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Abstract 

The use of artificial intelligence (AI) with medical images to solve clinical problems is becoming increasingly common, 
and the development of new AI solutions is leading to more studies and publications using this computational tech‑
nology. As a novel research area, the use of common standards to aid AI developers and reviewers as quality control 
criteria will improve the peer review process. Although some guidelines do exist, their heterogeneity and extension 
advocate that more explicit and simple schemes should be applied on the publication practice. Based on a review 
of existing AI guidelines, a proposal which collects, unifies, and simplifies the most relevant criteria was developed. 
The MAIC-10 (Must AI Criteria-10) checklist with 10 items was implemented as a guide to design studies and evalu‑
ate publications related to AI in the field of medical imaging. Articles published in Insights into Imaging in 2021 were 
selected to calculate their corresponding MAIC-10 quality score. The mean score was found to be 5.6 ± 1.6, with criti‑
cal items present in most articles, such as “Clinical need”, “Data annotation”, “Robustness”, and “Transparency” present in 
more than 80% of papers, while improvements in other areas were identified. MAIC-10 was also observed to achieve 
the highest intra-observer reproducibility when compared to other existing checklists, with an overall reduction in 
terms of checklist length and complexity. In summary, MAIC-10 represents a short and simple quality assessment tool 
which is objective, robust and widely applicable to AI studies in medical imaging.

Key points 

•	 AI solutions have become an essential clinical tool in medical imaging.
•	 Standardised criteria are necessary to ensure quality of AI studies.
•	 Established criteria are often incomplete, too exhaustive, or not broadly applicable.
•	 A concise and reproducible quantitative checklist will help to ensure a minimum of acceptance.
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Introduction
Artificial intelligence (AI) offers solutions that are revo-
lutionising medicine, progressing towards the paradigm 
shift represented by data-driven decision making. In the 
field of medical imaging, an increasing number of stud-
ies are appearing in which AI tools are making important 
contributions towards more accurate diagnoses or more 
reliable prognostic estimates [1, 2]. Although there are 
very high expectations, the validity of many of these pub-
lications can be brought into question as the methodol-
ogy used in their design is criticised [1]. Before AI-based 
solutions are accepted in clinical practice, appropri-
ate methodological quality control mechanisms must 
be agreed upon. If this approach is implemented with a 
guarantee of robustness and clinical validity, AI-based 
solutions could be certified as medical devices (software 
as a medical device—SaMD) and appropriate periodic 
surveillance mechanisms put in place.

For decades, our group has focused on the standardi-
sation and validation of imaging biomarkers. In recent 
years, AI-based implementations using convolutional 
neural networks (CNN) have been developed in the 
framework of large research projects funded by the 
European Commission’s Horizon 2020 programme [3, 
4]. However, the poor explainability (black box effect), 
the small size and heterogeneity of the training data set, 
and the limited independent validation of the results, 
have generated growing concerns and a call for greater 
transparency and rigour to ensure more reliable AI 
models. Hence, there is a growing interest to draw up 
checklists used to verify the proper implementation of 
AI models in medical imaging to ensure that adequate 
reproducibility and clinical impact is provided prior to 
their use. Since different sets of criteria have been pro-
posed, it is desirable to concisely define the minimum 
core standards that must be adhered to in these studies 
and publications.

Our aim is to formulate a guideline unifying, combin-
ing, and summarising existing ones, focusing on medi-
cal imaging and AI. Then, these quality criteria will be 
checked in published AI studies, assessing similarities 
and differences when compared to the previous existing 
checklists. Based on this analysis, a basic scientific qual-
ity control checklist is proposed to guarantee a minimum 
standard of acceptability when carrying out and evaluat-
ing AI research publications.

Methodology
After reviewing in PubMed the 2017–2021 publica-
tions on AI methodology and quality control in Q1 high 
impact journals by searching the terms “Checklist”, “AI,” 
and “imaging”, six manuscripts proposing the use of AI 
checklists in clinical pathways were identified:

•	 Checklist for artificial intelligence in medical imag-
ing (CLAIM), sponsored by the Radiology: Artificial 
Intelligence journal (Radiological Society of North 
America) [5, 6].

•	 Minimum information about clinical artificial intel-
ligence modelling (MI-CLAIM), catalogued in the 
EQUATOR Network library of reporting guidelines 
[7].

•	 Radiomics quality score (RQS), developed at Maas-
tricht University Medical Centre and widely used 
[8].

•	 Consolidated standards of reporting trials-AI (CON-
SORT-AI), developed by the CONSORT-AI and 
SPIRIT-AI Working Group and catalogued in the 
EQUATOR Network library [9].

•	 Standard protocol items recommendations for inter-
ventional trials (SPIRIT-AI), developed by the CON-
SORT-AI and SPIRIT-AI Working Group and cata-
logued in the EQUATOR Network library [10].

•	 Clinical AI research (CAIR) checklist, published 
recently by a group of researchers led by the Karolin-
ska Institute in Sweden [11].

These manuscripts were evaluated to compare, define, 
and establish a simplified reference criterion for the use 
of AI in the medical imaging environment. These ini-
tiatives were conceived with slightly different goals and, 
thus, the most relevant aspects of the AI approaches that 
should be considered when designing studies also differ 
based on each perspective. The stepwise selection of the 
main checklist items was as follows. First, a shortlist was 
created including items which appeared in at least two of 
the checklists. Each item in the shortlist was considered 
by all seven authors, who voted for or against its inclusion 
according to the following principles: (a) low relevance 
for AI-focused applications (i.e. items related to general 
scientific methodology aspects), (b) scope limited to 
clinical trial methods (including aspects such as protocol 
registration, adverse event handling, etc.), (c) relevance 
in medical imaging-focused studies, (d) relationship to 
study reproducibility (focusing on statistical and meth-
odological aspects), (e) expected final clinical impact, and 
(f ) broad applicability across study types (retrospective 
vs prospective, hand-crafted radiomics vs deep learning, 
regression vs segmentation, image-only vs multi-modal 
data, etc.). A minimum of four authors agreement was 
used as a threshold for selection, without considering 
years of experience (mean of 11 years, 3–30 range) nei-
ther professional background (two radiologists, three 
data scientists, two computational scientists). Finally, the 
resulting set of criteria was unanimously accepted by the 
authors multi-disciplinary team. The final criteria were 
reviewed, eliminating repetitions by merging overlapping 
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items, and simplifying definitions. The final checklist 
was named MAIC-10 (Must AI Criteria-10), as it repre-
sents the 10 essential criteria considered to be necessary 
in any AI publication with medical images. To optimise 
the checklist’s usability for both authors and review-
ers, and with the aim to perform reliable comparisons 
between different checklists, MAIC-10 was also format-
ted to allow the easy calculation of the quality score as a 
percentage.

At the writing this article, at least four more check-
lists are in development. TRIPOD-AI and PROBAST-AI 
are two “-AI” extensions of current TRIPOD standards 
and PROBAST tool which are focused on the report-
ing of multivariable prediction models for diagnosis 
or prognosis and as a tool for assessment in risk of bias 
on prediction models, respectively [12]. STARD-AI and 
DECIDE-AI are also -AI extensions of current stand-
ards focused on study design and in the evaluation and 
reporting of human factors in clinical AI studies, respec-
tively [13]. They are more general AI checklist that will 
have to be evaluated after publication.

To ensure applicability when evaluating already pub-
lished papers on AI and medical imaging, a representa-
tive set of articles from the journal Insights into Imaging 
was considered as a pilot validation and evaluation. The 
Q1 journal Insights into Imaging was searched for recent 
original articles using AI methodology and medical 
images using the journal’s “Search by keyword” tool. 
Searches were performed on the 2021 issue using the 
keywords “AI”, “Artificial Intelligence”, “Deep Learning”, 
“DL”, “Machine Learning”, “ML”, “CNN”, “Neural Net-
work”, and “Predictive models”. After excluding reviews 
and opinion letters, 33 original articles were identified. 
This list was further filtered and narrowed down to 10 
relevant original articles dealing with AI and medical 
images developments [14–23]. The selected papers were 
critically assessed for compliance with each item 
included in the MAIC-10 checklist. Finally, MAIC-10 
was compared with the six initial checklists based on 
their applicability, usability and objectivity, and overall 
scores were obtained by normalising each score as a per-
centage. These 10 manuscripts were scored twice by 3 of 
the authors (J.S., P.M., G.R.) in agreement, with 
4  months between each evaluation. Intra-observer 
reproducibility was then calculated in terms of the 
repeatability coefficient ( RC = 1.96 · 2 · σ 2

intra
 ), where 

σintra is the intra-observer standard deviation. In cases 
with only two measurements, this expression can be 
approximated as the average (mean) sample standard 
deviation of multiple sets of repeated measurements 

( RC = 1.96 ·

√

∑

(m2−m1)
2

n
 ), where m1 and m2 are the 

two scores obtained on each publication by the same 

observer, and n is the number of total publications 
(n = 10). The reason behind this simplification is because 
the variance of two observations is equal to half the 
square of their difference. In general terms, the smaller 
the repeatability coefficient is, the better, as it corre-
sponds to the expected difference to be obtained in 95% 
of cases when performing the same measurement twice 
under the same conditions. A lineal regression was 
applied to estimate the correlation between the quality 
scores obtained with MAIC-10 and with the CLAIM, 
MI-CLAIM, and CAIR checklists, respectively, and the 
corresponding R2 scores were reported. All analyses 
were performed with Microsoft Excel [24].

Results
Overall, 10 criteria were finally proposed after review-
ing the selected guidelines [5, 7–11] and summarised 
into a concise MAIC-10 checklist (Table 1), which allows 
the straightforward calculation of a quality score. These 
manuscripts quality criteria are described in more detail 
below.

	 1.	 Clinical need. Clearly defines the target clinical 
problem to be addressed and justifies the use and 
utility of an AI approach to solve this problem, 
both from a technical perspective and in terms of 
the added value to the patient. Defines also previ-
ous statistics and AI applications to the problem.

	 2.	 Study Design. Indicates the type of study carried 
out and the number of involved centres. In an AI 
setting, most studies will be observational on data 
collected without any intervention. Describes how 
the target study population was identified and the 
main characteristics of the patients included in the 
study. Specifies the recruitment period, the inclu-
sion and exclusion criteria, as well as the type and 
number of expected imaging studies and equity 
issues. Additionally, provides a sample size esti-
mate and describes how it was calculated. Estab-
lishes the level of confidence to operate with and 
the approximate number of predictors expected to 
explain the clinical data and to propose models that 
might enable the results to be extrapolated to the 
general population.

	 3.	 Safety and Privacy. Defines the ethical, legal, and 
social implications (ELSI) of the study. Explicitly, 
indicates if the study was approved by an ethics 
committee and whether informed consent was 
obtained. It also describes the process used for 
de-identification (pseudonymisation or anonymi-
sation) of the data, as well as any cybersecurity 
aspects and privacy issues that apply.
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	 4.	 Data Curation. Defines the origin of the data used 
in the study and the procedures used for its extrac-
tion from medical records, PACS (picture archiv-
ing and communication systems) or repositories, 
as well as any established data quality controls. 
Defines the use of standardised structure models 
(such as the common data model for electronic 
case report form, CDM-eCRF). Describes all the 
procedures implemented for organising, describ-
ing, integrating, cleaning, enhancing, transforming, 
and preserving data. Regarding images, describes 
the pre-processing applied to harmonise images 
and to improve image quality. The software used 
and the hyperparameters of each of the transfor-
mations applied should be specified.

	 5.	 Data annotation. Defines all the benchmarks used, 
both for the predictor variables, and for the varia-
bles that the AI aims to identify. Defines the criteria 
by which these reference patterns were considered 
as "true". Reference standards must be accepted by 
the scientific community when defining clinical 
outcomes, such as pathology results or time to sur-
vival. Describes the data annotation process, stating 
the methods and metrics used to assess inter- and 
intra-observer variability. Additionally, mentions 
how identified discrepancies were resolved.

	 6.	 Data Partitioning. Specifies how the data was split 
into training, tuning, test and validation sets, the 
proportion of cases that were assigned to each 
partition, and the reasoning behind the establish-
ment of the partitions. Describes group character-
istics and real-world data representativity. A flow 
chart summarising number of cases and data sets is 
appreciated. Describes the performance of the final 
AI model using a validation data set, i.e. unseen 
data after model training and tuning. Ideally an 
external independent validation data set should 
have been used, defined as data from centres, scan-
ners, and protocols other than those used to train 
and test the model.

	 7.	 AI Model. Describes the AI model architecture and 
selected hyperparameters, together with the tech-
nologies, software and hardware used. The varia-
bles to be predicted (outputs) were also be defined, 
which may be intermediate, such as organ segmen-
tation, or a final clinical event related to the clinical 
question. Indicates the metrics used to evaluate the 
goodness of fit of the trained model on the test data 
set, such as precision, accuracy or specificity [25]. 
Describes all the training, hyperparameter tuning 
and testing procedures of the AI solution in suf-
ficient detail so that it can be replicated by other 

Table 1  MAIC-10 checklist to assess quality of AI-based medical imaging research studies

All the listed sub-items under the descriptions should be addressed to consider that the corresponding item has been fulfilled. The MAIC-10 checklist is structured 
based on the different sections of a research publication: Introduction, Materials and Methods, Results and Discussion

Checklist item Article section Description Reported

1. Clinical need Introduction The study is clearly put into context by describing the target clinical problem and 
any previous approaches in the literature

□

2. Study design Materials and methods The type of study (observational/interventional, single/multicentre) and inclusion/
exclusion criteria are explicitly described, and a sample size estimate is given

□

3. Safety and privacy Materials and methods ELSI (ethical, legal, social implications), specifically including ethics committee 
approval and data de-identification issues, are discussed

□

4. Data curation Materials and methods Data extraction, cleaning, and transformation methods, including image pre-pro‑
cessing steps, are clearly described

□

5. Data annotation Materials and methods The ground truth reference is defined and the annotation process, including meas‑
ures of inter/intra-observer variability, is described

□

6. Data partitioning Materials and methods Methods and criteria for data set splitting into train-tune-test-validation sets are 
indicated

□

7. AI model Materials and methods, results The AI model building methodology is sufficiently detailed by including used tech‑
nologies (software and hardware), training–tuning–testing methods, performance 
metrics, and resulting AI model architecture

□

8. Robustness Results, discussion The generalizability of the AI model in real-world conditions is explicitly discussed □
9. Explainability Discussion The interpretability of the model (including the use of uncertainty or confidence 

metrics) is explicitly discussed
□

10.Transparency Discussion Any possibility of access to original data sets and source code is clearly stated. 
Financing and conflicts of interest are detailed

□

Score:
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researchers in other environments. Specifies the 
performance criteria used to select the final model.

	 8.	 Robustness. Ensures the highest possible strength 
of the AI solution, defined as the quality that allows 
consistent and reproducible results to be obtained 
in clinical settings regardless of the data source. 
If the developed solution is not robust, it was dis-
cussed as a limitation. Discusses the main short-
comings of the model, those that become evident 
during the most extensive possible evaluation of its 
use. Describes the possible role of AI in the field of 
study, as well as the situations that might limit its 
application in clinical practice and real-world con-
ditions.

	 9.	 Explainability. Provides methods for analysing or 
complementing AI models to make the internal 
logic and output of algorithms interpretable, mak-
ing these processes understandable and meaning-
ful. Black box effects were pointed out as limita-
tions. AI solutions were accompanied with some 
form of uncertainty or confidence metric. Provides 
information to understand outliers or incorrect 
results. Explainable AI is a prerequisite to clinical 
deployment of AI models [26].

	10.	 Transparency. Defines whether there is open access 
to the code and data used to construct and validate 
the AI model, allowing the results and performance 
claims to be verified. Open access may also be use-
ful for transfer learning. Mentions the sources of 
financing, as well as any conflicts of interest held by 
the authors. Includes the role of sponsors, as well 
as authors’ autonomy.

When assessing the quality of a study by using the 
MAIC-10 checklist, a score of 1 is assigned for each item 
with which it complies. The maximum possible score is 
10. From the selected set of articles from Insights into 
Imaging published in 2021, the corresponding quality 
scores were calculated. A summary of this review can be 
found in Additional file 1. The average quality score was 
5.6 ± 1.6, with most checklist items being discussed in at 
least half of the articles, while only one (“Study design”) 
was not defined in any of the studies.

The following checklist items were present in almost all 
papers: “Clinical need” (90% of publications), “Data anno-
tation” (80%), “Robustness” (80%), and “Transparency” 
(80%). Items on clinical needs and transparency corre-
spond to traditionally discussed aspects in scientific pub-
lications and are consistently considered during the peer 
review process. Therefore, high scores were expected. 
The high compliance rate for items on data annotation 
and robustness is an indicator of good-quality method-
ology in these AI studies. Data annotation workflows are 

consistently well reported and, while not all models cre-
ated in the literature are highly robust, this limitation is 
explicitly acknowledged and discussed.

The min lacking aspects in the reviewed studies, 
according to MAIC-10, were the reporting of a sample 
size estimate (included in “Study design”), the description 
of data de-identification protocols (“Safety and privacy”), 
and multiple issues related to technical AI methodol-
ogy, namely the reasoning behind the establishment of 
train-test-validation data set partitions, the mention 
of hardware used for model training, and any discus-
sion regarding the AI model’s interpretability (covered 
by “Data partitioning”, “AI model”, and “Explainability”, 
respectively). In this regard, it must be emphasised that 
the calculation of sample size estimates, the choice of 
rationale for data set splitting, and the addition of uncer-
tainty metrics as model outputs represent critical points 
which should be addressed to ensure good-quality AI 
studies. These items relate to statistical aspects are cru-
cial to prove that a model is well designed and reliable. 
Regarding “Safety and privacy”, some of the articles men-
tion that the medical images used for AI model training 
are de-identified but did not provide much detail about 
the anonymisation process or criteria, while data privacy 
issues were generally not addressed.

At a final step, the 10 selected articles were also 
reviewed according to the selected checklists (CLAIM, 
MI-CLAIM, RQS, CONSORT-AI, SPIRIT-AI, and 
CAIR). During this process, some checklists were found 
to have a limited scope which made many of the items 
not applicable to the selected studies. CONSORT-AI 
and SPIRIT-AI are strictly addressed to the evaluation of 
studies in the form of a clinical trial and, therefore, they 
were considered as non-comparable to MAIC-10. On the 
other hand, RQS was designed to assess studies with a 
radiomics methodology (i.e. radiomics feature extraction 
and modelling) and, consequently, some items do not 
apply to deep learning workflows. Given these considera-
tions, we performed a quantitative comparison of check-
lists CLAIM, MI-CLAIM, and CAIR against MAIC-10 by 
interpreting the rate of compliance based on the articles’ 
quality scores, expressed as percentages for comparabil-
ity reasons. The results of this comparison are detailed 
in Fig. 1 and Additional file 1. Overall, MAIC-10 quality 
scores showed a good correlation with those calculated 
using CLAIM, MI-CLAIM, and CAIR (R2 = 0.71, 0.52, 
and 0.48, respectively). These scores were obtained with 
a reduction in checklist complexity (number of items) of 
76, 47 and 33%, respectively.

Results of the intra-observer reproducibility study were 
obtained for each of the four checklists in terms of the 
repeatability coefficient, resulting in a value of RC equal 
to 0.22, 0.34, 0.28, and 0.12 for CLAIM, MI-CLAIM, 
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CAIR, and MAIC-10, respectively. As smaller values of 
this coefficient correspond to more highly reproducible 
results, this finding supports our argument in favour of 
using the MAIC-10 checklist due to its simplicity, robust-
ness, and intra-observer reproducibility.

Discussion
In recent years, both medicine and medical imag-
ing have undergone major advances, mainly due to the 
technological evolution of computer systems, and the 
development of software solutions that are ever more 
applicable to pattern recognition and clinical manage-
ment improvements. As an example, deep learning tools 
can be used in different stages of a workflow to improve 
data quality, diagnose different illnesses, detect and seg-
ment lesions, and even predict clinical endpoints [2]. All 
these aspects indicate a versatile and useful instrument 
to work with. This progress represents a paradigm shift 
in the categorisation of clinical tools. Indeed, the impact 
of these new computational solutions on patient diag-
nosis, management, and prognosis is comparable to that 
of other devices applied in everyday life, such as inter-
ventional catheters, printed prostheses, or monitoring 

devices. Multidisciplinary communication and teamwork 
become essential to develop and apply software as medi-
cal devices (SaMDs), since clinical, imaging, and techni-
cal knowledge is needed to set an AI solution to a clinical 
problem [25].

Today’s omnipresence of AI tools in medicine has 
given rise to the concept of SaMDs, which defines any IT 
solutions that have an impact on the clinical aspects of 
the patient. In medical imaging, main areas of focus on 
SaMDs solutions are related to diagnosis and prognosis 
estimations. However, as with physical devices, digital 
tools require strict quality control before their approval 
for use in routine clinical practice. As AI software 
becomes more common, it is essential to establish guide-
lines to facilitate and ensure the correct use and useful-
ness of these devices in clinical practice.

Institutions such as the European Parliament, the FDA 
(Food and Drug Administration), and the IMDRF (Inter-
national Medical Device Regulators Forum) adminis-
trations are responsible for defining, classifying, and 
regulating the use of SaMDs [27]. At the same time, in 
terms of the development and adequate publication of 
these solutions, different entities have developed criteria 

Fig. 1  Quality scores obtained for the 10 selected articles using each of the four compared checklists. MAIC-QS is shown in the X-axis and 
correlations to CLAIM, MI-CLAIM, and CAIR-calculated scores are indicated. Quality scores are detailed in Additional file 1
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they consider essential to guarantee minimum quality 
standards. It is mandatory that the clinical usefulness of 
the output variables is prioritised in the SaMD develop-
ment framework, and that the results obtained are con-
sistent and reproducible in the general population [27]. 
Systematically reflecting these parameters in publications 
on AI tools will allow the objective analysis of the useful-
ness of the algorithms and their applicability in the real-
world clinical scenario for which they are intended.

Our developed quality checklist, MAIC-10, aims to 
facilitate the process while overcoming some limitations 
of other published checklists in the field of AI and medical 
imaging. As compared to these, MAIC-10 is shorter and 
less complex, optimises usability, and has the potential 
for widespread adoption. It is also explicitly designed to 
provide a quantitative, objective, and reproducible quality 
score, with a broad scope of application across studies on 
AI in medical imaging, unlike SPIRIT-AI, CONSORT-AI, 
or RQS. Remarkably, on the set of 10 selected Insights into 
Imaging articles used for validation, MAIC-10 achieved a 
high correlation score to CLAIM, a widely used 42 items 
checklist. In terms of their intra-observer reproducibility, 
MAIC-10 was also the highest rated, being CLAIM the 
second highest reproducible checklist.

After reviewing the selected papers, some quality 
aspects seem not to be comprehensively addressed when 
reporting AI image-based tools. For instance, the sample 
size estimation is usually overlooked when developing 
AI algorithms due to the complexity of the task, which is 
evidenced in its scarcity in medical imaging publications 
[28]. The objective is not to discard research on small 
data sets, but to understand the limitations and biases of 
the obtained models, such as lack of generalizability and 
trustworthiness. A recent publication provides a practical 
solution for sample size estimation in the context of AI 
models and medical imaging [29].

On another note, anonymisation is generally not 
reported as a relevant part of data pre-processing, not 
considering data protection regulatory aspects. AI stud-
ies using clinical data should progress towards transpar-
ent reporting of data protection protocols in line with 
these advances, with emphasis on defining de-identifica-
tion pipelines and traceability documentation.

As a limitation of our work, it must be noted that the 
mere publication of a quality checklist cannot be taken as a 
guarantee of a tangible impact in the scientific community. 
Instead, it must be accompanied by efforts to foster its use 
by both authors and reviewers, via initiatives to improve 
adoption and endorsement by journals [30]. Addition-
ally, the scope of a quality assessment tool should not be 
overstated, as strict adherence to a checklist is not a sub-
stitute for scientific quality in a study [29]. We also recog-
nise that the use of sub-items introduces complexity in the 

MAIC-10 checklist. However, as sub-items are fewer and 
all have to be fulfilled before an item is approved, the final 
checklist has been observed to be simpler when compared 
to CLAIM, MI-CLAIM, and CAIR. We have also shown 
that MAIC-10 has a higher intra-observer reproducibility 
compared with the other checklists and, therefore, should 
be preferred for its simplicity and robustness when evalu-
ating publications on AI developments where images and 
clinical impact are important aspects.

In summary, the development and inclusion of AI in the 
management of medical imaging has become a reality in 
current publications and clinical practice. The use of these 
new technologies requires implementing quality criteria 
that allow us to assess the usefulness of these approaches 
when they are published. Our proposed MAIC-10 uni-
fies and simplifies the most relevant and reiterated cri-
teria among those proposed to date, establishing a basic 
scheme that both authors and readers can use to help 
interpret publications on AI in medical imaging.
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artificial intelligence
TRIPOD-AI		�  Transparent reporting of a multivariable prediction 

model of individual prognosis or diagnosis, artificial 
intelligence
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