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Abstract 

Purpose  Diffusion-weighted MRI is a promising technique to monitor response to treatment in pediatric rhab-
domyosarcoma. However, its validation in clinical practice remains challenging. This study aims to investigate 
how the tumor segmentation strategy can affect the apparent diffusion coefficient (ADC) measured in pediatric 
rhabdomyosarcoma.

Materials and methods  A literature review was performed in PubMed using search terms relating to MRI and sar-
comas to identify commonly applied segmentation strategies. Seventy-six articles were included, and their presented 
segmentation methods were evaluated. Commonly reported segmentation strategies were then evaluated on 
diffusion-weighted imaging of five pediatric rhabdomyosarcoma patients to assess their impact on ADC.

Results  We found that studies applied different segmentation strategies to define the shape of the region of inter-
est (ROI)(outline 60%, circular ROI 27%), to define the segmentation volume (2D 44%, multislice 9%, 3D 21%), and to 
define the segmentation area (excludes edge 7%, excludes other region 19%, specific area 27%, whole tumor 48%). In 
addition, details of the segmentation strategy are often unreported. When implementing and comparing these strate-
gies on in-house data, we found that excluding necrotic, cystic, and hemorrhagic areas from segmentations resulted 
in on average 5.6% lower mean ADC. Additionally, the slice location used in 2D segmentation methods could affect 
ADC by as much as 66%.

Conclusion  Diffusion-weighted MRI studies in pediatric sarcoma currently employ a variety of segmentation meth-
ods. Our study shows that different segmentation strategies can result in vastly different ADC measurements, high-
lighting the importance to further investigate and standardize segmentation.

Key points 

•	 Strategies for segmenting sarcoma tumors vary widely throughout literature.
•	 Details of the segmentation strategy are often not reported.
•	 Including necrotic or cystic areas in the segmentation affects diffusion measurements.
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•	 Varying the slice of a single-slice segmentation can drastically impact diffusion measurements.

Keywords  Sarcoma, Magnetic resonance imaging, Rhabdomyosarcoma

Introduction
Rhabdomyosarcoma is an aggressive tumor that can 
arise in any part of the body and is thought to stem from 
primitive mesenchymal cells. Rhabdomyosarcoma is the 
most common soft tissue sarcoma in children and ado-
lescents and requires multimodal treatment including 
chemotherapy and local therapy (surgery and/or radio-
therapy). Although therapy advances have been made 
over het last decades, important improvements in ther-
apy are needed as patients with high risk disease have 
suboptimal survival. Markers of response for pediatric 
rhabdomyosarcoma are urgently needed for the evalua-
tion of new agents in clinical trials, and to support (de)
intensification of treatment for individual patients. Since 
rhabdomyosarcoma is a rare disease (with an incidence 
of about 4.5 cases per million children [1]), collaborative, 
international multicenter studies are necessary to achieve 
a sample size that is sufficient to identify and validate 
biomarkers. To date, the change in tumor size is used to 
evaluate response and to support decisions to continue 
or change (systemic) treatment. However, in the past dec-
ade, several studies have challenged the prognostic value 
of change in size in relation to outcome [2–7]. Addition-
ally, size response has been criticized for its moderate 
reproducibility between observers [8]. Therefore, there is 
a clear need for a new early response biomarker that can 
impact prognosis. It has been suggested that diffusion-
weighted MRI (DWI)-based radiomics may provide such 
a prognostic marker.

Previous exploratory studies have suggested the exist-
ence of a relation between water diffusion in the tumor 
and tumor response [9, 10]. The general theory behind 
this relation is that a decrease in tumor cellularity due to 
therapy increases the rate of water diffusion, leading to 
a higher quantified diffusion-weighted MRI parameter, 
the apparent diffusion coefficient (ADC) [11, 12]. Simi-
lar studies have examined this relation for other tumors, 
with mixed results [11, 13, 14]. To date, no study has reli-
ably demonstrated whether ADC could predict response 
to treatment in rhabdomyosarcoma with sufficient accu-
racy [9].

An important aspect of DWI-based radiomics is the 
definition of the region of interest (ROI) used to meas-
ure the ADC. To date there are no international guide-
lines describing how these regions should be defined, and 
as such different strategies are being used [5]. Although 
apparently straightforward, a segmentation strategy 

consists of many methodological choices and parameters. 
These include, for example, the number of slices included 
in the analysis, whether to draw a polygonal outline fol-
lowing the tumor border or a circular ROI, and which 
part(s) of the tumor to include. Currently, despite the 
ubiquitous use of segmentations to measure the ADC in 
tumors, little is known on how these choices affect the 
ADC measurements.

To address this knowledge gap, we explored how seg-
mentation strategies differ in recent studies relating to 
sarcomas. To this end, we first performed a literature 
review to gather which methods are most commonly 
applied for tumor segmentation in sarcoma imaging. 
Second, we conducted a pilot study to investigate the 
impact of the choice of a selected number of segmen-
tation strategies on the ADC measured in pediatric 
rhabdomyosarcoma.

Methods
Our study consists of two main parts. In the first part, 
we performed a literature review on tumor segmenta-
tion methods applied in sarcoma research. In the second 
part, we explored the impact of the choice of a number of 
segmentation strategies on the ADC measured in a rep-
resentative sample of pediatric rhabdomyosarcoma cases.

Literature review
Literature search
A literature search was performed using PubMed on 
24-03-2022. The search included terms on MRI and 
sarcomas (see Additional file  1). Publication language 
was restricted to English. Publication status was not 
restricted. Articles were excluded if they did not mention 
or imply MRI and segmentation of sarcomas in the title 
or abstract. Based on the full text, articles were further-
more excluded if DWI was not performed, if no details 
on segmentation methods were present, or if MRI was 
only done on animal models. Additionally, given the 
focus of this work on sarcomas, articles were excluded 
if they reported on less than 10 sarcoma patients and 
if those patients constituted less than 50% of the total 
patient population. An overview of the selection is shown 
in Fig. 1.

Segmentation strategy details
For the remaining 76 articles, details on the segmen-
tation of the tumors were collected. Two papers used 
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multiple methods. These have all been included as 
separate strategies.

The details of interest were the image modality (dif-
fusion, structural), the segmentation method (outline, 
circular ROI), the segmentation area (whole tumor, 
excludes edge, excludes other, specific area), and the 
segmentation volume (2D, multislice, 3D). Here, we 
define a multislice segmentation as a segmentation on 
multiple, but not all, slices where a tumor is present. 
Whenever a paper did not explicitly state the indi-
vidual aspects and did not provide any other informa-
tion from which they could be determined, that aspect 
was noted as ‘unclear.’ Some articles excluded both the 
edge and other areas. These were then both counted. 
We lastly recorded whether any aspects of the seg-
mentation strategies were justified with a reference to 
another study.

Segmentation analysis
In order to quantitatively compare the effects of dif-
ferent segmentation strategies on ADC measure-
ments, we selected six segmentation methods that 
best represented the majority of the strategies found 
in the literature review (for details, see literature 
review results). They were then used to segment DWI 
images of pediatric rhabdomyosarcoma patients. In 
order to gain some insight into how the ADC distri-
bution might vary throughout the tumor, as well as 
to gauge the robustness of single-slice segmentations, 

these segmentations were applied on a slice nearby the 
initial one.

Patients
Five pediatric rhabdomyosarcoma patients were 
selected from a cohort treated at Princess  Máxima 
Center (Utrecht, the Netherlands). Explicit consent 
was obtained for all patients. Patients were selected 
to represent different tumor sizes, as well as different 
amounts of necrotic and cystic areas present. Patients 
were all male, 1–17 years of age, with either an embry-
onal (n = 3, fusion negative), alveolar (n = 1, PAX7-
FOXO1 positive), or sclerosing rhabdomyosarcoma 
(n = 1). Three primary tumors were located in the blad-
der, one in the lower extremity and one in the upper 
extremity. Patients were all treated and imaged accord-
ing to the EpSSG RMS 2005 protocol [15]. Only imag-
ing performed at diagnosis (i.e., before treatment) was 
used for this analysis.

Image analysis
Image segmentation was performed by two pediat-
ric radiologists (S.H. and R.R.) with 10 and 18  years 
of experience in pediatric oncology. All segmentations 
were subsequently reviewed in a consensus reading 
with both radiologists. Prior to segmenting, the slice 
with the largest cross-sectional tumor area was manu-
ally identified.

The regions of interest were annotated via an in-house 
developed program that allowed the radiologists to 
place a polygon on the outline of the tumors and circles 
within the tumor. The polygon’s edges could be moved 
after initial placement to refine the segmentation when 
needed. The segmentation was performed on ADC maps, 
and raters could refer to corresponding T1, T1 + Gado-
linium, or T2 images during the process for additional 
information.

For each patient, six ROIs were drawn. These were 
based on the most frequently occurring strategies iden-
tified in our review. The ROIs were drawn on the axial 
slice with the largest tumor area. The raters first drew 
the whole outline and then repeated the outline slightly 
(2 mm) inside the outer edge. Next, they drew an addi-
tional outline along the edges of any necrotic, cystic, or 
hemorrhagic components. Any solid areas within these 
components were included in this outline. Lastly, they 
drew the large circular ROI as well as the smaller circular 
ROIs. The small circular ROIs were placed in three areas 
with a high degree of diffusion restriction, which was 
identified visually by the radiologists based on the ADC 
images. Segmentations could be hidden in the program 
to allow the raters to draw multiple ROIs on a single slice 

Fig. 1  From the 740 studies in the search, 446 were excluded 
based on the title or abstract. Articles were excluded if they did not 
mention or imply MRI and segmentation of a sarcoma. Next, out of 
the 293 remaining articles, 217 were excluded based on the full text. 
Articles were excluded if no DWI was performed, if no details on 
segmentation were present, or if MRI was only performed on animals. 
Additionally, articles were excluded if they included less than 10 
sarcoma patients and those patients constituted less than 50% of the 
total patient population
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without it becoming too cluttered. Another set of six 
ROIs was then drawn in the exact same manner on a slice 
two steps down in the caudal direction.

Statistical analysis
To evaluate whether different segmentation methods 
lead to different ADC distributions within the ROIs, a 
two-sample Kolmogorov–Smirnov test was performed 
between the results of any pair of methods. This test was 
chosen based on its ability to pairwise compare distribu-
tions without making prior assumptions on their shape.

Another two-sample Kolmogorov–Smirnov test was 
applied to ADC values measured on different slices for 
all strategies. This was done to determine whether the 
choice of slice used in a single-slice annotation might 
lead to a difference in ADC distribution.

Results
Literature review
The literature search yielded 740 results. From these, 446 
were excluded based on the title or abstract. Out of the 
293 remaining articles, 217 were excluded based on the 
full text. Twenty articles were excluded based on full text 
due to unclear reporting; they did not report any details 
at all on the segmentation strategy, while segmentation 
was implied or stated to be performed. In total 76 arti-
cles were included. An overview of the included papers is 
shown in Fig. 1. Details on the included articles are listed 
in Table 1. The patients included in the 76 articles were: 
rhabdomyosarcoma 6.6% (5 articles), out of which 5.3% 
(4 articles) pediatric rhabdomyosarcoma; osteosarcoma 
21.1% (16 articles); uterine sarcoma 11.8% (9 articles); 
hepatic angiosarcoma 1.3% (1 article); leiomyosarcoma 
6.6% (5 articles); endometrial stromal sarcoma 1.3% (1 
article); pulmonary artery sarcoma 1.3% (1 article); chon-
drosarcoma 3.3% (2 articles); and multiple soft tissue sar-
comas 47.4% (36 articles).

An overview of the different aspects of each segmenta-
tion strategy and its usage is shown in Table  2. For the 
segmentation method, drawing an outline was most 
common (49), compared to placing a circular ROI (22). 
Most studies performed single-slice segmentations (36), 
followed by segmentations on all slices (17) and multi-
slice segmentation (7). Virtually all segmentations were 
performed manually (79) with only two strategies being 
semi-automated. Most segmentations were done on 
DWI data (70), with six strategies segmenting on struc-
tural images (T1/T2) and transferring to DWI data after-
ward. Most strategies segmented the whole tumor (39), 
or a specific area (22). Some strategies excluded necrotic, 
cystic, or hemorrhagic areas (15), and a few studies 

excluded the peripheral areas of the tumor (6). Some 
studies placed multiple, usually circular, ROIs (7).

Table  2 additionally shows that a number of studies 
do not report all aspects of the employed segmentation 
strategy. We found the following frequencies of unre-
ported details of the segmentation strategies: zero (55 
studies), one (19 studies), two (4 studies), three or more 
(3 studies). The majority of included studies report all 
aspects we intended to analyze, 54/81. Nineteen studies 
did not mention one aspect and eight studies failed to 
report two or more aspects.

Out of the 76 articles, eight included one or more refer-
ences to other works regarding segmentation strategies. 
These references provided background on the inclusion 
or exclusion of a region for segmentation (seven arti-
cles) and the definition of a region to be segmented (four 
articles).

Based on these results, six segmentation approaches 
were selected to be representative of the majority of stud-
ies listed in the review. These segmentation strategies, 
which will be compared in the next section, are defined 
as follows:

	 I.	 The outline of the whole tumor was drawn on the 
axial slice containing the largest tumor section 
(hereafter ‘Whole Tumor’).

	II.	 The outline of the whole tumor was defined as in 
[I], but drawn 2 mm within the outer edge to avoid 
partial volume effects (hereafter ‘Inside’).

	III.	 The outline of the whole tumor was defined as in 
[I], excluding any necrotic, cystic, or hemorrhagic 
areas (hereafter ‘Solid’).

	IV.	 The outline of the whole tumor was drawn slightly 
within the outer edge to avoid partial volume 
effects excluding any necrotic, cystic, or hemor-
rhagic areas (hereafter ‘Inside Solid’).

	V.	 A single circular ROI was drawn on the axial slice 
containing the largest tumor section, with the larg-
est possible radius that does not exceed the tumor 
edges (hereafter ‘Circle’).

	VI.	 Three circular ROIs placed in the most diffusion-
restricted areas of the tumor were drawn on the 
axial slice containing the largest tumor section. The 
ROIs were drawn such as to maximize the total 
area within the diffusion-restricted component of 
the tumor but not exceed into the less restricted 
areas (hereafter ‘Max DWI circles’).

An example of these strategies is given in Fig. 2.

Segmentation analysis
Figure  3 shows two example slices of the ADC and 
T1 post-contrast images for the considered patients. 
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Table 1  The selected studies included patients with either rhabdomyosarcoma (RMS), osteosarcoma (OS), uterine sarcoma (US), 
chondrosarcoma (CS), leiomyosarcoma (LMS), pulmonary artery sarcoma (PAS), hepatic angiosarcoma (HA), endometrial stromal 
sarcoma (ESS), or multiple (soft tissue) sarcomas. Non-sarcoma patients not shown. The studies performed segmentation for 
either response assessment (RA), differentiation (diff ), or other purposes. Studies marked with an asterisk (*) included multiple 
segmentation strategies

First Author Year Sarcoma type Patients Reason Volume Process Method Image modality References

Abdel Razek 2013 Multiple 17 Diff 2D Manual Outline Diffusion [22]

Aktas 2021 Multiple 42 RA Unclear Manual Unclear Structural [23]

Albalawi 2019 RMS 26 Other 2D Manual Unclear Diffusion [24]

Alsharief 2019 Multiple 21 Diff 2D Manual Circular ROI Diffusion [25]

Ashikyan 2021 Multiple 15 other Unclear Manual Outline Diffusion [26]

Asmar 2020 Multiple 15 RA 2D Manual Outline Structural [27]

Baidya Kayal 2019 OS 40 RA 3D Manual Outline Diffusion [28]

Bajpai 2009 OS 31 Other Unclear Manual Outline Diffusion [29]

Bajpai 2011 OS 31 RA MS Manual Unclear Diffusion [30]

Banerjee 2018 RMS 21 Diff 3D Semi-Automated Outline Diffusion [31]

Baunin 2012 OS 15 Diff 2D Manual Unclear Diffusion [32]

Bi 2018 US 60 Diff MS Manual Circular ROI Diffusion [33]

Bi 2020 US 71 Diff 2D Manual Circular ROI Diffusion [34]

Bologna 2017 Multiple 18 Other 3D Manual Outline Diffusion [35]

Bruegel 2013 HE 7 Other 2D Manual Circular ROI Diffusion [36]

Byun 2013 OS 28 RA 2D Manual Outline Diffusion [37]

Chhabra 2019 Multiple 43 Other 2D Manual Circular ROI Diffusion [38]

Chodyla 2021 Multiple 37 diff 3D Manual Outline Diffusion [39]

Chodyla 2021 Multiple 52 RA 3D Manual Outline Diffusion [40]

Corino 2018 Multiple 19 Diff 3D Manual Outline Diffusion [41]

Degnan 2018 Multiple 18 RA 2D Manual Outline Diffusion [42]

Del Grande 2014 Multiple 37 Other Unclear Manual Unclear Diffusion [43]

Dudeck 2008 Multiple 23 RA MS Manual Circular ROI Diffusion [44]

Einarsdóttir 2004 Multiple 13 Other 2D Manual Outline Diffusion [45]

Gao 2017 RMS 6 RA Unclear Manual Unclear Diffusion [46]

Gao 2021 Multiple 30 RA Unclear Manual Outline Diffusion [47]

Gerges 2018 LMS 17 Diff 3D Manual Outline Diffusion [48]

Habre 2021 OS 26 diff 2D Manual Outline Structural [49]

Hao 2021 OS 34 RA Unclear Manual Outline Diffusion [50]

Hélage 2021 US 50 diff Unclear Manual Circular ROI Diffusion [51]

Hong 2020 Multiple 12 diff 3D Manual Outline Diffusion [52]

Huang 2019 US 20 Diff 2D Manual Outline Unclear [53]

Ioannidis 2019 Multiple 22 Other 3D Manual Circular ROI Diffusion [54]

Kralik 2018 RMS 12 Diff 2D Manual Outline Diffusion [55]

Lee 2020 Multiple 36 Other 2D Manual Outline Structural [56]

Lee* 2020 OS 35 RA Multiple Manual Multiple Diffusion [57]

Li 2017 LMS 16 Diff MS Manual Circular ROI Diffusion [58]

Li 2017 ESS 15 Other MS Manual Circular ROI Diffusion [59]

Li 2021 Multiple 40 other 2D Manual Outline Diffusion [60]

Li 2021 Multiple 34 other 2D Manual Outline Diffusion [61]

Liu 2017 PAS 6 Diff 2D Manual Circular ROI Diffusion [62]

Liu 2019 OS 29 RA 2D Manual Outline Diffusion [63]

Manikis 2021 Multiple 28 diff 3D Manual Outline Diffusion [64]

Müller 2016 CS 32 Diff 2D Manual Outline Diffusion [65]

Nakagawa 2019 US 11 Diff 3D Manual Outline Structural [66]

Nakagawa 2019 US 30 Diff 2D Manual Outline Structural [67]
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The percentage change between the mean ADC of all 
included voxels was calculated pairwise for all segmen-
tation strategies. This is shown in Table 3. Excluding the 
edge yields a minor difference. Excluding necrotic, cystic, 
or hemorrhagic components results in a decrease in the 
mean ADC of around 6%. Placing a circular ROI instead 
of an outline yields a minor difference. Only measuring 
the most diffusion-restricted areas results in a decrease 
in the mean ADC of around 20%. The table furthermore 
shows whether the ADC distributions differ significantly 
as determined by the two-sample Kolmogorov–Smirnov 
test. Apart from the combinations of ‘Whole Tumor’—
‘Inside’ and ‘Solid’—‘Inside Solid,’ all pairwise compari-
sons result in statistical differences.

Figure  4 shows the ADC distribution per patient for 
each of the six segmentation strategies. In patients where 
the tumor has a large necrotic component (1 and 4), there 
is a visible difference between strategies that exclude this 

component and those that do not. Not excluding the 
necrotic areas results in a small additional peak in the 
histogram.

Figure  5 shows the ADC distributions obtained by 
applying each segmentation strategy on two nearby slices 
for each patient. The distributions change visibly for 
patients 3–5 for each strategy. For patients 1 and 2, this 
difference is less clear from the shape of the distribution. 
When tested with the Kolmogorov–Smirnov test, there 
is a significant difference between the ADC distributions 
measured this way for all patients and all segmentation 
strategies.

The percentage change of the mean ADC of each tumor 
between two nearby slices averaged for all methods was 
small for patients 1–2 (4.55% and 5.42%), moderate for 
patients 4–5 (15.33% and 11.23%), and very large for 
patient 3 (96.0%). The values for all methods and patients 
are shown in Table 4.

Table 1  (continued)

First Author Year Sarcoma type Patients Reason Volume Process Method Image modality References

Oka 2010 OS 22 RA 2D Manual Circular ROI Diffusion [68]

Orsatti 2021 Multiple 13 RA 3D Manual Outline Diffusion [69]

Oztürk 2021 Multiple 18 other Unclear Manual Circular ROI Diffusion [70]

Parlak 2021 Multiple 35 diff Unclear Manual Outline Diffusion [71]

Pourmehdi Lahiji 2019 RMS 21 RA 2D Manual Outline Diffusion [9]

Rio 2019 LMS 20 Diff 2D Manual Circular ROI Diffusion [72]

Sagiyama 2017 Multiple 22 Diff 3D Manual Outline Structural [73]

Saleh 2020 Multiple 104 RA 2D Manual Circular ROI Diffusion [74]

Schnapauff 2009 Multiple 30 Other Unclear Manual Circular ROI Diffusion [75]

Singer* 2016 Multiple 17 Other Multiple Multiple Multiple Diffusion [21]

Soldatos 2016 Multiple 23 RA Unclear Manual Unclear Diffusion [76]

Sumi 2015 US 25 Diff Unclear Manual Outline Diffusion [77]

Teo 2021 OS 15 RA 3D Manual Outline Structural [78]

Tian 2021 US 14 diff Unclear Manual Unclear Diffusion [79]

Tong 2019 LMS 10 Other Unclear Manual Outline Diffusion [80]

Uhl 2006 OS 8 RA 2D Manual Outline Diffusion [81]

Uhl 2006 OS 8 RA 2D Manual Outline Diffusion [82]

Valdes-Devesa 2019 Multiple 10 Diff Unclear Manual Outline Diffusion [83]

Vossen 2008 LMS 10 RA 2D Manual Unclear Diffusion [84]

Wang 2013 OS 35 RA Unclear Manual Outline Diffusion [85]

Wang 2017 OS 12 RA 2D Manual Circular ROI Diffusion [86]

Welzel 2018 CS 35 Diff Unclear Manual Outline Diffusion [87]

Wu 2018 Multiple 22 Diff MS Manual Outline Diffusion [88]

Xie 2019 US 29 Diff 3D Manual Outline Diffusion [89]

Xing 2018 Multiple 7 Diff Unclear Manual Outline Structural [90]

Yakushiji 2009 Multiple 40 Other Unclear Manual Outline Diffusion [91]

Yang 2016 Multiple 3 RA 2D Manual Outline Diffusion [92]

Yu 2021 Multiple 6 other Unclear Manual Unclear Unclear [93]

Zeitoun 2018 OS 31 Diff 2D Manual Circular ROI Diffusion [94]

Zhang 2022 Multiple 41 other 2D Manual Outline Diffusion [95]
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Discussion
In this study, we investigate the effect of segmentation 
strategies on the computation of ADC values in patients 
with sarcoma. With a literature review, we show the 
existence of a large variety of methods that are applied in 
the field. Furthermore, we demonstrate with data from 
a small sample of pediatric rhabdomyosarcoma patients 
that applying different methods can significantly affect 
the measured ADC value.

Literature review
Most prior investigations to date on the variability due 
to segmentation methods have focused on the effect of 
raters or algorithms [16, 17], even when extending the 
search beyond sarcomas. One notable study by Schurink 
and colleagues looked at both interrater differences as 
well as single- and multislice segmentations [18] and 
found that the segmentation volume affects most radi-
omics much more than the experience of the rater.

Our literature review shows that there is a consensus 
between most studies for performing the segmenta-
tion on DWI and not on structural images, as well as a 
clear preference for manual segmentation as opposed to 
semi-automated methods. Conversely, no consensus or 
even established strategy could be determined regarding 

Table 2  There is a high degree of variation in certain aspects 
of the segmentation strategy, such as the method, volume, and 
area. Other aspects, like the process and image modality, are 
more homogeneous

Property Option N

Method Outline 49

Circular ROI 22

Unclear 10

Volume 2D 36

Multislice 7

3D 17

Unclear 21

Process Manual 79

Semi-Automated 2

Image Modality Structural 9

Diffusion 70

Unclear 2

Area Excludes edge 6

Excludes other 15

Specific area 22

Whole tumor 39

Multiple ROIs 7

Unclear 6

Fig. 2  Illustrative example of diffusion-weighted image with regions of interest (ROIs) of six commonly used segmentation areas highlighted. a 
‘Inside’ strategy, blue area. ‘Whole tumor’ strategy, red + blue area. b ‘Inside solid’ strategy, blue area. ‘Solid’ strategy, red + blue area. c ‘Circle’ strategy. 
d ‘Max DWI circles’ strategy
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the segmentation method (outline or circular), the area 
inclusion, and the segmentation volume.

Examining the reason for such a diversity of strate-
gies is difficult given that segmentation approaches are 
often presented without any supporting evidence or 

Fig. 3  Apparent diffusion coefficient (ADC) maps and T1 post-contrast images for both the initial slice (columns 1 and 2) and the additional slice 
(columns 3 and 4) where segmentations have been made. The ADC maps include the outline of segmentation strategy 1 as described in Results

Table 3  Percent difference of the mean apparent diffusion coefficient (ADC) averaged over all patients between every pair of 
strategies described in Methods

Bold numbers indicate significantly different distributions as determined by the two-sample Kolmogorov–Smirnov test. Excluding the edge from an ROI yields no 
significant differences in the distribution. All other methods do yield different distributions

Method Whole tumor (%) Inside (%) Solid (%) Inside solid (%) Circle (%) Max DWI 
circles (%)

Whole tumor 0.50 − 5.58 − 5.82 0.73 − 21.66
Inside − 0.50 − 6.05 − 6.30 0.23 − 22.05
Solid 5.91 6.44 − 0.26 6.68 − 17.03
Inside solid 6.18 6.72 0.26 6.96 − 16.81
Circle − 0.73 − 0.23 − 6.27 − 6.51 − 22.23
Max DWI circles 27.65 28.29 20.53 20.21 28.58
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rationale for their choice. We find that only eight out of 
the 76 included studies refer to previous literature to jus-
tify some aspects of their methods. It therefore remains 
unclear whether any particular strategy was chosen 
based on its effectiveness or its ease of implementation. 

Furthermore, many specific aspects needed for reproduc-
ibility are sometimes either not reported well or not at all. 
Out of all included studies, 27 did not report all aspects 
of the segmentation applied. A further 20 were excluded 
from the review altogether for not reporting any details. 

Fig. 4  Normalized histograms of the apparent diffusion coefficient (ADC) of different regions of interest (ROIs) acquired with the strategies 
described in Methods. Varying segmentation methods can yield different distributions of the measured diffusion. Including necrotic, cystic, 
or hemorrhagic regions can result in non-Gaussian distributions. Patients 2 and 5 did not show any necrotic, cystic, or hemorrhagic tumor 
components and as such, specific ROIs that exclude these have not been drawn
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Fig. 5  Violin plots of the apparent diffusion coefficient (ADC) estimated on two slices spaced two slices apart from each other. The estimations 
were derived from five patients with the regions of interest (ROIs) as defined by the six different segmentation strategies. Patients 2 and 5 did not 
show any necrotic, cystic, or hemorrhagic tumor components and as such, specific ROI that excludes these have not been drawn
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This large degree of variation highlights a need for a 
standard for reporting details on tumor segmentation, in 
analogy to other established radiological practices [19].

Altogether, when looking at segmentation strategies, 
we find a lack of reported details, a large variability of lit-
erature, and a lack of evidence-based strategies. This sug-
gests that segmentation might often be an afterthought 
in study design.

Segmentation analysis
When comparing different segmentation strategies for 
estimating ADC values from pediatric rhabdomyosar-
coma cases, we find that the choice of segmentation area 
can affect the measured ADC. Most notably, exclud-
ing necrotic, cystic, and hemorrhagic areas results in 
a decrease of 5.6% in the mean ADC. It furthermore 
results in an ADC distribution that is more Gaussian 
than when including such regions. Next, measuring only 
the most diffusion-restricted parts of the tumor results 
in a decrease of 21.6%. The resulting segmentation con-
tains too few voxels to create a useful ADC distribution. 
Additionally, drawing a circular ROI instead of an outline 
results in a small, but still significant, difference in ADC 
(< 1%). Finally, excluding the most peripheral areas of the 
tumor does not result in any significant differences to the 
mean ADC or ADC distribution.

Varying the slice on which segmentations are made has 
a much larger effect, especially for heterogeneous tumors. 
When looking at all patients and all strategies, the mean 
ADC averaged a 26.5% difference when measured on 
a nearby slice. These results are in line with results 
described by Guo and colleagues [20], who compared 
2D and 3D ROIs on 56 patients with breast phyllodes 

tumors. They found that single-slice segmentations gen-
erally resulted in a higher ADC. Similarly, Singer and 
colleagues [21] compared four different segmentation 
strategies on data of 22 patients with soft tissue lesions. 
They showed that whole-tumor segmentations resulted 
in lower ADC values compared to single-slice and multi-
slice segmentations. Such a large difference in mean ADC 
measured across nearby slices is striking when consider-
ing that more than half of the included studies are using 
single-slice segmentations. As this method can produce 
strongly varying results—especially in heterogeneous 
tumors—care should be taken when using it and pref-
erence should be given to methods annotating multiple 
slices, where possible.

For pediatric rhabdomyosarcoma specifically, it would 
be useful to further investigate the effect of different 
segmentation strategies. As the disease is rare, any suf-
ficiently powerful study requires a multicentric design. 
Since such a design typically already entangles variabil-
ity in terms of acquisition hardware and protocols, bet-
ter understanding the additional variance introduced by 
different segmentation methods could help maximizing 
statistical power in this field.

Considerations
Rhabdomyosarcoma is the primary focus of this 
review. As an insufficient number of studies in this field 
described the segmentation approach with sufficient 
detail, the search was expanded to include other types of 
soft tissue sarcoma, including ones only arising in adults. 
As these other types of sarcomas might exhibit differ-
ent radiological manifestations, segmentation strate-
gies used in their study might differ from those used in 
rhabdomyosarcoma.

Another limitation of our study is that only five patients 
were included in our segmentation analysis. This small 
number might bias our results toward individual proper-
ties and may not represent the ‘average’ patient with rhab-
domyosarcoma. However, even with such limited sample 
size we are able to demonstrate that certain aspects of 
the segmentation strategy can affect ADC measure-
ments, showing proof of concept of the importance to 
design and report tumor segmentation strategies. Finally, 
we only assessed the impact of the measurement site 
and method on the initial measurement and not on the 
impact on tumor response assessment.

Conclusion
There is a large variation in segmentation strategies for 
sarcomas. This variation is difficult to characterize, as 
many articles do not justify why a strategy is chosen. 
Details of the segmentation method are furthermore 

Table 4  Percentage difference of mean ADC when measuring 
with the same strategy on a slice two steps down in the caudal 
direction. The measured mean ADC can drastically vary between 
nearby slices if the tumor is heterogeneous. No measurements 
were done with the solid strategy on patients 2 and 5, as these 
did not have any necrotic, cystic, or hemorrhagic components. 
All methods yield significantly different distributions as 
determined by the two-sample Kolmogorov–Smirnov test

Method Patient (%)

1 2 3 4 5

Whole tumor 3.43 3.03 33.66 11.99 15.37

Inside 5.26 4.86 38.80 13.81 15.43

Solid 2.86 77.16 10.99

Inside solid 5.59 98.58 13.31

Circle 7.62 5.32 37.37 16.11 10.48

Max DWI circles 17.45 8.20 111.96 8.36 12.40

Mean 7.03 5.35 66.26 12.43 13.42
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often not well reported or not reported at all. When com-
paring strategies on our own data, we find that ADC esti-
mates derived from a single slice depend highly on their 
location within the tumor. For this reason, using multi-
slice or full-volume segmentations is preferred.

We call upon researchers to include clear imaging and 
reporting guidelines in protocols of prospective multi-
center studies. It is our advice to keep in mind how the 
segmentation strategy might affect any computations 
made and to report all of the important details for mak-
ing segmentations reproducible.
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