal application of diffusion tensor imaging are reproducible in all the three 

magnetic resonance scanners.
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4.	 DTI, as a reproducible magnetic resonance sequence, can be used for a quantitative evaluation of muscle micro-
structures during daily practice.

Keywords  Muscle, Diffusion tensor imaging, Magnetic resonance, Reliability, Reproducibility

Introduction
Since its first clinical application in the musculoskeletal 
(MSK) system, muscle diffusion tensor imaging (m-DTI) 
has become a valuable sequence for the evaluation of 
architectural changes of fibre microenvironments [1–4]. 
M-DTI provides parameters such as fractional anisot-
ropy (FA), radial diffusivity (RD), and mean diffusivity 
(MD) that allow extracting quantitative information on 
integrity of muscle fibres [5, 6]. Inflammatory patholo-
gies, traumatic injuries, neuromuscular disorders, or 
atrophic conditions are the principal areas of application 
of m-DTI in conjunction with conventional sequences in 
the assessments of early structural changes [7–11].

Furthermore, post-processing of DTI is able to gener-
ate fibre tractography and to assess 3D muscular struc-
ture from the origin to distal insertion by calculating 
architectural parameters such as fibre length, number 
and volume, and pennation angle [12].

Despite its potential to assess structural changes of the 
muscles, the application of m-DTI in clinical practice is 
still controversial because of several factors influenc-
ing DTI signals, such as field strength, gradient strength, 
b-values, and post-processing algorithms [13]. Several 
studies reported an acceptable agreement of DTI meas-
urements on the brain, whereas m-DTI studies, which 
were mainly conducted on lower limb muscle group, 
reported relatively high variations with FA values rang-
ing from 0.28 to 0.6 [6, 14]. Moreover, some studies on 
brain DTI reported conflicting results regarding inter-
site, intra-site, and inter-vendor reliability [15–17]. To 
the best of our knowledge, no studies assess m-DTI 
inter-vendor agreement. The aims of our study were to 
assess the inter-reader reliability and the inter-vendor 
reliability on 3  T magnetic resonance (MR) for m-DTI 
measurements.

Materials and methods
Study subjects
The local ethics committee approved our prospective 
study, and all participants signed an informed consent 
before starting the examination. The study was con-
ducted in compliance with the Declaration of Helsinki.

We enrolled six healthy volunteers: Three were males 
(mean age: 42; range: 31–52  years) and three women 
(mean age: 36; range: 30–44 years).

Inclusion criteria were: 18 year or older, no neuromus-
cular diseases in their personal and/or family history, 
no present or past muscle strains in the muscular group 
under evaluation, and no participation in any sports 
activity three weeks before the examination.

Exclusion criteria for enrolment were: usual contrain-
dications to MR imaging, positive pregnancy test, and 
objects in the body that could obscure the target mus-
cle groups through artefacts. After having optimized 
the sequences in collaboration with the specialists of the 
different vendors, each volunteer was scanned once on 
three different anatomical sites bilaterally (middle third 
of the arm, middle third of the leg, and middle third of 
the thigh). All scans were acquired on the same day 
within 6 h to reduce any possible bias and were checked 
for image quality and artefacts.

MR examination
MR examinations were performed using three 3  T (T) 
MR of our institution: Signa Pioneer (GE Healthcare, 
Milwaukee, WI, USA), Achieva (Philips Healthcare, 
Best, Netherlands), and Skyra (Siemens Healthineers, 
Erlangen, Germany). The total MR examination time for 
Signa Pioneer, Achieva, and Skyra was 18.05, 17.56, and 
17.52 min, respectively. MR protocol acquisition parame-
ters including RF-coils are summarized in Tables 1 and 2.

Image analysis
Following data acquisition and after removing all patient 
identifying information, a radiologist with eight years of 
experience in MSK MR interpretation assessed image 
quality [18]. Then, m-DTI parameters on different muscle 
compartments were independently assessed by two radi-
ologists (8 and 10 years of experience in the MSK field) 
using a commercially available software (Olea sphere 
3.0). The muscle regions of interest (ROIs) were selected 
as described in Fig. 1. Post-processing was performed on 
the DTI images. Motion-related misalignments and adja-
cent image noise were corrected with automated image 
registration. Both readers manually drew the ROIs on the 
same slices at the middle third of the thigh, leg, and arm 
on axial T1w sequences as shown in Fig. 1. FA, RD, and 
MD values of the different muscle areas were calculated. 
Fibre tractography of the thigh, leg, and arm is shown in 
Fig. 2.
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Statistical analysis
Results are reported as medians and interquartile ranges 
(IQR). Data distributions were checked for normality 
using the Shapiro–Wilk test, which showed that all data 
were non-normally distributed (p < 0.05). Next, the intra-
class correlation coefficient (ICC) was used to determine 
between-observers agreement for overall measurements 
and clinical sites, keeping in this last case, the distinction 
between left and right side, so to use the contralateral 
side as a double check of agreement. Next, between-
group comparisons were made through the nonparamet-
ric Friedman’s test. We applied Friedman’s test for each 
observer’s measurements to prevent biased findings. 
Finally, the Bland–Altman method was used to deter-
mine agreement among the three scanner measurements, 
comparing them two by two. A p value less than 0.01 
was considered to be statistically significant. Statistical 
analyses were executed by MedCalc Statistical Software 

version 19.2.6 (MedCalc Software bv, Ostend, Belgium; 
https://​www.​medca​lc.​org; 2020).

Results
Agreement between observers
The ICC reported high levels of agreement between the 
two observers as summarized in Table 3.

Good to excellent ICC values (higher than 0.69) were 
assessed between the two observers according to ana-
tomical sites, except for FA measurement on Siemens MR 
(0.62, 95% CI 0.43–0.76). Detailed results are reported in 
Table 4.

Inter‑vendor reliability
No statistically significant inter-vendor differences were 
observed for both readers and for all the parameters. 

Table 1  DTI acquisition parameters

GE Philips Siemens

DTI parameters (Thigh)

 Coil 16 channels 32 channels 18 channels

 Directions 12 15 12

 b-value (s/mm2) 400 400 400

 TR (ms) 7350 7500 7500

 TE (ms) Minimum 72 83.0

 Matrix 128 × 128 128 × 128 128 × 128

 Parallel factor 2 (asset) 2 (sense) 2 (grappa)

 Voxel size (mm) 3.1 × 3.1 × 4.0 3.03 × 2.97 × 4.0 3.1 × 3.1 × 4.0

 Acquisition time (minutes:seconds) 3.18 4.07 3.32

DTI parameters (leg)

 Coil 16 channels 32 channels 18 channels

 Directions 12 12 12

 b-value (s/mm2) 400 400 400

 TR (ms) 7950 7500 7500

 TE (ms) Minimum 66 83

 Matrix 128 × 128 128 × 128 128 × 128

 Parallel factor 2 (asset) 2 (sense) 2 (grappa)

 Voxel size (mm) 2.3 × 2.3 × 4.0 2.3 × 2.3 × 4.0 2.3 × 2.3 × 4.0

 Acquisition time (minutes:seconds) 3.35 4.07 3.32

DTI parameters (arm)

 Coil 16 channels 8 channels 18 channels

 Directions 12 12 12

 b-value (s/mm2) 400.0 400 400

 TR (ms) 8600 7837 7900

 TE (ms) Minimum 79 83

 Matrix 122 × 122 122 × 122 122 × 122

 Parallel factor 2 (asset) 2 (sense) 2 (grappa)

 Voxel size (mm) 1.6 × 1.6 × 4.0 1.6 × 1.6 × 4.0 1.6 × 1.6 × 4.0

 Acquisition time (minutes: seconds) 3.52 4.18 3.43

https://www.medcalc.org
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(Table 5). MD measurements for reader two were close 
to significance (p = 0.0573).

Bland–Altman plots comparing MD (Fig.  3), FA 
(Fig.  4), and RD (Fig.  5), were drawn. The Bland–Alt-
mann method confirmed a high correlation between 
parameter values due to the slight deviation obtained 
in the mean values and the difference between them: 

All values were drawn in the limits of agreement 
(LoA ± 1.96 standard deviation).

Discussion
Our study shows almost perfect inter-reader reliabil-
ity for MD, FA, and RD on three different MR scanner 
and overall no statically significance differences among 

Table 2  T1 TSE acquisition parameters

GE Philips Siemens

Thigh

 TR (ms) 604 519 600

 TE (ms) Minimum 13 11

 Matrix 448 448 448

 Parallel factor 2 (asset) (2 sense) 2 (grappa)

 Voxel size (mm) 0.9 × 0.9 × 4.0 0.9 × 0.9 × 4 0.9 × 0.9 × 4.0

 Acquisition time (minutes: seconds) 2.01 1.36 1.52

Leg

 TR (ms) 618 519 600

 TE (ms) Minimum 13 11

 Matrix 384 × 384 384 × 384 384 × 384

 Parallel factor 2 (asset) 2 (sense) 2 (grappa)

 Voxel size (mm) 0.8 × 0.8 × 4.0 0.8 × 0.8 × 4.0 0.8 × 0.8 × 4.0

 Acquisition time (minutes: seconds) 1.49 1.33 1.38

Arm

 TR (ms) 635.0 519 605.0

 TE (ms) Minimum 13 11.0

 Matrix 256 × 256 256 × 256 256 × 256

 Parallel factor 2 (asset) 2 (sense) 2 (grappa)

 Voxel size (mm) 0.7 × 0.7 × 4.0 0.7 × 0.7 × 4.0 0.7 × 0.7 × 4.0

 Acquisition time (minutes: seconds) 1.40 1.25 1.29

Fig. 1  Axial T1w images showing ROIs of the different anatomical compartments. a 1 rectus femoris, 2 vastus medialis, 3 vastus lateralis, 4 vastus 
intermedius, 5 sartorius, 6 gracilis, 7 biceps femoris, 8 semitendinosus, 9 semimembranosus. b 1 Medial gastrocnemius, 2 lateral gastrocnemius, 3 
soleus, 4 anterior tibialis, 5 peroneal muscles, 6 posterior tibialis, 7 flexor digitorum longus, 8 flexor hallucis longus. c 1 Medial head of triceps brachii, 
2 lateral head of triceps brachii, 3 long head of triceps brachii, 4 biceps brachii, and 5 coraco brachialis
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the three different vendors. A slightly decrease of inter-
reader agreement was detected on Skyra MR for FA 
measurement in the right thigh. We suppose that this is 
due to the inclusion of tiny fatty areas of the subcutane-
ous tissue within the ROI [19].

Similar to previous studies on the nervous system, in 
our study the DTI values showed slightly statistical dif-
ferences among different muscles as reported in Addi-
tional file (1) [13, 15, 18–20]. We assessed highest FA 
(0.348; IQR: 0.097) on gracilis muscle and lowest FA on 
vastus intermedius (second observer GE FA = 0.229; 
IQR: 0.038). Nevertheless, we believe that these dif-
ferences, albeit slightly statically different, are not 
clinically significant because there is no overlapping 
between our FA values and those reported in patients 

Fig. 2  Axial color FA map with overlaid tractography of the thighs (a), legs (b), and arm (c)

Table 3  Intra-class correlation

GE Philips Siemens

MD 0.95 (0.94–0.96) 0.92 (0.90–0.94) 0.88 (0.85–0.90)

FA 0.91 (0.88–0.93) 0.95 (0.93–0.96) 0.85 (0.81–0.88)

RD 0.89 (0.86–0.91) 0.92 (0.90–0.94) 0.89 (0.85–0.90)

Table 4  ICC for clinical sites

GE Philips Siemens

MD

 Right arm 0.97 (0.95–0.99) 0.89 (0.78–0.95) 0.76 (0.56–0.88)

 Left arm 0.96 (0.91–0.98) 0.96 (0.93–0.98) 0.69 (0.44–0.84)

 Right thigh 0.92 (0.87–0.95) 0.94 (0.90–0.96) 0.94 (0.89–0.96)

 Left thigh 0.94 (0.89–0.96) 0.86 (0.77–0.91) 0.97 (0.94–0.98)

 Right leg 0.94 (0.91–0.97) 0.96 (0.93–0.98) 0.91 (0.84–0.95)

 Left leg 0.96 (0.94–0.98) 0.88 (0.79–0.93) 0.92 (0.86–0.95)

FA

 Right arm 0.96 (0.92–0.98) 0.86 (0.73–0.93) 0.88 (0.76–0.94)

 Left arm 0.71 (0.49–0.85) 0.92 (0.83–0.96) 0.94 (0.87–0.97)

 Right thigh 0.93 (0.88–0.96) 0.96 (0.93–0.98) 0.62 (0.43–0.76)

 Left thigh 0.97 (0.94–0.98) 0.94 (0.90–0.96) 0.96 (0.94–0.98)

 Right leg 0.86 (0.76–0.92) 0.93 (0.89–0.96) 0.93 (0.88–0.96)

 Left leg 0.93 (0.88–0.96) 0.95 (0.92–0.97) 0.87 (0.77–0.92)

RD

 Right arm 0.98 (0.95–0.99) 0.89 (0.78–0.94) 0.84 (0.69–0.92)

 Left arm 0.96 (0.93–0.98) 0.96 (0.92–0.98) 0.99 (0.98–0.99)

 Right thigh 0.92 (0.86–0.95) 0.93 (0.89–0.96) 0.92 (0.87–0.95)

 Left thigh 0.93 (0.89–0.96) 0.87 (0.79–0.92) 0.97 (094–0.98)

 Right leg 0.95 (0.90–0.97) 0.94 (0.90–0.97) 0.90 (0.83–0.94)

 Left leg 0.96 (0.93–0.98) 0.87 (0.78–0.93) 0.89 (0.81–0.94)
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with spinal muscular atrophy or muscular dystrophies 
ranging from 0.7 to 0.41 [9, 23–25]. Our results sup-
port the findings found by Fourè and colleagues who 
reported some differences among the FA values of the 
muscles of the lower limb [26]. However, values of the 
different muscles reported in this study are slightly dif-
ferent compared to ours. We believe that value discrep-
ancies between the two studies may be due to different 
magnetic fields strength that determines higher SNR 
provided by acquisition on 7  T which improve fibre 
tracking compared to 3 T [27, 28].

Another study conducted on ten volunteers showed 
good reproducibility on both 3 and 7  T MR (Siemens 
Healthcare GmbH, Erlangen, Germany) with an SNR 
increase in the 7  T MR of up to 111% [12]. However, 
on the 7 T MR, the authors found higher FA and lower 
MD values in the soleus muscle, while the results of 
the remaining muscle compartments did not show sig-
nificant statistical difference of the quantitative values 
between the MR. The authors justified the heterogeneity 

Table 5  Inter-vendor differences in MD, FA, and RD

*p value was determined through Friedman’s Test

MD mean diffusivity, RA radial anisotropy, FA fractional anisotropy, RD radial 
diffusivity, CV coefficient of variation

GE Philips Siemens p value*
Median (IQR) Median (IQR) Median (IQR)

1° Observer

 MD 1.563 (0.295) 1.533 (0.253) 1.571 (0.346) 0.1152

 FA 0.303 (0.059) 0.299 (0.071) 0.300 (0.072) 0.3772

 RD 1.319 (0.257) 1.301 (0.252) 1.340 (0.318) 0.1643

 CV of MD 0.17 0.14 0.23 –

 CV of FA 0.15 0.16 0.17 –

 CV of RD 0.18 0.15 0.23 –

2° Observer

 MD 1.559 (0.299) 1.541 (0.264) 1.592 (0.356) 0.0573

 FA 0.301 (0.059) 0.300 (0.069) 0.300 (0.067) 0.7046

 RD 1.320 (0.283) 1.312 (0.258) 1.343 (0.344) 0.3258

 CV of MD 0.18 0.14 0.23 –

 CV of FA 0.15 0.16 0.19 –

 CV of RD 0.18 0.14 0.25 –

Fig. 3  MD-A: Philips versus Siemens; B: GE versus Siemens; C: GE versus Philips

Fig. 4  FA-A: Philips versus Siemens; B: GE versus Siemens; C: GE versus Philips
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of the muscular values as the results of the same effect 
described by Polders et  al., who found a higher uncer-
tainty in peripheral areas of the brain on 7 T [29].

Interestingly, one study conducted on 18 healthy sub-
jects on a single 3 T MR (Philips Medical Systems, Best, 
Netherlands) on the entire lower leg [30] and reported 
a statistically significant intra-muscle difference in FA 
between the origin of the muscle and the muscle belly. 
This is probably due to different chemical–physical prop-
erties of the actin-myosin components and the different 
amount and organization of collagen fibres.

M-DTI may be influenced by contraction and activity. 
Muscle contraction induces muscle fibre shortening and 
increases cross-sectional area (CSA), producing higher 
MD and lower FA values. Mazzoli et al. [31] performed 
MRI examinations of the lower leg on five volunteers 
during muscle contraction and found lower FA values of 
anterior tibialis in dorsiflexion compared with plantar-
flexion contraction and no contraction. The assessment 
of DTI values during muscle contraction is complex due 
to the length of current MRI sequences, which do not 
allow for constant, homogeneous fibre contraction. For 
this reason, we preferred to perform our MR examina-
tions during muscle rest state. However, it is possible 
that in the future, with the increasingly widespread use of 
ultra-fast MRI sequences, the evaluation of muscle con-
traction will soon become available [32].

M-DTI may be influenced by activity, as well [33]. 
Hooijmans and colleagues described higher DTI val-
ues in upper legs muscles of 12 marathon runners in the 
post-marathon acquisition. The increase of MD and the 
decrease of FA are related to interstitial oedema and the 
alteration of diffusivity cellular barriers caused by muscle 
micro-trauma. These higher values returned to baseline 
(i.e. those values observed in the pre-marathon phase at 
the follow-up) after 3 weeks. MD and RD values are the 
first to return to the resting phase values, while FA values 
show a more prolonged alteration. This is the reason why 

we acquired MR examinations on the same days (within 
6 h), without any sport activities performed the 4 weeks 
before the MR examination [34].

The first limitation of our study is the small sample size 
of volunteers, anyhow we assessed a large amount of data. 
Second, MR protocol parameters are not perfectly identi-
cal among the three MR scanners, because vendor-spe-
cific characteristics prevented us from applying exactly 
the same parameters for all the MR. However, other 
authors have used coils with different numbers of chan-
nels and DTI sequences with slightly different parameters 
to evaluate inter-observer and intra-observer agreement 
on the brain, obtaining promising results [13]. Moreover, 
the good results obtained with some parametric differ-
ences indirectly allow to obtain an even more significant 
inter-vendor agreement for clinical applications.

We believe that these reasons would make this 
sequence even more usable in clinical practice.

However, other studies with a larger sample of healthy 
volunteers are needed to confirm this claim.

Conclusions
Our results highlight the inter-vendor and inter-reader 
reproducibility of m-DTI values, and we strongly believe 
that the use of this sequence should be more included in 
the MRI protocols during daily clinical practice for the 
evaluation of MSK pathologies.

Abbreviations
CSA	� Cross-sectional area
FA	� Fractional anisotropy
ICC	� Intra-class correlation coefficient.
IQR	� Interquartile ranges
MD	� Mean diffusivity
M-DTI	� Muscle diffusion tensor imaging
MR	� Magnetic resonance
MSK	� Musculoskeletal
RD	� Radial diffusivity
ROIs	� Muscle regions of interest
T	� Tesla

Fig. 5  RD-A: Philips versus Siemens; B GE versus Siemens; C GE versus Philips
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