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Abstract 

Objectives  This study aimed to investigate the influence of microvascular impairment on myocardial characteristic 
alterations in remote myocardium at multiple time points, and its prognostic significance after acute ST-segment 
elevation myocardial infarction (STEMI).

Methods  Patients were enrolled prospectively and performed CMR at baseline, 30 days, and 6 months. The pri‑
mary endpoint was major adverse cardiac events (MACE): death, myocardial reinfarction, malignant arrhythmia, and 
hospitalization for heart failure. Cox proportional hazards regression modeling was analyzed to estimate the correla‑
tion between T1 mapping of remote myocardium and MACE in patients with and without microvascular obstruction 
(MVO).

Results  A total of 135 patients (mean age 60.72 years; 12.70% female, median follow-up 510 days) were included, 
of whom 86 (63.70%) had MVO and 26 (19.26%) with MACE occurred in patients. Native T1 values of remote myocar‑
dium changed dynamically. At 1 week and 30 days, T1 values of remote myocardium in the group with MVO were 
higher than those without MVO (p = 0.030 and p = 0.001, respectively). In multivariable cox regression analysis of 
135 patients, native1w T1 (HR 1.03, 95%CI 1.01–1.04, p = 0.002), native30D T1 (HR 1.05, 95%CI 1.03–1.07, p < 0.001) and 
LGE (HR 1.10, 95%CI 1.05–1.15, p < 0.001) were joint independent predictors of MACE. In multivariable cox regression 
analysis of 86 patients with MVO, native30D T1 (HR 1.05, 95%CI 1.04–1.07, p < 0.001) and LGE (HR 1.10, 95%CI 1.05–1.15, 
p < 0.001) were joint independent predictors of MACE.

Conclusions  The evolution of native T1 in remote myocardium was associated with the extent of microvascular 
impairment after reperfusion injury. In patients with MVO, native30D T1 and LGE were joint independent predictors of 
MACE.
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Key points 

•	 Microvascular impairment correlated with native T1 of remote myocardium.
•	 Native T1 values of remote myocardium changed dynamically.
•	 Native30D T1 and LGE were joint independent predictors of MACE.

Keywords  Myocardial infarction, Magnetic resonance imaging, Ventricular remodeling, Fibrosis, T1 mapping

Introduction
In the course of the past 30 years, the mortality rate dur-
ing the acute phase of ST-elevation myocardial infarction 
(STEMI) has declined steadily and appeared now to have 
reached a plateau at lower values when compared with 
those in the pre-reperfusion era [1]. However, the success 
of emergency coronary reperfusion therapy in STEMI 
is usually limited by tissue perfusion failure [2], which 
has been shown to increase the risk of future cardiovas-
cular events [3]. Several published trials have provided 
evidence that MVO is the best predictor for prognos-
tic value among all CMR parameters, including clini-
cal scores, left ventricular ejection fraction, and infarct 
size [4–6]. Microvascular injury after acute myocardial 
infarction affects local T1 value [7]. However, in patients 
with acute myocardial infarction (AMI), myocardial tis-
sue injury and cardiac remodeling extend beyond the 
region supplied by the culprit artery; they also affect the 
remote, non-infarcted myocardium [8].

Several studies have reported remote myocardium 
alterations in patients with AMI, both in animal and 
clinical studies [9–12]. A study by Carrick et  al. [13] 
showed that in remote zone native T1 mapping, early 
changes may be associated with the occurrence of early 
post-infarction remodeling, and in a secondary analysis, 
adverse outcome. However, it was not evaluated whether 
independent and incremental prognostic information 
was provided by the remote zone native T1 values over 
established CMR markers of infarct severity. Reinstadler 
et  al. [14] reported that in addition to clinical risk fac-
tors and traditional CMR outcome markers, independent 
and incremental prognostic information was provided 
by remote zone alterations by native T1 mapping. The 
reproducibility of native T1 mapping is excellent with 
significant regional differences [15]. Thus, T1 of remote 
zone alterations may become a novel therapeutic target 
and a useful parameter for optimized risk stratification. 
Previous studies mainly focused on remote myocar-
dium alterations in acute phase and do not evaluate 
the impact of MVO on remote myocardium alterations 
[14, 16]. Consequently, the promising role of dynamic 
remote myocardium alterations with MVO for the pre-
diction of hard clinical events, and especially its potential 

incremental prognostic value compared with other mark-
ers of infarct severity, remains uncertain.

We designed a longitudinal clinical study in which 
patients with STEMI successfully treated by primary angi-
oplasty were prospectively recruited, and a CMR was per-
formed within the first week post-reperfusion, on day 30, 
and at 6  months. The impact of the dynamic change on 
post-MI CMR measures of remote myocardium was eval-
uated in reperfused MI by performing T1 mapping and 
a comprehensive serial CMR imaging study. Our study 
aimed to investigate the correlations between T1 mapping 
in remote myocardium and microvascular impairment 
and to comprehensively assess the value of T1 mapping as 
a prognostic indicator in patients with STEMI treated by 
primary percutaneous coronary intervention (PPCI).

Materials and methods
Study population and clinical endpoints
This was a prospective observational investigator-led 
study conducted at the Renji Hospital between June 2015 
and December 2018. Patients with STEMI, who under-
went PPCI within 12 h of symptom onset, were prospec-
tively enrolled in our study.

Our study protocol was approved by the institutional 
ethics committee and was also in accordance with the 
Declaration of Helsinki. Written informed consent was 
obtained from all participants. Fifty age-matched nor-
mal participants were recruited as the control group to 
acquire the normal reference range. Exclusion criteria for 
participants included the commonly accepted contrain-
dications to CMR, such as the usage of devices (implant-
able cardioverter-defibrillators, pacemakers, and cerebral 
aneurysm clips), non-ischemic cardiomyopathy (amy-
loidosis, cardiomyopathy due to iron deposition, valvu-
lar heart disease, evidence of inflammatory processes 
or Anderson–Fabry disease, and so on), coronary artery 
bypass grafting, previous AMI, severe claustrophobia, 
estimated glomerular filtration rate < 30 ml/min/1.73 m2, 
and/or significant arrhythmias. The clinical endpoint 
was major adverse cardiac events (MACE) composite of 
death, myocardial reinfarction, malignant arrhythmia, 
and hospitalization for heart failure within 3 years.
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CMR imaging
CMR examinations were performed within 1  week, 
30 days, and 6 months after STEMI with a 3.0 T scanner 
(Ingenia, Philips, Best, The Netherlands). The parameters 
of CMR sequences (SSFP, steady-state free-precession; 
T2WI-STIR, T2-weighted short-tau triple inversion 
recovery; native T1 mapping; T2* mapping; and first pass 
perfusion and LGE) are described in Additional file  1: 
Table S1.

Analysis of CMR images
Cardiac MR images were analyzed by two radiologists 
from our team with at least 5  years’ experience (Lian-
Ming Wu and Bing-Hua Chen, with over 10 and 7 years) 
in CMR diagnostic imaging. The LV functional param-
eters (volumes, mass, and function) and morphology 
were qualified and quantified with commercial software 
Cvi42 Version 5.11.3 (Circle Cardiovascular Imaging Inc., 
Calgary, Canada). We defined remote myocardium as 
myocardium without evidence of infarction, edema, or 
enhancement [13]. The ROI of T1 mapping was placed 
in the territory of non-culprit vessel, which located in 
the myocardial segment 180°from the infarcted territory 
[17]. ROI in the remote myocardium was taken in the 
same place across the 3 scans.

Transmurality was estimated by using the centerline 
chord method as previous study proposed during the 
acute stage [18]. Microvascular obstruction (MVO) refers 
to a dark hypointense core within the regions of hyper-
enhancement on LGE during the first week after reperfu-
sion. Intramyocardial hemorrhage (IMH) is defined as a 
hypointense core within the myocardial infarction zone 
on T2* mapping [17, 19]. Special care should be taken to 
have sufficient distance from adjacent tissue, such as the 
lungs or blood, to avoid partial volume artifacts [20]. The 
infarct volume fraction was quantified in LGE with full-
width at half-maximum (FWHM) technique [21].

Statistical analysis
Statistical analysis was performed using SPSS Statistics 
version 23.0, (IBM SPSS Inc., Chicago, Illinois, USA) and 
MedCalc Software version 11.4.2.0 (MedCalc Software, 
Ostend, Belgium). Normality of variable distribution 
was determined by the Kolmogorov–Smirnov test and 
qualitative inspection of Q–Q plots. Continuous vari-
ables with normal distribution, expressed as mean ± SD, 
were compared using the independent t test of two sam-
ples. Non-normally distributed variables, expressed as 
median and inter-quartile ranges, were compared with 
Kruskal–Wallis test. Frequency (percentage) for categori-
cal data of different groups was compared using the chi-
square test or Fisher exact test. The optimal cutoff values 

of remote myocardial T1 for the prediction of MACE 
were calculated by the Youden index value. MACE-free 
survival was described by the Kaplan–Meier method. To 
identify predictors of MACE, we performed univariable 
and multivariable Cox regression analyses. To determine 
independent associations with MACE during follow-up 
(adjusted hazard ratio [95% CI]), we performed multi-
variable analysis with the forward selection (likelihood 
ratio) modeling. Five separate models were performed 
to ensure statistical robustness of the Cox regression 
analysis. C-statistics were used to compare different 
parameters for predicting MACE. A 2-tailed p < 0.05 was 
considered statistically significant.

Results
Study population
Of 152 patients with STEMI included in our prospective 
observational study, 135 patients (mean age 60.72 years; 
12.70% female, median follow-up of 510 days) underwent 
the standardized CMR protocol at least twice (Fig.  1). 
Overall, 86 patients with MVO and 49 patients without 
MVO were followed up for three years. Participants were 
dichotomized according to whether they were compli-
cated with MVO (86 patients with MVO).

Baseline characteristics
The patients’ baseline characteristics are summarized in 
Table 1. Patients with MVO tended to have higher peaks 
of CK-MB (p = 0.006), cTnI (p < 0.001), BNP (p = 0.020), 
and CRP (p < 0.001) and were more likely to have MACE 
(25.60% vs. 8.20%, p = 0.013). The obstruction of culprit 
vessels occurred more often in the proximal segments in 
patients with MVO than without MVO (p = 0.002). TIMI 
flow grade was lower in patients with MVO during pre 
(p = 0.030)- and post-PCI (p = 0.040).

CMR findings
Patients with MVO tended to have lower LVEF on three 
occasions: within 1 week (p = 0.001), 30 days (p = 0.001), 
and 6  months (p = 0.003). They were also more likely 
to have higher LGE volume on three occasions: within 
1  week (p < 0.001), 30  days (p < 0.001), and 6  months 
(p = 0.002) (Table  2). Transmural infarction (p < 0.001), 
pericardial effusion (p < 0.001), and IMH (p < 0.001) 
occurred more often in patients with MVO.

Native T1 values of remote myocardium in patients 
with and without MVO changed from 1  week to 
6  months after MI dynamically. The native T1 value of 
remote myocardium in the first week was higher than 
those of 1 month. Compensatory thickening of the basal 
left ventricular septum was greater in patients with MVO 
than those without MVO (Fig. 2). At 1 week and 30 days, 
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remote myocardium T1 values of group with MVO were 
higher than those without MVO (p = 0.030 and p = 0.001, 
respectively), while differences were not significant at 
6 months (p = 0.09). In patients with and without MVO, 
remote T1 values were lowest at 30 days and highest at 
6 months (Fig. 3A). In patients with and without MACE, 
remote T1 values were lowest at 30  days (Fig.  3B). 
Patients with MACE tended to have higher native T1 val-
ues (Additional file 1: Table S2).

Endpoints and clinical outcome
During a median (510  days) follow-up, a total of 26 
(19.26%) MACE (death, n = 2 [1.48%]; myocardial rein-
farction, n = 4 [2.96%]; ventricular tachycardia, n = 1 
[0.74%]; and hospitalization for heart failure, n = 19 
[14.07%]) were observed.

In the univariable Cox regression analysis (Table  3), 
patients with the following characteristics were signifi-
cantly associated with MACE: higher Killip class (HR 
2.47, 95%CI 1.53–4, p < 0.001), higher cTnImax (HR 1.01, 
95%CI 1.001–1.02, p = 0.030), higher CRPmax (HR 1.02, 
95%CI 1.01–1.03, p = 0.004), lower TIMI flow grade 
of post-PCI (HR 0.37, 95%CI 0.20–0.70, p = 0.002), 
lower LVEF1w (HR 0.93, 95%CI 0.90–0.97, p < 0.001), 

lower LVEF6M (HR 0.95, 95%CI 0.92–0.99, p = 0.013), 
higher LGE1w (HR 1.10, 95%CI 1.06–1.14, p < 0.001), 
higher LGE30D (HR 1.12, 95%CI 1.08–1.17, p < 0.001), 
higher LGE6M (HR 1.05, 95%CI 1.01–1.09, p < 0.001), 
higher remote native1w T1 (HR 1.02, 95%CI 1.004–1.03, 
p = 0.009), higher remote native30D T1 (HR 1.04, 95%CI 
1.03–1.05, p < 0.001), higher remote native6M T1 (HR 
1.02, 95%CI 1.01–1.03, p = 0.004), higher frequency 
of transmural infarction (HR 5.26, 95%CI 1.24–22.27, 
p = 0.024), IMH (HR 3.57, 95%CI 1.07–11.93, p = 0.038), 
and MVO (HR 2.95, 95%CI 1.01–8.56, p = 0.047).

For univariable Cox regression analysis, p ≤ 0.1  was 
included into stepwise multivariable Cox regression anal-
ysis. Native1w T1 (HR 1.03, 95%CI 1.01–1.04, p = 0.002), 
Native30D T1 (HR 1.05, 95%CI 1.03–1.07, p < 0.001), and 
LGE (HR 1.10, 95%CI 1.05–1.15, p < 0.001) were joint 
independent predictors of MACE during mid-term fol-
low-up for all patients with STEMI after PPCI (Table 4). 
In multivariable cox regression analysis of 86 patients 
with MVO, native30D T1 (HR 1.05, 95%CI 1.04–1.07, 
p < 0.001) and LGE (HR 1.10, 95%CI 1.05–1.15, p < 0.001) 
were joint independent predictors of MACE (Additional 
file  1: Table  S4). Native T1 of remote myocardium sur-
passes predictive value of MVO or LGE in C-statistics 

Fig. 1  Study flowchart. A total of 135 participants were available at the end of our present analysis. Fifty normal participants were recruited as the 
control group
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of all patients (p < 0.001). And native30D T1 value was 
stronger independent predictor than native1w T1 in 
C-statistics of patients with MVO (p < 0.001) (Fig. 4).

Discussion
Our comprehensive, longitudinal CMR investigation 
demonstrated that T1 mapping of remote myocar-
dium changed during periods of approximately 1  week, 

30  days, and 6  months. Patients with MVO following 
reperfused STEMI showed a substantial correlation with 
changes in T1 mapping of the remote myocardium. The 
principal findings included: (1) The severity of micro-
vascular impairment after reperfusion is correlated with 
the evolution of native T1 values in remote myocardium. 
Patients who suffered from severe microvascular impair-
ment display higher T1 values, which is consistent with 

Table 1  Patients baseline characteristics

Numbers are given as median (inter-quartile ranges) or mean ± standard deviation or as absolute frequency with percentages in parentheses. p value represents 
comparison of patients with MVO and without MVO

cTnImax, peak troponin I; CK-MBmax, peak creatinine kinase-MB; BNPmax, peak brain natriuretic peptide; CRPmax, peak c-creative protein; LAD, left anterior descending; 
RCA, right coronary artery; LCX, left circumflex; TIMI, thrombolysis in myocardial infarction, PCI, percutaneous coronary intervention; MACE, major adverse 
cardiovascular events; TIMI flow grade post-PCI (1–2); and TIMI flow was 1 or 2 after primary PCI

Total (n = 135) MVO(-) (n = 49) MVO( +) (n = 86) p value

Age, years 60.72 ± 10.73 62.35 ± 8.44 59.79 ± 11.78 0.150

Female 17 (12.70%) 8 (16.30%) 9 (10.50%) 0.320

Body surface area, m2 1.82 ± 0.16 1.79 ± 0.16 1.84 ± 0.16 0.100

Body mass index, kg/m2 24.51 ± 2.86 23.86 ± 2.34 24.87 ± 3.07 0.050

Chest distress 64 (47.40%) 21 (42.90%) 43 (50%) 0.420

Chest pain 126 (93.30%) 45 (91.80%) 81 (94.20%) 0.870

Risk factors

 Hypertension 71 (54.80%) 23 (46.90%) 51 (59.30%) 0.170

 Diabetes mellitus (II) 47 (34.80%) 13 (26.50%) 34 (39.50%) 0.130

 Killip class 0.710

  I 118 (87.40%) 44 (89.80%) 74 (86%)

  II 11 (8.10%) 4 (8.20%) 7 (8.10%)

  III–IV 6 (4.40%) 1 (2%) 5 (5.80%)

 CK-MBmax, U/L 100.45 (61.70, 245.55) 69 (39.70, 189.10) 112.90 (80, 303) 0.006

 cTnImax, ng/mL 30 (14.38, 78.25) 14.40 (6.57, 22.80) 57 (25.50, 83)  < 0.001

 BNPmax, pg/mL 304 (135.75, 482.25) 211 (100.50,459) 350 (159.50, 496.50) 0.020

 CRPmax, mg/L 10.05 (4.67, 16.86) 5.90 (2.15, 12.65) 11.90 (7.70, 23.04)  < 0.001

 MACE 26 (19.26%) 4 (8.20%) 22 (25.60%) 0.013

Angiographic

 Infarct-related artery 0.360

  LAD 101 (74.80%) 35 (71.40%) 66 (76.70%)

  LCX 6 (4.40%) 1 (2%) 5 (5.80%)

  RCA​ 28 (20.70%) 13 (26.50%) 15 (17.40%)

 Segment of culpritvessel 0.002

  Proximal 74 (54.80%) 19 (38.80%) 56 (64%)

  Middle 49 (36.30%) 21 (42.90%) 28 (32.60%)

  Distal 12 (8.90%) 9 (18.40%) 3 (3.50%)

 TIMI flow grade pre-PCI 0.030

  0 89 (65.90%) 24 (49%) 65 (75.60%)

  1 10 (7.40%) 3 (6.10%) 7 (8.10%)

  2 11 (8.10%) 7 (14.30%) 4 (4.70%)

  3 25 (18.50%) 15 (30.60%) 10 (11.60%)

 TIMI flow grade post-PCI 0.040

  1–2 26 (19.30%) 5 (10.20%) 21 (24.40%)

  3 10,980.70%) 44 (89.80%) 68 (75.60%)
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Table 2  Left ventricular function and tissue characteristics of CMR in dynamic evolution

Numbers are given as median (inter-quartile ranges) or mean ± standard deviation or as absolute frequency with percentages in parentheses. p value represents 
comparison of patients with MVO and without MVO

Total (n = 135) MVO(−) (n = 49) MVO(+) (n = 86) p value

LVEDV, mL

 1 week 130. 56 (107.89, 151.79) 116.87 (99.54, 134) 141.17 (118.62, 159.38)  < 0.001

 Day 30 132.60 (111, 161.50) 123 (102.47, 147) 143 (124, 179.16) 0.001

 6 Months 142.37 (113.90, 172) 127.43 (107.50, 158.76) 155.30 (117.17, 193.48) 0.020

LVESV, mL

 1 week 60 (49.10, 83.63) 51.32 (41.56, 65) 71.30 (52.56, 91.12)  < 0.001

 Day 30 60 (43.23, 91.10) 44.47 (40.20, 72) 69.60 (51.76, 106.16)  < 0.001

 6 Months 67 (49, 100.20) 58.3 (46.8, 78.6) 76 (58, 119) 0.001

SV, mL

 1 week 65.34 ± 16.94 63.63 ± 14.73 66.34 ± 18.10 0.340

 Day 30 69.05 ± 16.71 67.8 ± 15 70.1 ± 18.1 0.510

 6 Months 70.17 ± 16.64 72.56 ± 16.17 68.40 ± 16.90 0.220

LV mass, g/m2

 1 week 128.73 (106.57, 146) 112.55 (99.93, 133.95) 137.60 (117.30, 151.45)  < 0.001

 Day 30 116.24 (100, 133.60) 114 (100, 126) 122 (104.11, 139.90) 0.080

 6 Months 111 (96.58, 132) 107 (95.50, 118.18) 121 (98.29, 142.35) 0.070

iLVEDV, mL/m2

 1 week 71.05 (62.09, 80.59) 66.09 (56.55, 77.23) 74.92 (65.93, 82.50) 0.001

 Day 30 74.33 (61.09, 90.65) 67.62 (55.75, 80.85) 77.82 (68.08, 96.41) 0.002

 6 Months 78.02 (65.11, 98.85) 71.06 (63.51, 87.82) 84.15 (67.06, 107.37) 0.030

iLVESV, mL/m2

 1 week 32.85 (27.57, 45.61) 29.50 (26.25, 34.12) 39.18 (28.66, 48.15)  < 0.001

 Day 30 32.45 (24.93, 49.58) 26.97 (21.12,37.82) 40.24 (28.66, 60.36)  < 0.001

 6 Months 37.23 (27.34, 57.66) 31.55 (26.29, 44.13) 43.31 (29.73, 62.93) 0.001

iSV, mL/m2

 1 week 35.59 ± 7.87 36 ± 6.85 35.34 ± 8.43 0.610

 Day 30 37.97 ± 8.18 37.41 ± 7.47 38.44 ± 8.77 0.544

 6 Months 39.16 ± 8.79 40.63 ± 8.76 38.07 ± 8.73 0.150

iLV mass, g/m2

 1 week 68.74 (59.42, 80) 63.68 (56.44, 74.85) 72.70 (63.46, 82.88) 0.004

 Day 30 62.67 (57.51, 74) 60.28 (55.69, 72.10) 65.20 (58.23, 79.45) 0.140

 6 Months 62.38 (54.17, 74.36) 57.94 (54.47, 66.76) 67.43 (53.51, 75.57) 0.070

LVEF, %

 1 week 49 (42.84, 59) 56.50 (52, 62.97) 44.63 (40, 52.65) 0.001

 Day 30 54.25 (44, 60.08) 58.99 (54, 65) 47.07 (38.44, 55.47) 0.001

 6 Months 51.90 (40, 60) 59.73 (52.08, 69) 46.13 (37.45, 57.19) 0.003

LGE, %

 1 week 28.27 (16.30, 38.50) 18.70 (9.50, 27.47) 30.45 (27.25, 35.98)  < 0.001

 Day 30 20 (12, 31.38) 11.30 (6.35, 17.92) 26.68 (18.13, 31.75)  < 0.001

 6 Months 22 (12, 30.25) 11.50 (8.03, 24.10) 22.95 (14.80, 28.42) 0.002

Native T1 mapping

 1 week 1254 (1241, 1272) 1243 (1225, 1258.50) 1259.50(1248.25, 1276)  < 0.001

 Day 30 1235 (1224.25, 12,426.75) 1225 (1211, 1239) 1239 (1230, 1250)  < 0.001

 6 Months 1273 (1254, 1296) 1269.50 (1230, 1289.25) 1277 (1258.25, 1298.25) 0.087

Native T1Normal 1217 (1188.50, 1236.75)abc / / /

Transmural infarction 89 (65.90%) 17 (34.70%) 72 (83.70%)  < 0.001

Pericardial effusion 90 (66.70%) 22 (44.90%) 68 (79.10%)  < 0.001

IMH 89 (65.90%) 7 (14.30%) 82 (95.30%)  < 0.001
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fibrosis expansion. (2) Native1w T1 value, native30D T1 
value, and LGE were joint independent predictors of 
MACE during mid-term follow-up for patients with 
STEMI after PPCI. (3) In reperfused STEMI patients 
with MVO, native30D T1 and LGE were joint independent 
predictors of MACE.

Accurate noninvasive quantification and detection of 
remote myocardium alteration in reperfused STEMI 
patients are scientifically and clinically invaluable for 
their usefulness in prognosis prediction. Carrick et  al. 
[13] found that early inflammation post-MI is associ-
ated with native T1 mapping. Several studies have con-
firmed that the native T1 of remote myocardium in the 
acute stage provided independent prognostic infor-
mation for cardiac recovery and MACE [13, 14, 16]. 

However, none of the former studies revealed differences 
in native T1 values between STEMI patients with and 
without MVO. MVO after STEMI has a trend of dynamic 
change, which appears in the first week and disappears 
by day 30. MBF of infarcted myocardium significantly 
increased at 6  months compared with 1 to 3  days after 
STEMI [22]. Our findings unequivocally demonstrate 
that the dynamic changes in native T1 mapping from the 
acute stage to approximately 30 days, and approximately 
6 months.

Local and systemic inflammatory responses were trig-
gered due to ischemia and reperfusion in the acute stage 
after STEMI. Aggregation of neutrophil and platelets 
will further obliterate the microvascular lumen, which 

MVO, microvascular obstruction; IMH, intramyocardial hemorrhage. LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; SV, stroke 
volume;LVEF, left ventricular ejection fraction; iLVEDV, indexed left ventricularend-diastolic volume; and LGE, late gadoliniumenhancement
a p < 0.001, T11w and T1normal
b p = 0.012, T130D and T1normal
c p < 0.001, T16months and T1normal

Table 2  (continued)

Fig. 2  Native T1 values of remote myocardium in patients with and without MVO changed from 1 week to 6 months after MI dynamically. The 
native T1 value of remote myocardium in the first week was higher than those of 1 month. Inflammation of remote myocardium increased in 
the acute phase while diminished gradually during follow-up, and fibrosis of remote myocardium increased gradually. Native T1 values were 
determined by myocardial fibrosis in the chronic stage. The first patient had mural thrombosis in the apical during the first week. Compensatory 
thickening of the basal left ventricular septum was greater in patients with MVO than those without MVO
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will then induce further microvascular impairment, ulti-
mately leading to the production of vasoconstrictors and 
inflammatory mediators [23]. Acute STEMI will trigger a 
spectrum of alterations in the remote vessels, including 
upregulation of the platelet-endothelial adhesion from 
endothelial-associated von Willebrand factor multim-
ers and endothelial inflammatory adhesion molecules 
[24]. The activation of leukocyte infiltration and proin-
flammatory pathways is related to the response of the 
remote myocardium [25]. The remodeling process post-
infarction has been increasingly recognized as a cause 
of inflammatory response [26]. Native T1 values were 
determined by myocardial water content and cellularity 
[27]. Increased T1 of myocardium with inflammatory cell 
infiltration was confirmed by histopathology in patients 
with the features of acute rejection who underwent car-
diac transplant [28]. Therefore, myocardial edema and 
hypercellularity, due to the inflammation during the 
acute phase post-STEMI, are the reasons why there has 
been an increase in the remote myocardial native T1 in 
the acute stage [13, 14]. Most patients with MVO also 
had IMH implicated severe microvascular impairment. 
Persistent crystallized iron deposition from MVO com-
plicated with IMH is directly associated with left ven-
tricular adverse remodeling in the chronic stage after MI, 
infarct resorption, and proinflammatory burden [29].

Inflammation of remote myocardium increased in the 
acute phase while diminished gradually during follow-
up, and fibrosis of remote myocardium increased gradu-
ally. Native T1 values were determined by myocardial 
fibrosis in the chronic stage [30]. These may be the main 
reasons for the bimodal behavior of the T1 value in the 
remote myocardium. Diffuse myocardial fibrosis can 
cause the increase in native T1 [11]. In the chronic phase, 

Fig. 3  The box-plots (25th percentile, median, and 75th percentile) represent dynamic changes in native T1 values of remote myocardium on three 
occasions. In patients with and without MVO, remote T1 values were lowest at 30 days and highest at 6 months (A). In patients with and without 
MACE, remote T1 values were lowest at 30 days (B)

Table 3  Clinical and CMR predictors of MACE in univariable cox 
regression analysis for patients with and without MVO

Unadj HR, unadjusted hazard ratio; CI, confidence interval; cTnImax,peak troponin 
I; CK-MBmax, peak creatinine kinase-MB; BNPmax, peak brain natriuretic peptide; 
CRPmax, peak c-creative protein; TIMI flow grade post-PCI (1–2); TIMI flow was 
1 or 2 after primary PCI; MVO, microvascular obstruction; IMH, intramyocardial 
hemorrhage; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular 
end-systolic volume; SV, stroke volume; LVEF, left ventricular ejection fraction; 
iLVEDV, indexed left ventricular end-diastolic volume; and LGE, late gadolinium 
enhancement

Univariable analysis

Unadj HR (95% CI) p value

Clinical parameters

Killip class 2.47 (1.53, 4)  < 0.001

cTnImax, ng/mL 1.01 (1.001, 1.02) 0.030

BNPmax, pg/mL 1.001 (1, 1.002) 0.030

CRPmax, mg/L 1.02 (1.01, 1.03) 0.004

TIMI flow grade pre-PCI 0.90 (0.65, 1.24) 0.505

TIMI flow grade post-PCI 0.37 (0.20, 0.70) 0.002

CMR imaging parameters

LVEDV1w, mL 1.01 (1, 1.02) 0.054

LVESV1w, mL 1.01 (1.002, 1.02) 0.017

iLVEDV1w, mL/m2 1.01 (0.99, 1.03) 0.211

iLVESV1w, mL/m2 1.02 (1, 1.03) 0.060

LVEF1w, % 0.93 (0.90, 0.97)  < 0.001

LVEF30D, % 0.97 (0.93, 1.01) 0.142

LVEF6M, % 0.95 (0.92, 0.99) 0.013

LGE1w, % 1.10 (1.06, 1.14)  < 0.001

LGE30D, % 1.12 (1.08, 1.17)  < 0.001

LGE6M, % 1.05 (1.01, 1.09)  < 0.001

Native1w T1 1.03 (1.02, 1.04)  < 0.001

Native30D T1 1.04 (1.03, 1.05)  < 0.001

Native6M T1 1.02 (1.01, 1.03) 0.004

Transmural infarction 5.26 (1.24, 22.27) 0.024

Pericardial effusion 3 (0.90, 10) 0.074

IMH 3.57 (1.07, 11.93) 0.038

MVO 2.95 (1.01, 8.56) 0.047
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Table 4  Clinical and CMR predictors of MACE in multivariable cox regression analysis for all patients

Model Multivariable analysis

LR Chi-square (p value) Variable Adj HR (95% CI) p value

Model 1 19.26 (p < 0.001) Killip class – –

cTnImax – –

BNPmax – –

CRPmax 1.01 (1, 1.03) 0.043

TIMI flow grade post-PCI – –

LVEDV – –

LVESV – –

iLVESV – –

Transmural infarction – –

Pericardial effusion – –

MVO – –

IMH – –

LVEF1w 0.94 (0.90, 0.97)  < 0.001

Model 2 69.31 (p < 0.001) Killip class – –

cTnImax – –

BNPmax – –

CRPmax – –

TIMI flow grade post-PCI 0.30 (0.15, 0.60) 0.001

LVEDV – –

LVESV 1.01 (1, 1.02) 0.012

iLVESV – –

Transmural infarction – –

Pericardial effusion – –

MVO – –

IMH – –

LVEF1w – –

Native1w T1 1.03 (1.02, 1.05)  < 0.001

Native30D T1 1.05 (1.03, 1.07)  < 0.001

Model 3 44.88 (p < 0.001) Killip class 1.85 (1.13, 3.03) 0.015

cTnImax – –

BNPmax – –

CRPmax 1.02 (1.01, 1.04) 0.004

TIMI flow grade post-PCI – –

LVEDV – –

LVESV – –

iLVESV – –

Transmural infarction – –

Pericardial effusion – –

MVO – –

IMH – –

LGE1w 1.11 (1.06, 1.16)  < 0.001

Model 4 79.42 (p < 0.001) Killip class – –

cTnImax – –

BNPmax – –

CRPmax – –

TIMI flow grade post-PCI – –

LVEDV – –

LVESV – –
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prolonged T1 values correlate with the severity of myo-
cardial interstitial fibrosis [31], which has been advocated 
as the sensitive marker to differentiate between fibrosis 
and healthy myocardium [32].

Microvascular dilation and increased blood vol-
ume may cause T1 values to increase after myocardial 
ischemia [33]. Another key explanation for the higher T1 
values at first week, compared to values at one month, 
may be that myocardial blood flow of remote regions 
increased after MI, reflecting the hyperdynamic perfor-
mance of remote myocardium [34]. Coronary microvas-
cular injury and obstruction occur in approximately half 
of patients after successful primary PCI and is associated 
with worse outcomes compared to those without micro-
vascular injury [3]. Severe microvascular impairment will 
cause a stronger systemic response, including both the 
infarcted and non-infarcted myocardium. Compensatory 
enhancement of systolic function in remote myocardium 
leads to compensatory cellular hypertrophy, hyperkinesis 
after STEMI, and cellular dysfunction [11].

Our study has several limitations. First, our sam-
ple size was small. However, a total of 341 CMR scans 
were performed (within 1  week = 135, 30  days = 134, 
6 months = 72) on 135 patients, with each patient under-
going at least two scans. Thus, it is necessary to confirm 
our findings in a large-scale study. Nevertheless, our 
data—baseline characteristics, CMR results on infarct 
severity, and incidence of MACE—are comparable with 
other recent CMR studies [4]. In light of the fact that 
patients were scanned successively, we kept our CMR 

protocol as short as possible. Instead, both myocardium 
edema and hemorrhage were assessed by T2W-STIR 
imaging, a sequence validated and used in many published 
papers for these purposes. Patients with anterior STEMI, 
and also patients with inferolateral wall STEMI, were 
included in our clinical study. This may possibly induce 
magnetic-field non-homogeneity associated with the infe-
rolateral wall. Additionally, care should be taken when 
extrapolating results to lateral MI locations, especially 
when attempting to adequately visualize the phenomenon, 
as signal loss attributable to through-plane cardiac motion 
may occur [35]. Wall stress may affect the pathophysiology 
of the remote zone in STEMI. Future studies are needed to 
examine wall stress and determine the clinical significance 
of native T1 changes in the longer-term follow-up.

To summarize, our study is the first longitudinal 
pathophysiological study of remote myocardium that 
evaluated mid-term outcomes through CMR. Native 
T1 mapping could detect myocardial abnormalities 
in remote myocardium that may be neglected by con-
ventional LGE. The early detection of diffuse myocar-
dial pathological alterations in the remote myocardium 
among survivors of STEMI allows for a more timely 
and individualized treatment and disease-specific ther-
apy. The assessment of dynamic evolution of remote 
myocardium and the adjudication of outcome events 
are other strengths of the study.

Table 4  (continued)

Model Multivariable analysis

LR Chi-square (p value) Variable Adj HR (95% CI) p value

iLVESV – –

Transmural infarction – –

Pericardial effusion – –

MVO – –

IMH – –

LGE1w 1.10 (1.05, 1.15)  < 0.001

Native1w T1 1.03 (1.01, 1.04) 0.002

Native30D T1 1.05 (1.03, 1.07)  < 0.001

Model 5 55.75 (p < 0.001) Native1w T1 1.03 (1.02, 1.05)  < 0.001

Native30D T1 1.05 (1.03, 1.06)  < 0.001

Killip class – –

BNPmax – –

TIMI flow grade post-PCI 4.28 (1.83, 10.04) 0.001

IMH – –

Adj HR, adjusted hazard ratio; BNPmax, peak brain natriuretic peptide; MVO, microvascular obstruction; IMH, intramyocardial hemorrhage; LVEF, left ventricular ejection 
fraction; LGE, late gadolinium enhancement; LGE1w was correlated with LVEF1w significantly (r = 0.60, p < 0.001); IMH was significantly correlated with cTnI (r = 0.62, 
p < 0.001) and MVO (r = 0.82, p < 0.001), respectively; TIMI flow grade post-PCI (1–2); and TIMI flow grade was 1 or 2 after primary PCI
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Conclusion
The evolution of native T1 in remote myocardium asso-
ciated with the extent of microvascular impairment after 
reperfusion injury. Native1w T1 value, native30D T1 value, 
and LGE were joint independent predictors of MACE 
during mid-term follow-up for all patients with STEMI 
after PPCI. In reperfused STEMI patients with MVO, 
native30D T1 and LGE were joint independent predictors 
of MACE. These findings may provide insight into the 
assessment of LV remodeling and prognosis after myo-
cardial infarction.
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