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Abstract 

Purpose  To investigate the generalizability of transfer learning (TL) of automated tumor segmentation from cervical 
cancers toward a universal model for cervical and uterine malignancies in diffusion-weighted magnetic resonance 
imaging (DWI).

Methods  In this retrospective multicenter study, we analyzed pelvic DWI data from 169 and 320 patients with 
cervical and uterine malignancies and divided them into the training (144 and 256) and testing (25 and 64) datasets, 
respectively. A pretrained model was established using DeepLab V3 + from the cervical cancer dataset, followed by TL 
experiments adjusting the training data sizes and fine-tuning layers. The model performance was evaluated using the 
dice similarity coefficient (DSC).

Results  In predicting tumor segmentation for all cervical and uterine malignancies, TL models improved the DSCs 
from the pretrained cervical model (DSC 0.43) when adding 5, 13, 26, and 51 uterine cases for training (DSC improved 
from 0.57, 0.62, 0.68, 0.70, p < 0.001). Following the crossover at adding 128 cases (DSC 0.71), the model trained by 
combining data from adding all the 256 patients exhibited the highest DSCs for the combined cervical and uterine 
datasets (DSC 0.81) and cervical only dataset (DSC 0.91).

Conclusions  TL may improve the generalizability of automated tumor segmentation of DWI from a specific cancer 
type toward multiple types of uterine malignancies especially in limited case numbers.

Key points 

1.	 Transfer learning (TL) improves performance of tumor segmentation on diffusion-weighted imaging (DWI) 
especially in limited case numbers.

2.	 Training a model by combining sufficient data of different cancers exhibited the highest performance for seg-
menting mixed cervical and uterine datasets and also improved the pretrained cervical model.

3.	 The TL model with fine-tuning the early layers of the encoder part outperformed those by fine-tuning the other 
layers.
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Introduction
Magnetic resonance imaging (MRI) plays crucial roles 
for gynecologic malignancies, in the initial or preop-
erative staging, response monitoring and surveillance 
for recurrence [1], by providing anatomical details and 
functional parameters [2]. MRI-derived target volumes 
are increasingly used for radiation treatment planning 
for cervical cancer, based on the accurate tumor con-
touring and precisely evaluating tumor extension [3]. 
In addition to tumor localization, MRI-based radiomics 
has potential to differentiate benign versus malignant 
uterine tumors [4] and provides useful information for 
the outcome prediction [5]. However, the radiomics 
pipeline involves extracting features from large number 
of images [6], related to potential discrepancies of man-
ual contouring among human readers [7], highlight-
ing the pressing need for a fully automatic method for 
tumor segmentation.

Convolutional neural networks (CNNs) have shown 
promise as alternatives for image segmentation [8, 9]. 
However, building a CNN model requires far more anno-
tated datasets than are available in medical imaging [10]. 
Furthermore, training a segmentation model in a three-
dimensional volume dataset, such as CT or MRI, requires 
manual labeling in a slice-by-slice manner, which is 
extremely labor intensive. Therefore, reducing the size 
of the training dataset is necessary to boost training effi-
ciency. Transfer learning (TL) is an approach to address 
this problem, which uses features learned from a source 
domain as a pretrained model and transfers them to 
another domain [11]. Several studies have shown that TL 
has potential to overcome the requirement of large data in 
medical imaging [12–14]. To the best of our knowledge, 
no study has investigated the usefulness of TL in studying 
different cancers. Because the majority of tumors exhibit 
high intensity on diffusion-weighted (DW) imaging and 
low intensity on the apparent diffusion coefficient (ADC) 
map, we assume that various tumors have common fea-
tures in certain layers of the network, and knowledge 
regarding one tumor type can be transferred for the study 
of another type. Previous study has established a model 
of tumor segmentation in cervical cancer (CX) with DW 
images [15]. In the current study, we hypothesized that 
the pretrained model of CX dataset can be transferred 
to all cervical and uterine malignancies, with a reduced 
sample size of labeled images.

This study investigated the generalizability of transfer 
learning (TL) of automated tumor segmentation from 

cervical cancers toward a universal model for all cervical 
and uterine malignancies in diffusion diffusion-weighted 
magnetic resonance imaging (DWI). Specifically, we 
investigated whether TL can reduce the data size 
required for the target domain, and we deciphered which 
parts of CNN layers should be fine-tuned to achieve ade-
quately accurate tumor segmentation. Finally, the model 
performance of TL was compared with an aggregated 
model, which was trained using the combined cervical 
and uterine datasets, for the universal tumor segmenta-
tion of malignant uterine tumors on MRI.

Materials and methods
Patients
This exploratory study retrospectively analyzed the data-
set of patients with cervical or uterine malignancies at 
a tertiary referral center between July 2010 and Janu-
ary 2018. The Institutional Review Board approved the 
study, and informed consent was waved. The experiments 
were performed using two cohorts of patients: (1) cervi-
cal dataset, which was used as the source domain for the 
pretrained model. This dataset was used for establishing 
the tumor segmentation model in previous report [15]; 
the dataset included the data of 144 patients with cervical 
cancer for training and the data of 25 patients for testing; 
(2) uterine dataset, the target domain for transfer learn-
ing experiments.

The inclusion criteria for patients in the uterine data-
set were as follows: (a) female sex, (b) age of 20–80 years, 
and (c) clinical diagnosis of uterine malignancies. The 
exclusion criteria were as follows: (a) contraindicated 
for an MRI study due to a cardiac pacemaker or coch-
lear implantation; (b) post major pelvic surgery, total 
hip replacement, or magnetic substance implantation in 
the pelvis; (c) significant major systemic disease, such 
as renal failure, heart failure, stroke, acute myocardial 
infarction/unstable angina, poor controlled diabetes mel-
litus, and poor controlled hypertension; and (d) pregnant 
or breast-feeding.

Of 345 consecutive patients enrolled, we excluded 16 
patients who had no visible tumors and nine patients sus-
ceptible to artifacts in DW imaging. Thus, the data of 320 
patients in the uterine dataset were included in the final 
analysis (Fig.  2). Among them, 256 patients (80%) were 
randomized to the training dataset, and the remaining 
64 patients (20%) were included in the testing dataset. All 
data were exported anonymously.



Page 3 of 11Lin et al. Insights into Imaging           (2023) 14:14 	

MRI data and image annotation
MRI studies were performed using two MRI scanners: 
Skyra (n = 248) and Trio TIM (n = 72) (Siemens Health-
ineers). All patients underwent the standard MR pro-
tocol from Chang Gung Memorial Hospitals following 
the guide of European Society of Urogenital Radiology 
for female pelvis imaging [16]. The imaging protocol 
included T1-weighted, T2-weighted, DW images and 
contrast-enhanced T1-weighted images acquired in sag-
ittal and axial planes. The DW imaging utilized single-
shot echo planar imaging with b-values = 0 and 1000  s/
mm2 to generate ADC map. (repetition time/echo time, 
3700–8200 ms/65–85 ms; slice thickness/interval, 4 mm 
/1 mm; field of view, 200 × 200 mm; matrix, 256 × 256). 
The slice sections ranged 14–22 to cover the whole tumor 
for each patient. The sagittal DW images and the cor-
responded ADC maps of each slice were used as input 
sources for training and testing.

Regions of interest (ROIs) of tumor contours were 
delineated by the consensus of two gynecologic radiolo-
gist (Y.L.H. and G.L. with 7 and 13  years of experience 
in gynecology, respectively) using an in-house developed 
interface in MATLAB (Mathworks, Natick). Both readers 
were blinded to clinical outcomes. We avoided the ROIs 
contaminating the adjacent normal endometrium and 
myometrium and excluded the normal cervical stroma 
when studying the cervical invasion. The labeled ROIs 
were used as the ground truth for the model training.

Network and training
In an optimization study, we explored the perfor-
mance of U-Net and DeepLab V3 + architectures for 
tumor segmentation in cervical cancer. Finally, the 
DeepLab V3 + architecture was adopted because it 
produced higher preliminary accuracies (Additional 
file 1). The DW MRI with b-values of 0 and 1000 s/mm2 
and ADC images were used as three-channel input 
sources for training. Xception was used as the back-
bone (first 356 layers) of the DeepLab V3 + network. 
The networks were trained with weight randomiza-
tion and stochastic gradient descent Adam Optimizer 
method [17]. The signal intensities of all images were 
normalized to a mean = 0 and standard deviation = 1 
[18]. We implanted data augmentation on each train-
ing image set, such that six times of image data were 
generated (20°, − 20°, 60°, − 60°, and horizontal flip). 
Finally, 10,164 images from the 256 patients in the uter-
ine training dataset were used for training. The learn-
ing rate was 0.001, and the number of epochs until 
convergence was 100, with batch sizes of 2. The net-
work was trained using Keras 2.1.4 written in Python 

3.5.4 and TensorFlow 1.5.0. The code for the DeepLab 
V3 + model is available at https://​github.​com/​bonli​me/​
keras-​deepl​ab-​v3-​plus.

Model experiments
The pretrained model was established using DeepLab 
V3 + for cervical dataset (n = 144). We performed three 
combinations of model training and prediction: (a) UT-
only model: training from scratch using the uterine data-
set without TL from cervical model; (b) TL model: using 
the pretrained cervical model and fine-tuning of certain 
layers using the uterine dataset; and (c) Aggregated model: 
training from scratch by using the combined cervical and 
uterine datasets. This model was proposed to test the gen-
eralization for both cervix and uterine cancers.

To investigate the effect of freezing/tuning layers on TL 
performance, we examined three levels as the cutoff lay-
ers on the TL model. The layers before the identified layer 
were frozen, whereas those after that were fine-tuned 
based on the target domain data (Fig. 1). (a) L1: the first 
layer following the Xception model of the encoder. This 
was to retain the low-level features learned in the source 
domain and retrain the high-level features from the tar-
get domain. (b) L2: a deep layer following the Atrous Spa-
tial Pyramid Pooling at the end of the encoder. This was 
to retain the low-level features and most of the high-level 
features of the encoder in the source domain and retrain 
the last layer in the encoder. (c) L3: the layer at decoder 
initiation. This was to retain all the extracted features of 
the source domain in the encoder and retrain from the 
start of the decoder.

To assess the influence of data size on training per-
formance, we examined different training data sizes of 
uterine dataset through splitting the training samples 
randomly with 2% (n = 5), 5% (n = 13), 10% (n = 26), 20% 
(n = 51), 50% (n = 128), and 100% (n = 256) of patients 
(Fig.  2). The independent dataset comprising patients 
with uterine cancer (n = 64) and cervical cancer (n = 25) 
was used for testing the performance of each group.

Evaluation of model performances
The accuracy of segmentation was estimated using 
a dice similarity coefficient (DSC) [19] as follows: 
D(X, Y) =

2⌊X∩Y ⌋
⌊X⌋+⌊Y ⌋

 , where X and Y denote the segmenta-
tion of the prediction and ground truth, respectively. The 
trained models with the highest DSC in each group were 
selected as the final models for prediction in the testing 
dataset.

https://github.com/bonlime/keras-deeplab-v3-plus
https://github.com/bonlime/keras-deeplab-v3-plus
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Extraction of ADC radiomics
To assess the reliability of predicted ROIs by the estab-
lished models, we examined the radiomics features of 
ADC values of tumor ROIs extracted by manual and 
automatic segmentation models. The 14 first-order radi-
omics features of tumors were calculated using pyradi-
omics software [20] based on the 3D volumes of ROIs on 
ADC images.

Statistics
Statistical analysis was performed using GraphPad Prism 
software version 8.0 for Mac (GraphPad Software, San 
Diego, CA, USA). The differences in DSCs in various 
trained models were assessed using analysis of variance 
(ANOVA) with Tukey’s post hoc analysis. The stability 
of the model was assessed through k-fold cross-valida-
tions by using ANOVA on DSCs between labeled and 
predicted ROIs by each trained model. The reliability of 
radiomics features of tumor ROIs was evaluated using 
intraclass correlation coefficient (ICC) obtained by man-
ual and automatic segmentation models.

Results
Patient characteristics in UT dataset
In total, 320 patients with uterine malignancies were 
eligible for the final analysis. Table  1 presents the clini-
cal and demographic features of the training (n = 256) 
and testing datasets (n = 64). The median patient age was 
53  years (range: 25–88  years). The histopathology types 
comprised endometrial carcinoma (EC, n = 309, 96.5%), 
endometrial stromal sarcoma (ESS, n = 5, 1.6%), leiomyo-
sarcoma (LMS, n = 4, 1.3%), and carcinosarcoma (malig-
nant mixed müllerian tumor, MMMT, n = 2, 0.6%), with 
tumors either well/moderately differentiated (n = 259, 
80.9%) or poorly differentiated (n = 61, 19.1%). Tumor 
size ranged from 0.14 to 270 cm3 (median, 4.2 cm3). No 
statistically significant differences were found regarding 
the clinical or demographic characteristics between the 
training and testing datasets.

Model performance
Figure  3 shows the performance of models in various 
training combinations and under various sample sizes 
from the uterine dataset. Initially applying the pretrained 

Fig. 1  The DeepLab V3 + network architecture in the experiment. The red circle with annotations of L1, L2, and L3 denotes the cutoff levels in 
which the previous layers are frozen, whereas the following layers are fine-tuned based on the target dataset. L1: an early layer in the encoder 
following the Xception model. L2: a deep layer following the ASPP at the end of the decoder. L3: the layer at decoder initiation. ASPP: Atrous Spatial 
Pyramid Pooling
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cervical model directly to the combined cervical and 
uterine datasets yielded a DSC of only 0.43 (95% confi-
dence interval [CI], 0.38–0.49). The TL models with the 
fine-tuning level at L1 exhibited higher DSCs as com-
pared with those at L2 or L3 (p < 0.05 for all data size sub-
groups). The TL model of L1 fine-tune level exhibited the 
highest DSCs when the used uterine data size was ≤ 51 
(DSC = 0.57, 0.62, 0.68, 0.70 for sample sizes 5, 13, 26, 
and 51, respectively, p < 0.001). As more training data 
were added, the performances of models increased. With 
the data size of ≥ 128 used, the aggregated model exhib-
ited the highest DSC among all the models (DSC = 0.73 

and 0.81 for sample sizes 128 and 256, respectively, 
p < 0.001). Figure 4 demonstrates a patient with endome-
trial cancer where tumor contours were generated using 
various training models and sample sizes.

Subgroup analysis was performed on cervical dataset, 
uterine dataset, and the combined cervical and uterine 
datasets, respectively. The prediction accuracies of vari-
ous models in predicting tumor contours using differ-
ent training sample sizes are summarized in Fig.  5 and 
Table 2. Applying the pretrained cervical model directly 
to uterine dataset yielded a DSC of only 0.31. (95% CI, 
0.25–0.34). On testing the uterine cancer cases, the TL 

Fig. 2  Flowchart of uterine tumor dataset demonstrating data collection and split for various training combinations
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model exhibited the highest DSCs when the training 
size of uterine data was small and medium (DSC = 0.61 
and 0.70 for n = 13 and 51, respectively) among all mod-
els (p < 0.001). The UT-only model had the highest DSC 
when the full dataset was used (n = 256, DSC = 0.79, 95% 
CI, 0.75–0.83, p < 0.001). On testing the cervical cancer 
cases, the TL model achieved similar DSCs as the aggre-
gated model if adding uterine cases of n = 13 and n = 51 
for training (DSC = 0.67 and 0.71, respectively). Surpris-
ingly, the aggregated model drastically improved the 
DSC in the cervical dataset if adding full uterine cases 
for training (n = 256, DSC = 0.91, 95% CI, 0.87–0.94, 
p < 0.001).

Reliability of radiomics features
Figure  6 shows the ICC values of ADC radiomics fea-
tures in first-order obtained by manual and automatic 
segmentation by uterine-only and TL models with vari-
ous trained sample sizes. Both the models exhibited 
poor to moderate reliabilities when the training data 
size was small (n = 13) with ICC = 0.32–0.58 for uterine-
only model and 0.38–0.69 for TL model. As the training 
sample size increased to n = 51, the TL model exhibited 
higher ICCs compared with the UT-only model for all 

Table 1  Patient demographics of the uterine dataset

Data in parentheses are percentages. *Mean (SD)

Variable Training Testing p value

Patient number (n) 256 64

Age (year)* 52.14 (11.15) 52.08 (10.77) 0.968

Histology 0.602

 Endometroid carcinoma 251 (98.0) 58 (90.6)

 Endometrial stromal sarcoma 2 (0.8) 3 (4.7)

 Leiomyosarcoma 2 (0.8) 2 (3.1)

 Malignant mixed müllerian 
tumor

1 (0.4) 1 (1.6)

Differentiation grade 1.000

 Well/moderate 207 (80.9) 52 (81.3)

 Poorly 49 (19.1) 12 (18.8)

T stage 0.811

 1 233 (91.0) 57 (89.1)

 2, 3, and 4 23 (9.0) 7 (10.9)

N stage 0.693

 0 238 (93.0) 61 (95.3)

 1 18 (7.0) 3 (4.7)

M stage

 0 NA NA

 1 NA NA

Fig. 3  Performances of models in predicting the combined cervical and uterine dataset using various training combinations and sample sizes on 
the uterine tumors (UT) dataset. The L1, L2 and L3 in TL models indicate the fine-tune levels as indicated in Fig. 1. Data are expressed as means with 
error bars of standard deviation
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parameters (ICC = 0.73–0.89 and 0.53–0.81 for TL and 
UT-only models, respectively, p < 0.001). With the use 
of full data size, both models exhibited high reliabilities 
with ICC > 0.8 for all the parameters (ICC = 0.81–0.96 
and 0.8–0.96 for TL and UT-only models, respectively).

Discussion
We exploited the potential of TL through domain adap-
tion for automated tumor segmentation for gynecologi-
cal cancers on diffusion MRI. Our results showed the 
effectiveness of the DeepLab V3 + network in tumor seg-
mentation through the adaptation of previously acquired 
knowledge of cervical cancer to the new domain of uter-
ine malignancy. When the number of training samples 
was limited in the target dataset, the TL approach out-
performed conventional training from scratch with the 
same size of training data.

TL works under the assumption of a common fea-
ture space for data distribution from source and 
target domains shared. CNN architectures with trans-
ferable weights are particularly suited for TL [21, 22]. 
We hypothesized that cervical cancer and uterine malig-
nancy might have some common features in DW imaging 
within the scope of gynecology, and the learned weights 

from the pretrained cervical model might generalize to 
all cervical and uterine malignancies. Our results showed 
that model trained from either cervical or uterine tumor 
failed to predict the contour of the other cancer properly 
without fine-tuning. Our approach underscored that the 
cervical cancer and uterine malignancy did share com-
mon features that can be learned at low-level layers, 
whereas the high-level features are specific to the tar-
get domain of uterine malignancy. The network can be 
adopted to the target domain rapidly with only a small 
sample size to fine-tune the weights.

Our results suggest that with a small sample size, the 
TL approach outperformed training from scratch for 
both the segmentation similarity measures as well as the 
reliability of the extracted radiomics parameters. Kurata 
et  al. [23] demonstrated DSCs of 0.68 and 0.56 in DW 
imaging and ADC images, respectively, for endome-
trial cancer by training 180 uterine cancer patients from 
scratch. Our results showed that, with only 51 patients 
used, the TL model exhibited higher DSC of 0.70 than 
the UT-only model with DSC of 0.64. Although the DSC 
of 0.7 is not satisfactory for the tumor segmentation task, 
the extracted ADC radiomics is reliable with ICCs of 
0.73–0.89. This is nearly comparable with the results by 

Fig. 4  Demonstration of predicted tumor contours in a patient with endometrial cancer using various training combinations and sample sizes on 
the uterine dataset. A The tumor contour was delineated manually (red contour) and overlaid on the ADC image. The blue contours delineate the 
automatically generated tumor regions by using: B pretrained cervical model; C uterine-only model; D TL model with fine-tuned at L1 level. The 
numbers in white at the right bottom of each image indicate the DSC of the case. The pretrained cervical model itself generated only a small part of 
the tumor with DSC = 0.18. The accuracy increased as more uterine data were added for fine-tuning. The TL model outperformed the uterine-only 
model when the fine-tuned data size was < 128. The uterine-only model exhibited the highest DSC of 0.92 when all patient data were used 
(n = 256)
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Fig. 5  Comparisons of prediction accuracies of various models for subgroup uterine malignancies using various training sample sizes of uterine 
tumors dataset. The transfer learning (TL) model referred the fine-tuning level of L1. *, significant different compared with the pretrained model; # 
significant different between the UT-only, TL or aggregated models. * #, p < 0.05; **, ##, p < 0.001

Table 2  Prediction accuracies of models for different testing datasets using various training sample sizes

Data are presented in mean with parentheses for 95% CI

CX Cervical dataset, UT Uterine dataset

Model Training data Test dataset

CX (n = 25) UT (n = 64) All (n = 89)

UT-only model UT (n = 13) 0.24 (0.19, 0.28) 0.49 (0.44, 0.54) 0.43 (0.39, 0.48)

UT (n = 51) 0.35 (0.32, 0.39) 0.65 (0.61, 0.69) 0.62 (0.53, 0.67)

UT (n = 256) 0.54 (0.49, 0.58) 0.79 (0.75, 0.83) 0.72 (0.67, 0.76)

TL model UT (n = 13) 0.69 (0.65, 0.73) 0.61 (0.57, 0.65) 0.62 (0.58, 0.66)

UT (n = 51) 0.71 (0.66, 0.75) 0.70 (0.65, 0.74) 0.70 (0.66, 0.74)

UT (n = 256) 0.72 (0.68, 0.77) 0.71 (0.67, 0.76) 0.72 (0.68, 0.76)

Aggregated model CX (n = 144)
 + UT (n = 13)

0.69 (0.62, 0.74) 0.48 (0.43, 0.53) 0.55 (0.46, 0.65)

CX (n = 144)
 + UT (n = 51)

0.71 (0.66, 0.75) 0.66 (0.62, 0.71) 0.68 (0.64, 0.73)

CX (n = 144)
 + UT (n = 256)

0.91 (0.87, 0.94) 0.74 (0.71, 0.78) 0.81 (0.76, 0.85)

Pretrained CX model CX (n = 144) 0.77 (0.73, 0.81) 0.31 (0.25, 0.34) 0.43 (0.35, 0.51)
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Kurata et al. [23], who reported ICCs of 0.75–0.93 for the 
first-order features based on T2-weighted image by train-
ing 180 patients with endometrial cancer.

The TL approach could be in particular useful for 
uncommon diseases such as uterine sarcomas dem-
onstrated in the present study. Our finding is consist-
ent with that of Ghafoorian et  al. [24], who performed 
domain adaptation for segmentation on brain white mat-
ter among different MRI. They showed that the accuracy 
of the model using TL outperformed the model trained 

from scratch with a sample size of < 50. Swati et  al. [25] 
reported that the data size can be reduced to as low as 
25% (n = 58) by using TL for brain tumor classification on 
MRI by using the VGG19 network. Our results showed 
that TL model outperformed all the non-TL models with 
data size < 128. The potential reason may be that the pre-
trained model may contain some mutual features for both 
cervical cancer and uterine malignancy, and these fea-
tures would dominate the weights of the trained model 
when the sample size is small.

Fig. 6  Intraclass correlation coefficient (ICC) values for ADC radiomics features (first-order) obtained by manual and automatic segmentation of 
uterine (UT)-only and TL models with various sample sizes. Data are presented as median with error bars indicating 95% confidence intervals



Page 10 of 11Lin et al. Insights into Imaging           (2023) 14:14 

We also demonstrated that the performance of TL is 
dependent on fine-tuning layers in the network. In a CNN, 
the convolutional layers near the input are regarded to 
extract general features, whereas deeper layers are specific to 
the target task [26]. Shirokikh et al. [27] reported that fine-
tuning the first layers significantly outperforms fine-tuning 
the last layers in brain segmentation by using U-Net. Our 
results demonstrated that DeepLab V3 + exhibited higher 
accuracy compared with U-Net for tumor segmentation in 
uterine malignancy. We observed that fine-tuning the layers 
immediately after the Xception portion [28] exhibited the 
highest performance among the various levels of interest in 
the network. In addition, fine-tuning at the encoder (L1 and 
L2 levels) outperformed that at the decoder (L3) of the net-
work. This finding implies that low-level features at the early 
encoder portion dominate the common features of tumors 
in cervical cancer and uterine malignancy.

Our study had some limitations. First, we focused 
on only TL between cervical cancer and uterine malig-
nancy because these two cancers are prevalent in gyne-
cology and the data size available for clinical use is the 
largest. The value of TL for ovarian cancer is yet to be 
investigated. Second, we used DeepLab V3 + in this 
study; innovative networks always exist for seman-
tic segmentation. However, most of the segmentation 
networks use the encoder–decoder form with various 
backbones for feature extraction. Nonetheless, the cur-
rent study provides a proof of concept that fine-tuning 
from the early part of the encoder is recommended 
for TL among different cancers. Third, the tumors for 
radiation planning are segmented on fast spin echo 
T2-weighted images with higher resolution and signal 
to noise. Thus, generalizability to other types of data-
sets needs to also be demonstrated in the future.

In conclusion, our results demonstrated that TL may 
improve the generalizability of automated tumor segmen-
tation of DWI from a specific cancer type toward mul-
tiple types of uterine malignancies especially in limited 
case numbers. However, if large amounts of annotated 
data are available, training from scratch using the target 
dataset appears to be a better option for specific disease.
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