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Abstract 

Background  To develop and externally validate a conventional CT-based radiomics model for identifying HER2-
positive status in gastric cancer (GC).

Methods  950 GC patients who underwent pretreatment CT were retrospectively enrolled and assigned into a train-
ing cohort (n = 388, conventional CT), an internal validation cohort (n = 325, conventional CT) and an external valida-
tion cohort (n = 237, dual-energy CT, DECT). Radiomics features were extracted from venous phase images to con-
struct the “Radscore”. On the basis of univariate and multivariate analyses, a conventional CT-based radiomics model 
was built in the training cohort, combining significant clinical-laboratory characteristics and Radscore. The model was 
assessed and validated regarding its diagnostic effectiveness and clinical practicability using AUC and decision curve 
analysis, respectively.

Results  Location, clinical TNM staging, CEA, CA199, and Radscore were independent predictors of HER2 status (all 
p < 0.05). Integrating these five indicators, the proposed model exerted a favorable diagnostic performance with AUCs 
of 0.732 (95%CI 0.683–0.781), 0.703 (95%CI 0.624–0.783), and 0.711 (95%CI 0.625–0.798) observed for the training, 
internal validation, and external validation cohorts, respectively. Meanwhile, the model would offer more net benefits 
than the default simple schemes and its performance was not affected by the age, gender, location, immunohisto-
chemistry results, and type of tissue for confirmation (all p > 0.05).

Conclusions  The conventional CT-based radiomics model had a good diagnostic performance of HER2 positivity in 
GC and the potential to generalize to DECT, which is beneficial to simplify clinical workflow and help clinicians initially 
identify potential candidates who might benefit from HER2-targeted therapy.
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Key points 

•	 Radiomics model holds promise in identifying HER2 positivity in GCs.
•	 The conventional CT-based HER2-specific radiomics model might generalize to DECT.
•	 This study provides an imaging surrogate for stratifying GC by HER2 expression.

Keywords  Computed tomography, Radiomics, Nomogram, HER2 testing, Gastric cancer

Background
Gastric cancer (GC) remains a globally important dis-
ease, with high incidence and mortality rates in men and 
women [1, 2]. As a unique subtype of GC, HER2 over-
expression-positive (HER2-p) adenocarcinoma displays 
specific clinical features [3], and its treatment modalities 
are different from HER2 overexpression-negative (HER2-
n) one. Following the publication of the practice-chang-
ing “phase III ToGA” trial [4], trastuzumab (anti-HER2 
drug)-containing regimen was licensed as the standard 
of care for HER2-p tumor both by the National Com-
prehensive Cancer Network (NCCN), European Society 
for Medical Oncology (ESMO), Japanese Gastric Can-
cer Association (JGCA) and Chinese Society of Clinical 
Oncology (CSCO) [5–8]. On the strength of the above 
guidelines, HER2 testing is strongly recommended in all 
patients with GC who are potential candidates for tras-
tuzumab therapy [9]. Moreover, HER2 is thought to be a 
key driver of tumorigenesis in GC, and HER2-p status is 
suggested to be associated with the overall survival of the 
GC patient population, with poor outcomes might pre-
sent in patients with HER2-p GC. [4]. Hence, discrimi-
nating HER2 positivity from HER2 negativity in patients 
with GC is essential for individualized management.

The immunohistochemistry (IHC)-based 4-tiered scor-
ing system refined by Hofmann and colleagues [10] was 
recommended to decipher the HER2 status, with scores 
ranging from 0 (negative) to 3+ (positive). However, cases 
presenting with a score of 2+ are routinely classified to 
the equivocal group and should undergo an additional 
fluorescence in situ hybridization (FISH) or other in situ 
hybridization (ISH) procedures to further determine the 
classification [5, 8–10]. In other words, to identify the 
HER2 in all GC patients, testing pathologists often need 
to take two steps, performing IHC scoring first and fol-
lowed by ISH methods in patients showing 2+ , which 
is undoubtedly technically inconvenient and cumber-
some. This standard IHC/ISH technology, meanwhile, 
is initially based on relatively invasive biopsy or surgical 
specimens [8, 9]. Studies have been carried out to assess 
the potential relationship between HER2 expression and 
the noninvasive imaging tools, including PET/CT and 
conventional CT [11–13]; nevertheless, no deterministic 

conclusion and reliable model have been well established 
by far. In this way, a new initiative is needed to break the 
logjam.

Within the realm of nuclear medicine and medical 
imaging, research on radiomics in the field of oncology 
has grown exponentially over the last few years, reveal-
ing the potential of radiomics as a discipline to dramati-
cally enhance medical care at various stages of the clinical 
pathway [14]. In terms of the molecular diagnostic of GC, 
two articles have been recently published to affirm the 
value of conventional CT radiomics for predicting the 
HER2 status [15, 16]. Albeit radiomics models have also 
been developed and tested, both studies presented certain 
methodological weaknesses, such as nonstandard group-
ing and informal quantitative validation. Therefore, herein 
we conducted this study to develop and validate a con-
ventional CT-based diagnostic radiomics model so that a 
more evidence-based imaging biomarker (IB) to identify 
potential HER2-p candidates from HER2-n patients could 
be established. Moreover, external validation and evalua-
tion were performed in GC patients with dual-energy CT 
(DECT) scans to explore the feasibility of generalizing the 
conventional CT-based radiomics model to DECT.

Methods
Study design and participants
The institutional review board of the First Affiliated Hos-
pital of Zhengzhou University approved this retrospec-
tive, single-center, diagnostic study, and the requirements 
of patients’ informed consent forms were waived. The 
study participants were recruited from the First Affiliated 
Hospital of Zhengzhou University  from December 2011 
to July 2020. The clinicopathological data and CT images 
of participants were derived from the collection of medi-
cal records and picture archiving and communication 
systems (PACS), respectively.

Details of the inclusion and exclusion criteria are pre-
sented in Additional file  1: Appendix E1. In terms of 
the sample size estimating, we balanced the efficiency 
of model building and the generalization ability of the 
results to the greatest extent, based on the explana-
tions of the TRIPOD statement [17]. Finally, all selected 
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subjects were assigned to three study cohorts according 
to the time order of diagnosis and CT protocol: a training 
cohort (December 2011 to July 2019, underwent conven-
tional CT examinations; n = 388), an internal validation 
cohort (August 2019 to July 2020, underwent conven-
tional CT examinations; n = 325) and an external vali-
dation cohort (December 2011 to July 2020, underwent 
DECT examinations; n = 237). The flow diagram of the 
patient population is displayed in Fig. 1, while the study-
level characteristics are listed in Table 1.

HER2 status ascertainment
By using the tumor tissue in surgical or endoscopi-
cally biopsy specimens, pathologists performed IHC 
testing first, followed by ISH when the IHC result was 

2+ (equivocal), to determine the HER2 classification. 
Ultimately, practitioners interpreted the HER2 test 
results as binary classification, namely HER2-p subtype 
(IHC 3+ or IHC 2+ plus FISH positivity) and HER2-n 
subtype (IHC 0 or IHC 1+ or IHC 2+ plus FISH nega-
tivity), according to the evidence-based guidelines [5, 9]. 
Additionally, to provide the reader insight into the dif-
ferences in case-mix between study cohorts, the type of 
tissue confirmation for each patient was recorded and is 
summarized in Table 1.

CT protocol
The details of the CT imaging protocol are available at 
Additional file 1: Appendix E2 and Table 2.

Fig. 1  Study profile. Abbreviations: GC, gastric cancer; CT, computed tomography; IEC, inclusion/exclusion criteria; HER2-p, HER2-positive; HER2-n: 
HER2- negative
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Clinical and laboratory potential candidate variables
The following clinical characteristics were collected 
for each patient: age, gender, tumor location (cardia vs 
non-cardia), size, thickness, characteristics of enhance-
ment (mild or moderate vs obvious), Borrmann type 
(I + II vs III + IV), and clinical TNM staging (cTNM; 
I + II vs III + IV). Laboratory variables comprised carci-
noembryonic antigen (CEA), carbohydrate antigen 125 
(CA125), carbohydrate antigen 199 (CA199), carbohy-
drate antigen 724 (CA724), and carbohydrate antigen 
153 (CA153), tested at the time of the primary diag-
nosis. The CT traits were independently evaluated by 
two gastrointestinal radiologists with 6 (reader 1) and 

8 (reader 2) years of clinical experience in gastrointes-
tinal CT imaging. The details are in Additional file  1: 
Appendix E3.

Tumor segmentation and radiomics feature extraction
Venous phase CT images in a Digital Imaging and Com-
munications in Medicine format were retrieved for 
tumor segmentation. Given the strong effect of spatial 
resolution on radiomic feature values, we conducted 
resampling to minimize the possible consequences of 
differences in resolution between CT scanners [18]. 
The multicentric images were resampled at a common 
voxel spacing of 1 mm × 1 mm × 1 mm using the linear 

Table 1  Baseline data for three gastric cancer (GC) study cohorts

Values are the number (percentage) unless otherwise indicated. HER2-p = HER2-positive, HER2-n = HER2-negative; * p < 0.05;
a,b pairwise comparison results. There was no difference between cohorts given consistent letters, while there was a statistically significant difference between cohorts 
given inconsistent letters

Characteristics Training cohort Internal validation 
cohort

External validation 
cohort

p value

Line of care Tertiary Tertiary Tertiary –

Participants (n) 388 325 237 –

Age  > 60 y 200 (51.5)a 181 (55.7)a 112 (47.3)a 0.140

 ≤ 60 y 188 (48.5)a 144 (44.3)a 125 (52.7)a

Gender Male 241 (62.1)a 227 (69.8)a 169 (71.3)a 0.025*

Female 147 (37.9)a 98 (30.2)a 68 (28.7)a

Type of tissue for confir-
mation

Biopsy tissue 164 (42.3)a 174 (53.5)b 100 (42.2)a 0.004*

Surgical specimen 224 (57.7)a 151 (46.5)b 137 (57.8)a

HER2 status HER2-p 194 (50.0)a 46 (14.2)b 48 (20.3)b  < 0.001*

HER2-n 194 (50.0)a 279 (85.8)b 189 (79.7)b

Table 2  CT imaging protocols

Parameters Routine CT examinations Dual-energy CT examinations

CT version Phillips 256 iCT, Phillips Medical System, Netherlands; 
GE Discovery CT750 HD scanner or Revolution CT, GE 
Healthcare, USA

Spectral CT (GE Discovery CT750 HD scanner, GE Health-
care, USA)

CT tube voltage 120 kVp Spectral imaging mode rapid switching between 80 and 
140 kVp

CT tube current 120–550 mA 375 mA

CT rotation time 0.5 s 0.6 s

Contrast agent type Omnipaque, GE Healthcare, USA Omnipaque, GE Healthcare, USA

Contrast agent concentration 350 mgI/mL 350 mgI/mL

Contrast agent dosage 1.5 mL/kg body weight 1.5 mL/kg body weight

Contrast agent infused rate 3.0 mL/s 3.0 mL/s

Arterial phase interval time 30 s after injection of contrast agent 30 s after the injection of contrast agent

Venous phase interval time 70 s after injection of contrast agent 70 s after the injection of contrast agent

Field of view 500 × 500 mm 400 × 400 mm

Reconstruction/ image thickness 120 kVp; 0.625 mm or 1.25 mm or 5 mm 70 keV, 1.25 mm
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interpolation technique. Following the pre-processing 
step, images were fed into the ITK-SNAP software (ver-
sion 3.8.0; URL: http://​www.​itksn​ap.​org) for two-dimen-
sional region of interest (2D-ROI) segmentation on the 
maximal cross-sectional area of the tumor (Additional 
file 1: Appendix E4).

Radiomics features were extracted from original, local 
binary pattern (LBP) filtered, Laplacian of Gaussian 
(LoG) filtered, and wavelet-transformed images by using 
AK software (Artificial Intelligence Kit, Version V3.0.0.R, 
GE Healthcare) based on Python package PyRadiomics 
[19]. These features fell into six categories (Additional 
file 1: Appendix E4). Ultimately, a total of 1409 radiomics 
features were obtained per manually labeled 2D-ROI.

Feature selection and radiomics signature building
The following processes were carried out to select the 
optimal subset of features in the training cohort. First, the 
intra-class correlation coefficient (ICC) was calculated 
based on the re-segmentation data to estimate intra- and 
interobserver reproducibility of features, and only those 
with ICCs value > 0.75 were reserved for subsequent anal-
ysis. Second, removed features with variance less than 1.0 
and filled the missing values with the median. Z-score 
was used to standardize the features. Third, the standard-
ized features were input into correlation analysis to retain 
non-redundant and irrelevant candidate feature sets with 
0.9 as the cutoff value. Then, the importance of the fea-
tures was ranked by the gradient boosted decision tree 
(GBDT), and features whose coefficients were greater 
than or equal to one-tenth of the maximum coefficient 
were retained. Finally, support vector machine (SVM) 
algorithm was implemented to construct the radiomics 
signature “Radscore” for each patient as a predictor of 
HER2 status in GC.

Construction and quantitative evaluation of the radiomics 
model
In the training cohort, univariate analysis and multi-
variate logistic regression were applied to construct the 
radiomics model. First, differences in clinical-laboratory 
characteristics by HER2 status in the training cohort 
were compared using the univariate analysis, with a sig-
nificance level for variable retention of 0.1. The multi-
variate logistic regression algorithm was subsequently 
performed to select the independent factors for HER2 
status. Then, we integrated the radiomics signature with 
significant clinical-laboratory factors to develop a radi-
omics model using the same multivariable analysis, 
which was linearly fused with the significant predictors 
and corresponding regression coefficients. Finally, the 
generated radiomics model would be visualized as an 

easy-to-use nomogram for facilitating individual HER2 
diagnosis in GCs.

To quantify any optimism and generalization for the 
diagnostic performance of the radiomics model, inter-
nal validation techniques and external validation meth-
ods were employed in separate data (internal validation 
cohort) and other participant data (external validation 
cohort). The discrimination and clinical usefulness 
of the nomogram were assessed with the area under 
curve (AUC) of receiver operating characteristic (ROC) 
curves and decision curve analysis (DCA), respectively. 
The 95% confidence intervals (CIs) of the AUCs were 
calculated, and Youden’s index was also calculated to 
obtain the optimal cutoff value. Moreover, stratified 
analysis was conducted to evaluate the predictive effi-
cacy and the certain universality of the model in differ-
ent patient types based on all patients in the training, 
internal validation, and external validation cohorts. 
Delong test was called to compare the AUCs, so as to 
evaluate the stability of the established model.

Statistical analysis
All calculations and statistical analyses were performed 
on SPSS software version 21.0 for Windows and R soft-
ware package version 3.6.3 (URL: http://​www.​Rproj​ect.​
org). A two-sided p value less than 0.05 was considered 
statistically significant. In univariate analyses, the Kol-
mogorov–Smirnov test was used to check the normal-
ity of continuous variables, and then differences were 
compared using either the Mann–Whitney U test or 
the independent t test, where appropriate, while the 
Chi-square test was utilized in the comparison of cat-
egorical variables. In performing the multivariate logis-
tic regression analyses, we applied the likelihood ratio 
test based on the maximum partial likelihood estimates 
for identifying the key factors.

Results
Clinical characteristics
Of the 950 included GC patients in the three cohorts, 
288 had a HER2-p status (244 had an IHC analy-
sis score of 3+ , and 44 had an IHC analysis score of 
2+ plus positive findings on FISH), and the remaining 
662 had a HER2-n (620 had an IHC analysis score of 
0/1+ and 42 had an IHC analysis score of 2+ plus nega-
tive findings on FISH). No significant difference was 
observed between the three cohorts in terms of the age 
at the first diagnosis (percentage of > 60 years, 51.5% vs 
55.7% vs 47.3%, p = 0.140). However, there were differ-
ences in gender, the ratio of patients who had a surgical 

http://www.itksnap.org
http://www.Rproject.org
http://www.Rproject.org
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specimen analyzed, and the prevalence of HER2-p sta-
tus to some extent (all p < 0.05; Table 1).

Development of the radiomics signatures
Of 1409 radiomics features, 293 were shown to have good 
intra-and interobserver reproducibility, with ICCs > 0.75. 
After elimination by variance analysis, feature standard-
ized and correlation analysis process, 43 non-redundant 
features were derived. GBDT importance ranking dem-
onstrated that the maximum coefficient of radiomics 
features was 27.6603. Finally, 8 features with coefficients 
greater than 2.7660 were retained and used to establish 
the SVM-based Radscore (Additional file  1: Appendix 
E5).

Construction and evaluation of the radiomics model
In the training cohort, univariate analysis and multivari-
ate logistic regression of clinical-laboratory characteris-
tics and Radscore revealed that tumor location, cTNM 

staging, CEA, CA199, and Radscore were significant pre-
dictors for HER2 status of GCs (Table  3). And patients 
with HER2-p tumors showed a predominance of the car-
diac anatomic subsite, a higher stage I/II ratio, and higher 
CEA and CA199 elevation ratios. Therefore, they were 
fused as a radiomic model and visualized as a radiomics 
nomogram (Fig.  2A). The nomogram yielded diagnostic 
ability of HER2-p status in the training, internal valida-
tion, and external validation cohorts, as AUCs of 0.732 
(95%CI 0.683–0.781) and 0.703 (95%CI 0.624–0.783), and 
0.711 (95%CI 0.625–0.798), respectively (Fig.  2B). The 
optimal cut-off value corresponding to the maximized 
Youden’s index (0.3250) was selected as 0.4132. Delong 
test showed no statistical differences between the AUCs 
in the three cohorts (p = 0.546 (training cohort vs inter-
nal validation cohort), 0.678 (training cohort vs external 
validation cohort), and 0.897 (internal validation cohort 
vs external validation cohort)), indicating that the con-
ventional CT radiomics-based model was robust and 

Table 3  Univariate analysis and multivariate logistic regression analysis of the clinical-laboratory characteristics and Radscore in 
training cohort

Note—OR = odds ratio; CI = confidence interval; cTNM staging = clinical TNM staging; CEA = carcinoembryonic antigen; CA125 = carbohydrate antigen 125; 
CA199 = carbohydrate antigen 199; CA724 = carbohydrate antigen 724; CA153 = carbohydrate antigen 153; Radscore = radiomics signature; * p < 0.1; ** p < 0.05; 
a Adjusted OR (95% CI)

Parameters Univariate analysis Multivariate analysis

Statistic p value OR (95% CI) p value

Age 0.421 0.674

Gender Male/Female 4.830 0.028* 1.4 (0.9–2.2) 0.122

Location Cardia/Non-cardia 12.629  < 0.001* 1.6 (1.0–2.6) a 0.044**

cTNM staging I + II/III + IV 6.292 0.012* 0.4 (0.3–0.7) a  < 0.001**

Borrmann type I + II/III + IV 0.538 0.463

Size − 1.494 0.136

Thickness 0.990 0.323

Characteristics of enhance-
ment

Mild or moderate/Obvious 0.513 0.474

CEA Normal/Elevated 14.458  < 0.001* 2.1 (1.3–3.6)a 0.003**

CA125 Normal/Elevated 2.456 0.117

CA199 Normal/Elevated 15.559  < 0.001* 3.0 (1.7–5.4)a  < 0.001**

CA724 Normal/Elevated 4.108 0.043* 1.5 (0.8–2.7) 0.172

CA153 Normal/Elevated 3.744 0.053* 1.8 (0.6–5.1) 0.262

Radscore 5.333  < 0.001* 2.1 (1.5–3.0)a  < 0.001**

(See figure on next page.)
Fig. 2  The visualized nomogram of the radiomics model (a) and receiver operating characteristic (ROC) curves in the training, internal validation, 
and external validation cohorts (b). a From each predictor, draw a vertical line up through the “Point” scale (the top line) to get the point and then 
sum all points from each predictor. Next, find the sum value in the “Total Points” scale and draw a vertical line through the “Pr (risk)” scale (the bottom 
line) to get the final predicted probability for HER2 positivity. CEA = carcinoembryonic antigen; cTNM = clinical TNM staging; CA199 = carbohydrate 
antigen 199; Radscore = radiomics signature; number of asterisks (*) listed after each variable denotes inverse association with p value for that 
variable. Single asterisk indicates p = 0.044, double asterisk indicates p = 0.003, and triple asterisk indicates p < 0.001. b AUC = area under the 
receiver operating characteristic curve; CI = confidence interval



Page 7 of 13Zhao et al. Insights into Imaging           (2023) 14:20 	

Fig. 2  (See legend on previous page.)
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may be generalized to the GC populations that under-
went DECT scans. DCA suggested that the radiomics 
model might provide a higher net benefit than simple “all 
HER2-targeted therapy” (all HER2-p) or “none HER2- 
targeted therapy” (none HER2-p) strategies for patients 
in all three study cohorts, with threshold probabilities 
ranging from 10 to 80%, from 20 to 65%, and from 10 to 
75%, respectively (Fig. 3).

To test the generalization ability of the established radi-
omics model, we performed stratified analysis on the sub-
groups of gender, age, tumor location, IHC results, and 
type of tissue for confirmation. We used the ROC curves 
and AUCs to evaluate the model performance in these 
subpopulations. As shown in Additional file 1: Fig. S1 and 
Table  4, the results substantiated that the performance 
of our radiomics model was not influenced by these fac-
tors (Delong test, all p > 0.05), suggesting its generality in 
different types of patients. In addition, two examples of 
applying the radiomics nomogram to predict the HER2 

Fig. 3  Decision curves of the radiomics model in the training, internal validation, and external validation cohorts. The X-axis represents the 
threshold probability and the Y-axis is the net benefit. The black line “NONE” indicates that no lesions are assumed to be HER2-positive, and the gray 
line “ALL” indicates that all lesions are assumed to be HER2-positive. The model with higher clinical usefulness means it is further away from both the 
black and gray lines

Table 4  The performance of the radiomic nomogram in 
stratified analysis

AUC = area under the receiver operating characteristic curve; CI = confidence 
interval; IHC = immunohistochemistry

Patient types AUC​ 95%CI p value

Lower Upper

Gender Male 0.710 0.668 0.752 0.802

Female 0.720 0.652 0.789

Age  > 60 y 0.710 0.662 0.759 0.730

 ≤ 60 y 0.723 0.671 0.775

Location Cardia 0.683 0.633 0.734 0.556

Non-cardia 0.706 0.650 0.762

IHC results IHC 2+  0.658 0.539 0.776 0.291

IHC others 0.725 0.687 0.763

Type of tissue 
for confirma-
tion

Biopsy tissue 0.699 0.645 0.754 0.319

Surgical specimen 0.736 0.690 0.782
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positivity in patients with GCs are shown in Fig.  4 and 
Additional file 1: Fig. S2.

Discussion
Subclassification of GC as HER2-p or HER2-n subtype has 
implications for clinical therapy and prognosis [4, 5, 8]. 
Nevertheless, the officially recommended, currently used 
HER2 testing systems are labor-intensive and relatively 
invasive. As a result, diagnostic researches based on non-
invasive imaging techniques have been rapidly expanding 
[11–13, 15, 16]. However, these studies lack standardized 
design, external validation analysis, or completed and accu-
rate reporting. Consequently, we conducted this large-scale 
experiment to integrate a CT radiomics-based prediction 
model for identifying HER2-p status in GCs. Subsequently, 
we verified the performance of the achieved model in inde-
pendent cohorts of patients. This study displayed that the 
established model yielded stable predictive ability in the 
training and validation cohorts, implying the presented 
nomogram is of certain clinical application potential in 
quantifying an individual’s risk of HER2 overexpression-
positive status.

Concerning the focused imaging modality in this arti-
cle, CT was chosen due to its “first-line” nature in assess-
ing GCs. It is worth mentioning that two studies based 
on CT radiomics have been put into effect to predict the 
HER2 status of GCs [15, 16]. The results suggested that 
CT-based radiomics offers great promise to aid in the pre-
operative evaluation of HER2 expression in GC patients. 
Nevertheless, the most vulnerable point of these works lain 
in the experimental design. According to the guidelines [5, 
9], both biopsy and postoperative specimens can be used 
for HER2 detection, and IHC plus ISH technology are 
required to stratify patients, so studies focused on either 
alone (postoperative specimens-based ISH analysis or IHC 
test as golden standard) could result in bias. What’s more, 
to date, no clear benefit of trastuzumab in patients with 
early-stage GC has been supported by high-quality pieces 
of evidence [9]. Therefore, the inclusion of patients with T1 
staged tumors in HER2 prediction practice is insufficiently 
evidenced. In the current study, we carefully dealt with the 
above issues, and the good news was that the model we 
achieved had acceptable diagnostic efficiency, diagnostic 
stability and good generalization ability.

In our study, the overall HER2-p rate of patients initially 
meeting the inclusion and exclusion criteria was 16.32% 

(288/1764). While inter-setting variations existed, the inci-
dence estimates were all within the previously reported 
prevalence ranges of 12% to 23% [5]. Noteworthy, recent 
evidence suggested that the overall incidence rates of 
HER2 overexpression in metastatic gastroesophageal can-
cer increased over time, but the number of negative GC 
patients was still overwhelmingly dominant [20]. Back to 
this study, our primary objective required the maximum 
number of patients to maximize the predictive model’s 
power and generalization ability. However, the prevalence 
of our target condition (HER2-p) was too low, and the cost 
of measuring predictors was too high to warrant model 
construction efficiency. Therefore, we used all HER2-p 
cases but a random sample of HER2-n patients in the train-
ing cohort, and all available subjects correspond to real-
world proportions in the validation cohorts. At present, 
such a sampling design is attractive in situations like ours 
and necessary for use in some diagnostic prediction mod-
eling studies to obtain unbiased absolute probabilities [17, 
21, 22].

Radiomics and prediction-model establishing studies 
pursue validation techniques, especially prefer external 
validation [14, 17]. As suggested, we performed internal 
validation and included other participant datasets (exter-
nal validation cohort) to assess model performance. Most 
notably, the external validation cohort we specifically set up 
was a separate data cohort in which patients with 70 keV 
virtual monochromatic images (VMIs) were enrolled. 
Recently, the DECT platform is gaining importance in can-
cer assessments [23, 24], raising whether the conventional 
CT-based model was also applicable to DECT-derived 
images, namely the higher level of generalization. Prior 
analyses have proven that VMIs with an energy level at 
approximately 70  keV were comparable to conventional 
120 kVp CT images [25–27]. In view of the statements 
identified above, we hypothesized that 120 kVp image-
based model could generalize to 70 keV VMIs. Our experi-
mental results showed that the radiomics model exhibited 
good performance in discriminating HER2 status in the 
training cohort and elicited similar discriminatory capa-
bility on validation cohorts containing the DECT one. In 
consideration of the observations, we speculated that the 
radiomics features yielded from these two types of images 
were correlated, whereas we have not retrieved any litera-
ture aiming at the relationship between the radiomics data 
of the two yet. Thus, the certainty of our conjectures and 

(See figure on next page.)
Fig. 4  63-year-old man with gastric cancer (GC). Arterial phase (a) and venous phase CT image (b) showed that the lesion was located in the 
cardia of the stomach and had a venous phase CT-based Radscore of 0.277840926. According to the CT images and other data, the patient was 
diagnosed as stage II in terms of clinical TNM (cTNM) staging. Laboratory examination at initial diagnosis showed that the patient had elevated 
carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA199). Nomogram (c) showed that when points for individual predictors were 
added based on the “Points” scale in the top row, the total points were 348, and the probability of the patient having HER2-positive GC was 91.2%. 
Histopathological HE staining (d) and immunohistochemistry (IHC, e) confirmed an IHC 3 + gastric adenocarcinoma, namely HER2-positive GC
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Fig. 4  (See legend on previous page.)
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the underlying basis of this preliminary finding may require 
further investigation.

In our statistical analyses, a significantly higher CEA 
and CA199 positivity ratio in HER2-p group were eluci-
dated. Although past studies have found the trend of a 
significant association between CEA and HER2 expres-
sion [15, 28], the rationality and the positive correlation 
between CA199 and HER2 have not been confirmed. As 
previously  reported, CEA, CA199, and HER2 had more 
positivity frequency for cancers at the upper third of the 
stomach [3, 4, 29, 30]. Accordingly, the tumor marker-
dependent increase in HER2-p rates in our study may 
result from the link between them and tumor location. 
Owing to the sparse knowledge on the relationship of 
CEA and CA199 to HER2 overexpression, we performed 
further analyses with all study subjects and likewise dis-
covered that both were significant indicators for HER2 
status. Furthermore, consistent with the above-men-
tioned reports [3, 4], our data confirmed the anatomic 
subsites predominance of HER2 positivity. Similarly, the 
study demonstrated that the incidence of HER2 positiv-
ity was significantly higher in male patients, as Sheng 
et al. have explicitly presented [30]. However, multivari-
ate analysis showed that gender was not an independent 
risk factor for predicting HER2 status of GC. These indi-
cated that the easy-to-obtain clinical-laboratory variables 
have a latent force to be biomarkers for selecting HER2-p 
patients. Care providers should, therefore, routinely test 
the serum tumor markers.

This diagnostic investigation with a wealth of data also 
identified a significant association between image-based 
signature and HER2 positivity. Adding this CT-associ-
ated radiomics signature to the independent clinical-
laboratory predictors resulted in a radiomics model with 
better discriminative power. One suggested explanation 
is that radiomics can capture and quantify the intratu-
mor heterogeneity in medical images, where information 
related to HER2 expression is transformed into quantita-
tive features that are further integrated into the imaging 
phenotypes of HER2 status [14, 31]. In addition, strati-
fied analyses indicated that the HER2-specific radiom-
ics nomogram was generalizable across different patient 
classes. Although guidelines recommend further ISH 
testing for HER2 IHC 2+ cases [5, 9], the high expense 
hinders the optimal clinical implementation. Hence, our 
predictive model has the potential to expand the patient 
population receiving anti-HER2 treatment while reduc-
ing medical expenditure. More importantly, to facilitate 
the usage, re-validation, and continuous updating of our 
model, the report adheres to the TRIPOD statement 
for prediction model studies [17]. In these respects, to 
our knowledge, previous HER2-related model studies 

have not performed very well and are therefore of insuf-
ficient overall quality. Finally, if the identified model is 
persistently optimized and then fortunately applied to 
the clinic by crossing ‘translational gaps’ [32], a one-step 
identification of HER2 status will be achieved, that is, a 
truly ‘digital biopsy’.

There were several limitations to this study. First, since 
we used the retrospective datasets to derivate and vali-
date the model, the current findings need to be further 
verified in a prospective cohort. Second, initially, we 
determined the sample size according to practical con-
siderations, but excluding patients with missing clinical-
laboratory data in the subsequent modeling process may 
lead to selection bias. Third, we performed one-slice 
2D rather than whole-volume 3D analyses. Although 
one previous study recommended using time-saving 2D 
delineation in GC radiomics-based research [33], there’s 
no denying that multi-slice 3D descriptors carry more 
information than 2D annotations. Therefore, future vol-
umetric analyses deserve more attention. Finally, in this 
preliminary study, we only included venous phase CT 
images for feature extraction, additional studies using 
multi-phase 120-kVp CT images and VMIs at whole 
energy levels are desirable.

Conclusion
In this study, we built and validated a conventional CT-
based radiomics model that achieves a good distinction 
capability for decoding the HER2 positivity of patients 
with GCs, and has the potential to generalize to DECT. 
The fused HER2-predicting nomogram could func-
tion as an IB with the potential to streamline the clinical 
workflows and aid healthcare providers in a preliminary 
screening of underlying candidates who might derive 
benefit from HER2-directed therapy. Continually revisit-
ing the precision of the newly established IB and amelio-
rating the emerged nomogram are warranted.
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