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Abstract 

Objectives Different noninvasive imaging methods to predict the chance of malignancy of ovarian tumors are avail-
able. However, their predictive value is limited due to subjectivity of the reviewer. Therefore, more objective prediction 
models are needed. Computer-aided diagnostics (CAD) could be such a model, since it lacks bias that comes with 
currently used models. In this study, we evaluated the available data on CAD in predicting the chance of malignancy 
of ovarian tumors.

Methods We searched for all published studies investigating diagnostic accuracy of CAD based on ultrasound, CT 
and MRI in pre-surgical patients with an ovarian tumor compared to reference standards.

Results In thirty-one included studies, extracted features from three different imaging techniques were used in 
different mathematical models. All studies assessed CAD based on machine learning on ultrasound, CT scan and 
MRI scan images. Per imaging method, subsequently ultrasound, CT and MRI, sensitivities ranged from 40.3 to 100%; 
84.6–100% and 66.7–100% and specificities ranged from 76.3–100%; 69–100% and 77.8–100%. Results could not be 
pooled, due to broad heterogeneity. Although the majority of studies report high performances, they are at consider-
able risk of overfitting due to the absence of an independent test set.

Conclusion Based on this literature review, different CAD for ultrasound, CT scans and MRI scans seem promising to 
aid physicians in assessing ovarian tumors through their objective and potentially cost-effective character. However, 
performance should be evaluated per imaging technique. Prospective and larger datasets with external validation are 
desired to make their results generalizable.

Key Points
• Computer-aided diagnostics has potential to predict the nature of ovarian tumors.
• Literature shows heterogeneous sensitivity and specificity of machine learning on ultrasound images, CT-scan 

images and MRI-scan images.
• More prospective studies on other computer-aided techniques and imaging modalities should be performed 

with an external validation set.
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Introduction
An accurate preoperative diagnosis of an ovarian tumor 
into either benign, borderline or malignant is important 
for multiple reasons: (1) for the patients’ surgical workup 
and treatment planning, (2) for the patients’ mental well-
being and (3) for correct use of diagnostic algorithms [1]. 
Currently, most women diagnosed with an ovarian tumor 
are initially evaluated with transvaginal ultrasound and 
serum CA125. For a more objective approach, differ-
ent ultrasound-based models, to discriminate between 
benign, borderline and malignant ovarian tumors, have 
been constructed over time. One of the first widely used 
models is the risk of malignancy index (RMI) which 
combines five ultrasound variables with serum CA125 
and postmenopausal status [2]. Other models have been 
developed by the International Ovarian tumor analysis 
(IOTA) group, such as the Assessment of Different NEo-
plasias in the adneXa (ADNEX) model, which combines 
six ultrasound features together with patients age, serum 
CA125 and type of center (oncology referral center vs 
other) [3, 4]. However, for both models the reported 
sensitivity lies around 98% and 71%, and the specificity 
around 85% and 62% [5]. In addition, two other classifica-
tion models were introduced by radiologists and gynecol-
ogists: (1) the GI-RADs (Gynecologic Imaging Reporting 
and Data System) score, for diagnosis of adnexal masses 
by pelvic ultrasound, and (2) the O-RADS (Ovarian-
adnexal reporting and data system) data system, both 
showing a sensitivity of 92.7% and 93.6% and a specific-
ity of 96.8% and 92.8% [6, 7]. Nevertheless, research has 
shown that ultrasound features are often misclassified by 
unexperienced examiners [8].

Nowadays, preoperative computer tomography (CT) 
and/or magnetic resonance imaging (MRI) is performed 
to pre-surgically assess the nature of an ovarian tumor 
and to predict the presence of metastatic disease. MRI 
has proven to be able to discriminate between benign 
and malignant ovarian tumors with a sensitivity of 96% 
and a specificity of 91%. The O-RADs MRI has a sensitiv-
ity of 93% and a specificity of 91% for score 5 (malignant) 
with a comparable reading between senior and junior 
radiologists [7, 9, 10]. However, for spiral CT scans no 
diagnostic studies are available. Research conducted with 
multidetector CT scans shows an accuracy of 90 to 93% 
in adnexal mass characterization [11].

For clinicians, ideally, when using any test a 100% sen-
sitivity and specificity is desired. For imaging prediction 
models, this means that no malignant tumors are missed 
and no benign tumors are classified as malignant to pre-
vent unnecessary surgical procedures on benign ovarian 
tumors [12, 13]. Hence, diagnostic accuracy with a higher 
sensitivity at the detriment of the specificity is favorable. 
The currently used imaging prediction models show high 

performance in ovarian tumor classification; neverthe-
less, they are greatly affected by subjective assessment 
and users’ experience. Therefore, evaluation of more 
independent strategies to determine the nature of ovar-
ian tumors among these different imaging modalities is 
needed.

Over the past three decades, several computer-aided 
diagnostics (CADs) have been developed for accurate 
ovarian cancer prediction, mainly on ultrasound, all using 
predefined hand-selected features to build their classifi-
ers [14–16]. Computer-aided diagnostics is used to assist 
clinical professionals within different medical specialties, 
such as dermatology, neurology and pathology [17–20]. 
Furthermore, it can aid radiologists’ image interpreta-
tions and extract features from medical images, which 
are not visible for the human eye, giving it a cost-effective 
potential as well [21]. Still, within the field of gynecologic 
oncology it is relatively new compared to other medical 
specialties [22].

In this study, we assess the available literature on CAD 
in preoperatively predicting the chance of an ovarian 
malignancy.

Materials and methods
We searched for all published studies investigating diag-
nostic accuracy of CAD based on ultrasound, CT and 
MRI in patients with an ovarian tumor. Search terms 
used were: ‘ovaria,’ ‘ovarian neoplasms,’ ‘ovarian neo-
plasm,’ ‘ovarian masses,’ ‘ovarian lesion,’ ‘ovarian tumor,’ 
‘adnexal,’ ‘adnexal mass,’ ‘ovarian cancer,’ ‘ovarian malig-
nancy,’ ‘ovary,’ ‘classification of ovarian,’ ‘machine learn-
ing,’ ‘computer aided,’ ‘Diagnosis Computer-Assisted,’ 
‘computer assisted-diagnosis,’ ‘artificial intelligence,’ ‘Neu-
ral Networks, Computer,’ ’convolutional neural network,’ 
‘radiomics,’ ‘decision support system,’ ‘decision support 
technique,’ ‘decision support techniques,’ ‘machine learn-
ing classifier,’ ‘machine learning classifiers,’ ‘diagnosis,’ 
‘diagnostic accuracy,’ ‘presurgical,’ ‘preoperative,’ ‘preop-
erative diagnosis,’ ‘preoperative evaluation,’ ‘Tomography, 
X-ray Computed,’ ‘ct-scan,’ ‘ultrasound,’ ‘echography,’ 
‘gynecological ultrasound,’ ‘ultrasonography,’ ‘magnetic 
resonance imaging,’ ‘nuclear magnetic resonance imag-
ing’ and ‘MRI.’ We used ‘title abstract’ (tiab) and ‘Mesh’ 
added to each search term. The exact search syntax per 
database is provided in Additional file 1: Appendix 1.

The search was last performed on 9th 2022 by two 
independent reviewers and a research librarian was con-
sulted for support in this matter.

We searched for papers published in English in 
Cochrane Central Register of Controlled Trials, MED-
LINE, Embase, Scopus and PubMed. Additionally, we 
searched trial registries for ongoing and registered tri-
als on Clinicaltrials.gov. To identify additional trials, 
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references of all included studies by the initial search 
were hand searched to add relevant trials.

All studies that investigated diagnostic accuracy of 
CAD based on ultrasound, CT and MRI images in 
patients with an adnexal mass were included. Case 
reports, summaries, animal studies, meta-analyses, com-
ments, editorials, conference abstracts and other irrele-
vant article types were excluded.

Selection of studies
Titles and abstracts retrieved by the search were 
imported into the reference manager database Covidence 
[23]. Duplicates were removed and two reviewers inde-
pendently screened the records. Subsequently, full-text 
versions of potentially relevant studies were obtained 
and assessed for eligibility by the same researchers. Stud-
ies were qualified if the following criteria were met: (1) 
accurate disease type, e.g., benign, borderline or malig-
nant ovarian tumors, (2) appropriate clinical setting, for 
example, no ex  vivo studies, (3) description of overfit-
ting techniques and reference standard, (4) use of correct 
classifier, e.g., none of the features selected to construct 
the CAD were manually measured, as done by Timmer-
man et  al., Biagiotti et  al. or Zimmerman et  al. [14–16] 
and (5) diagnostic accuracy had to be reported, namely 
sensitivity, specificity or area under the curve (AUC). 
Disagreements were resolved through discussion until 
consensus was reached, or by consulting a third member 
of the review team. The selection process was visualized 
in a PRISMA flowchart (Fig. 1).

Data extraction and management
Two reviewers independently extracted the follow-
ing data from each included study: study design, year 
of publication, country where the study was conducted, 
inclusion and exclusion criteria or population descrip-
tion, number of participants, menopausal status, mean 
CA125 serum levels of included participants, number of 
images, intervention compared to histology, type of clas-
sifier and features used to develop the CAD, duration of 
follow-up, reference standard and results. When multiple 
classifiers were described, the best performing one was 
selected. Supplementary appendices were assessed for 
additional study details and corresponding authors were 
contacted by email on study details if necessary. Discrep-
ancies were resolved through discussion and consensus, 
or by consulting a third member of the review team. 
Study outcomes were type of classifier, whether an exter-
nal validation set was used, if CAD was compared to or 
combined with other models or subjective assessment 
(SA), sensitivity, specificity, accuracy and AUC, when 
mentioned in the included study. Other diagnostic accu-
racy values were also considered. We aimed to perform a 

meta-analysis of the CAD methods that used an external 
validation set, for which Review Manager (RevMan) soft-
ware (v5.4.1) and Meta-DiSc software were utilized [24]. 
Heterogeneity was assessed by using the I2 statistics, 
which describes the percentage of variability due directly 
to heterogeneity, with > 50% representing moderate het-
erogeneity and > 75% indicating high heterogeneity and 
Moses-Littenberg SROC (summary receiver operating 
curve) plot [25, 26].

Assessment of risk of bias of included studies
Two independent reviewers assessed the methodologi-
cal quality of each included study by using the Prediction 
Model Study Risk of Bias Assessment Tool (PROBAST) 
together with additional questions from the quality 
assessment of diagnosis accuracy study (QUADAS-2) 
tool and the quality in prognostic studies (QUIPS) tool. 
Discrepancies were resolved through discussion and con-
sensus, or by consulting a third member of the review 
team. Different risk of bias assessment tools were used 
because different types of study designs were included. 
Studies that evaluated multivariable diagnostic or prog-
nostic prediction models were reviewed using PROBAST. 
PROBAST assesses four key domains: participants, pre-
dictors, outcome and analysis. Studies that evaluated 
diagnostic tests of prognostic factors were reviewed by a 
few questions from the QUADAS-2 tool and the QUIPS 
tool [27–30]. Furthermore, seven signaling questions 
were composed by independent technical members of 
the study team to assess risk of bias based on the used 
CAD model, called ‘CAD model risk of bias screening 
questions.’ These two members were not aware of the 
content of the articles included. These signaling ques-
tions are described in Additional file 1: Appendix 2.

The signaling questions were used to determine 
whether risk of bias was low, high or unclear.

The extraction of study data, comparisons in data tables 
and preparation of a ‘Summary of findings’ table were 
performed before writing the results and conclusions of 
this review.

The protocol of this systematic review was reg-
istered with PROSPERO (Registration number 
CRD42020189910).

Results
After the search was performed and cross-refer-
ence articles were added, a total of 532 articles were 
retrieved. Subsequently, duplicates were removed 
and 331 articles remained for screening on title and 
abstract. Seventy-one articles were eligible for full-text 
reading. Two studies on CAD and ovarian tumors were 
found on ClinicalTrial.gov. Both trials are open for 
accrual and are using CAD in diagnosing (1) malignant 
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ovarian tumor with CT (NCT05174377) and (2) endo-
metriosis-related ovarian cancer (NCT05161949). Most 
articles were excluded because they were not using 
CAD, not assessing ovarian tumors or because a wrong 
type of classifier was used. A summary of the selection 
process is shown in a PRISMA flowchart (Fig.  1) [31, 
32].

After screening the title, abstract and full-text thirty-
one studies were included in this systematic review.

Description of included studies
Thirty-one studies were included in this review, of which 
twenty-two ultrasound-based studies [33–53, 62], three 

CT-based studies [54–56] and six MRI-based studies 
[57–62]. A detailed overview of the included studies is 
presented in Additional file  2: Table  1a–c. There were 
twenty-two retrospective studies of which nineteen are 
case–control studies and two are cohort studies. Six 
studies have a prospective case–control design, and one 
is a cohort study. Women of all ages were included in 
the studies. Only seven studies used external validation 
datasets to assess the performance of their classifier: four 
ultrasound, one CT and two MRI studies [33, 35, 51, 53, 
56, 59, 61]. The same dataset was used in ten studies to 
develop and test different classifiers [43, 45, 49, 50, 52, 
54, 56, 59, 61, 62]. In most studies, the region of interest 
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Fig. 1 PRISMA flowchart [32]
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(ROI) was annotated manually. Two studies did not men-
tion histology as definite diagnosis [41, 42]. Only three 
studies combined CAD with clinical features. Eleven 
studies compared the CAD with subjective assessment 
(SA) of a reviewer or combined the CAD model with SA 
performance of the reviewer [33, 35–38, 48, 50, 58, 60–
62]. Table 1a–c presents the results of each study.

In the included studies, fourteen different machine 
learning modalities were employed: Seventeen were dif-
ferent types of deep machine learning, and the remain-
ing were conventional machine learning. Fourteen 
studies used classification [34, 39–47, 50, 51, 53, 63], 
and remaining studies used segmentation to predict the 
nature of the ovarian tumor. With classification, a class 
label (e.g., benign or malignant) is predicted by analyz-
ing its input, which is often numerical data (e.g., images). 
With segmentation, each pixel in an image is assigned to 
a predefined category (e.g., malignant or non-malignant), 
whereby certain image characteristics are shared by pix-
els with identical labels [64]. The input for the segmen-
tation studies was usually different types of grayscale 
patterns, e.g., gray-level size zone matrix or wavelet fea-
tures. The input for the classification studies was global 
images with or without clinical variables added.

Pooling of diagnostic accuracy
A meta-analysis on the seven studies that used an exter-
nal validation set to test their CAD model was attempted; 
however, due to heterogeneity, missing diagnostic accu-
racy rates and unclear data, this could not be executed 
[33, 35, 51, 53, 56, 59, 61]. An additional sub-analysis 
of studies using CAD on ultrasound imaging was per-
formed, which showed great heterogeneity as well. The 
remaining twenty-four studies without an independent 
validation per imaging modality were not pooled due to 
heterogeneity at forehand.

Risk of bias in studies per imaging modality
A general overview of risk of bias of per imaging modal-
ity of the included studies is presented in the ‘Risk of bias’ 
summary (Table 2a–c).

Ultrasound:
Participants
Risk of bias based on selection of participants was con-
sidered low in ten studies. In five studies, risk of selec-
tion bias was unclear, because inclusion of participants 
was not clearly described. Seven studies were graded 
with high risk of selection bias because they described 
neither little information about baseline patient charac-
teristics nor inclusion or exclusion criteria.

Predictors
Risk of bias based on predictors was considered low 
for twenty studies, because predictors were defined 
and assessed in the same way for all participants and 
predictor assessments were made before results were 
known. For two studies, this was unclear due to missing 
information on this matter.

Outcome
Risk of bias based on outcome or its determination was 
considered low for eightteen studies, because in these 
studies the outcome was predetermined appropriately. 
Risk of bias was scored unclear in in one study, because 
there was no clear description of the reference stand-
ards used and high in three studies, since reference 
standards were not described.

Analysis
Risk of bias based on analysis was considered low for 
eight studies, because analysis was properly performed. 
In three studies, risk of bias based on analysis was 
unclear, because analysis was not clearly described. 
Eleven studies described very little of the analysis pro-
cess, and therefore, these studies were considered con-
taining high risk of bias.

CAD model
Risk of bias based on CAD model bias screening ques-
tions was considered low in four studies. In nine stud-
ies, the risk of bias based on CAD model bias screening 
questions was assessed as unclear, because it was 
unclear how overfitting mitigation techniques and 
cross-validation were used or if the data were repro-
ducible or validated in other centers. Risk of bias based 
on CAD model bias screening questions was reckoned 
high in nine studies. This was due to overfitting miti-
gation techniques which were not used or incorrectly 
used, the training set was not independent from the 
test set or did not have enough power, or no cross-vali-
dation was used and data were not reproducible or not 
validated in other settings.

CT and MRI
Participants
Risk of bias based on selection of participants was con-
sidered low in all nine studies, because of transparent 
description of patient selection.
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Predictors
Risk of bias based on predictors was regarded low for 
eight studies, because the researchers were clear on how 
predictors were determined and characterized before 
outcome was known. Only one study reported that the 
outcome was known at forehand when assessing the 
predictors.

Outcome
Risk of bias based on outcome or its determination was 
considered low for eight studies, because it was predeter-
mined appropriately. For one study, this was high because 
outcome differed among participants.

Analysis
Risk of bias based on analysis was considered low for 
six studies, because analysis was accurately carried out. 
In two studies, risk of bias based on analysis was high, 
because analysis was not properly performed. In one 
study, the sub-results were inconclusive and therefore the 
study was considered containing an unclear risk of bias.

CAD model
Risk of bias based on CAD model bias screening ques-
tions was assessed low in six studies. In three studies, risk 
of bias based on CAD model bias screening questions 
was considered unclear, because the use of overfitting 

Table 2 ’Risk of bias’ summary: review authors’ judgements about each risk of bias item for each included study

Participants Predictors Outcome Analysis CAD model

’Risk of bias’ summary: Per item for each included study—Ultrasound

Gao et al. [33] Low Low Low High Low
Chiappa et al. [34] Low Low Low Unclear Unclear

Chiappa et al. [35] Low Low Low Low Unclear

Christiansen et al. [36] Low Low Low Low Low
Qi et al. [37] Low Low Low Low High

Stefan et al. [63] Unclear Low Low Low High

Wang et al. [38] Low Low Low Unclear Unclear

Martinez-Mas et al. [39] High Low Low High High

Zhang et al. [40] High Unclear High High Low
Acharya et al. [41] High Low Low High High

Aramendia-Vidaurreta et al. [46] Unclear Low Low Low Unclear

Khazendar et al. [47] Unclear Low Low Low High

Acharya et al. [44] High Low Low High High

Acharya et al. [42] High Low High High High

Acharya et al. [45] Unclear Unclear Low High High

Faschingbauer et al. [48] Low Low Low High Unclear

Acharya et al. [43] High Low High High Unclear

Vaes et al. [49] Unclear Low Low High Unclear

Vaes et al. [50] Low Low Low Low Unclear

Lucidarme et al. [52] Low Low Low Unclear High

Lu et al. [51] Low Low Low Low Low
Zimmer et al. [53] High Low Unclear High Unclear

’Risk of bias’ summary: Per item for each included study—CT

Li et al. [54] Low Low Low Low Low
Park et al. [55] Low Low High Low Low
Li et al. [56] Low Low Low Low Low
’Risk of bias’ summary: Per item for each included study—MRI

Liu et al. [57] Low Low Low Low Unclear

Song et al. [58] Low Low Low High Unclear

Jian et al. [59] Low Low Low Low Low
Jian et al. [62] Low High Low Unclear Unclear

Li et al. [61] Low Low Low High Low
Zhang et al. [60] Low Low Low Low Low
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mitigation techniques was not mentioned or they were 
not executed correctly, and it was unclear if executed 
correctly it was unclear if the dataset was reproducible or 
validated in other settings.

Discussion
This systematic review shows numerous studies that use 
CAD to assess the nature of an ovarian tumor. Due to the 
large heterogeneity, we were not able to pool data. How-
ever, highest performance as measured by AUC was seen 
in both CT- and MRI-based CAD models.

A meta-analysis was endeavored for the seven studies 
that used an external dataset for validation. However, 
this could not be executed for multiple reasons. One 
study, describing a CAD-MRI model for differentiating 
borderline from malignant ovarian tumors, only men-
tioned the sensitivity and specificity for radiologists’ 
performance and for the model only the AUC [61]. 
Another study was unclear about which data were used 
to calculate the diagnostic performance of their model 
[56]. Consequently, for both studies it was not possible 
to calculate diagnostic accuracy rates, such as true pos-
itive (TP), true negative (NT) values and to use them in 
the meta-analysis.

For the five remaining studies, heterogeneity proved 
to be too large with an I2 of 92.8% and 90.7%. In an 
additional subgroup analysis of only ultrasound CAD 
models, this was also apparent with an I2 of 94.3% and 
83.5%. These analyses can be found in Additional file 1: 
Appendix 3. This heterogeneity can be explained by (1) 
different types of CAD models using either conven-
tional or deep learning techniques, (2) different inclu-
sion and exclusion criteria and (3) type of imaging 
modality used. Among the twenty-four studies without 
an independent dataset, pooling of the results was not 
viable since the data were too diverse. This was illus-
trated by differences in imaging techniques used, e.g., 
2D or 3D ultrasound and CT, or 2D, 3D or pharma-
cokinetic MRI. Furthermore, different CAD techniques 
were applied, e.g., conventional and deep learning 
machine learning models. Moreover, some studies 
combined clinical features such as patients’ age, meno-
pausal status or serum CA125 to support the classifiers. 
Finally, different outcome measurements per classifier 
were found, such as benign, malignant and borderline 
in combination with a different tumor subtype, such as 
mucinous ovarian tumors.

All studies assessed computer-aided diagnostics 
based on machine learning. We found that classifying 
the nature of an ovarian tumor by CAD on ultrasound 
images results in sensitivities of 40.3% to 100% and spe-
cificities of 76.3% to 100%. For CT, sensitivities of 84.6% 
to 100% and specificities of 69% to 100% were described. 

For MRI, sensitivities and specificities ranged between 
66.7% and 100% and 77.8% and 100%, respectively. Even 
though some studies report high performances, they are 
at risk for overfitting due to the lack of an independent 
test set. Twenty-three studies lacked an independent test 
set for evaluating model performance.

With conventional machine learning techniques, fea-
tures extracted from medical imagery are used to opti-
mize a mathematical model for predicting new, unseen 
data. A model should be built based on a training set 
of images and validated in a test set. If the model is too 
tightly fitted to the training data and does not general-
ize toward new data, it is called overfitting. Overfitting 
occurs more often with conventional machine learning, 
where many parameters are hand-selected instead of 
being learned from the data, especially when the model is 
not validated on an independent test set [64].

Ultrasound
Earlier published studies assessing ultrasound predic-
tion models show reasonable sensitivity (72–77%) and 
specificity (85–89%) for the RMI [65, 66]. An external 
validation of the IOTA ADNEX model showed a better 
performance, with a sensitivity of 98% (95% CI 93–100%), 
but with low specificity of 62% at a cutoff value for malig-
nancy of 10% (95% CI 55%–68%) [5]. The GI-RADs and 
the O-RADs perform better with a sensitivity of 92.7% 
and 93.6% and a specificity of 97.5% and 92.8%, subse-
quently [6]. However, all these models depend on specific 
terminology and expertise of their users. Furthermore, 
interpretation of ultrasound imaging regarding ovar-
ian tumors has shown to be difficult for novel clinicians 
and for clinicians who do not perform ultrasonography 
on a regular basis [8, 9]. Based on the amount of studies 
included in this review assessing the CAD technique for 
ultrasound, CAD can be a promising tool to aid clinicians 
in determining the origin of ovarian tumors. Moreover, 
when comparing CAD models’ performances with expe-
rienced clinicians or existing models they achieve simi-
lar or even better diagnostic accuracy. Nevertheless, this 
performance comparison was performed in only three 
studies. Even though overfitting mitigation techniques 
were applied in twenty-one ultrasound studies, only 
four studies used external validation. Thus, a high risk of 
overfitting is present, which could lead to an unreliable 
performance.

CT
The diagnostic performance of CT in preoperatively clas-
sifying the origin of an ovarian tumor is primary known 
for multidetector computer tomography (MDCT), with 
a diagnostic accuracy of 90–93% [11]. Therefore, no fair 
comparison on CAD for CT can be made. However, the 
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performance of CAD for CT is indeed promising based 
on the included studies in this review. The models show 
a high diagnostic accuracy and low selection bias. None-
theless, only three studies in total assessed CAD for CT 
of which only one study utilized an independent valida-
tion, thus risking overfitting.

For CAD on CT scans, more research is needed to fur-
ther evaluate its potential benefits.

MRI
The diagnostic accuracy for MRI in ovarian tumor clas-
sification has a sensitivity and specificity of 96% and 
91%, respectively [7, 9]. For the O-RADs MRI score, this 
is comparable with a sensitivity of 93% and a specific-
ity of 91% and it shows a similar performance among 
junior and senior radiologists (κ = 0.784; 95% CI, 0.743–
0824) [9, 10]. CAD for MRI as an additional diagnos-
tic method for ovarian tumors has the potential to aid 
radiologists due to its high diagnostic performance as a 
single model or when compared to SA of radiologists. 
However, caution is needed when using MRI-CAD as a 
supplementary tool. First, due to the absence of interna-
tional guidelines when to conduct an MRI for ovarian 
tumors classification a selection bias is being created. 
Moreover, the performance of the MRI has no further 
clinical consequences for the patient. However, if radi-
ologists are trained with MRI O-RADs classification 
model, the usage of MRI can have an additional ben-
eficial effect on ovarian tumor classification, especially 
when classifying benign and or possibly malignant 
lesions [67]. However, for the O-RADs MRI familiarity 
and expertise are essential to use the scoring system [7, 
10].

Second, only one out of six studies showed a low 
overall risk of bias on using MRI CAD [59]. Unfortu-
nately, the authors did not compare their CAD to ovar-
ian tumor characterization by radiologists or to other 
models, such as the O-RADs model. Hence, one study 
alone cannot support clinical implementation of MRI 
CAD. Moreover, although in three studies CAD out-
performed the radiologists’ performance, no external 
validation sets were used in these studies and risk of 
bias was mostly unclear [58, 59, 60, 61]. Furthermore, 
only two of the six studies used an external validation 
set [59, 61]. Another study used 3D MRI for their model 
building, showing good results; however, this is a rather 
expensive MRI technique [57]. Finally, two studies used 
the same dataset. Therefore, only limited evidence to 
support the usage of MRI-CAD additionally is available 
[59, 63].

Hence, more studies should be undertaken with exter-
nal validation sets in order to be able to implement these 
CAD-MRI models in clinical practice.

Trends among publications
Over the last three decades, different trends among 
included studies in the CAD field are observed.

An increasing number of publications presented clear 
inclusion and exclusion criteria for data before using it to 
construct a CAD model [33–39, 44, 48–50, 52, 54–63]. 
In addition, more studies used statistical tests to select 
the most promising features to include into the CAD 
model and in most articles this was precisely described 
[34, 37, 41, 43–46, 48–51, 54–58, 60–63]. Furthermore, 
study cohorts became substantially larger [33]. Finally, 
clinicians are more involved in the CAD model construc-
tion, e.g., for the delineation of the images. Thus, uni-
formity among studies is improved, making studies more 
comparable.

Regarding the outcomes, almost all studies used the 
same outcome measurements, i.e., sensitivity, specificity, 
accuracy and area under the curve (AUC). More connec-
tion with the clinical setting is observed. In particular, the 
comparison of the CAD model to either assessment of 
scans by clinicians such as radiologists, sonographists or 
gynecologists or to commonly used models in ultrasound 
(RMI or LR1-2) is now included [33, 35–38, 48, 51, 60, 
61, 68].

Hence, the difficult technical matter of a CAD model 
development is made more comprehensible for clinicians.

Finally, more deep learning models have been devel-
oped in recent years, showing the potential of this new 
type of CAD. If these trends continue, it could substan-
tially contribute to patient care.

Previous studies have shown that depending on the 
imaging technique used the interobserver agreement is 
low for many features and are prone to contain signifi-
cant measurement errors when used by inexperienced 
clinicians. Therefore, more uncertainties in measured 
features within these imaging techniques can lead to 
diminished accuracies of a model. It is therefore impor-
tant to develop new techniques with less inter- and intra-
observer variability to reach higher test performances 
to prevent unnecessary referrals to tertiary centers and 
unnecessary stress for the patient. Based on this litera-
ture review, computer-aided ultrasound, CT and MRI 
techniques based on different (deep) neural networks and 
conventional machine learning techniques such as sup-
port vector machines are promising. They can either be 
used as a single entity or combined with SA or with other 
prediction models. They could potentially offer a nonin-
vasive and cost-effective method in the future. However, 
this is only shown in eight studies of which five are ultra-
sound studies and three MRI studies. Of these studies, 
four used independent validation sets, of which three 
within ultrasound CAD and one within an MRI CAD. For 
the remaining studies, lack of a validation cohort might 



Page 19 of 22Koch et al. Insights into Imaging           (2023) 14:34  

cause a high risk of overfitting. The CT CAD models 
seem to perform fairly but they consist of small datasets 
and are in the absence of a SA and only one study used 
an external validation set; therefore, risk of overfitting is 
present.

Furthermore, CAD as a technique within the gynecol-
ogy–oncology is slowly gaining field in comparison with 
other oncology specialties. Combining datasets with 
larger test sets is needed in prospective cohorts [22, 33, 
69].

It is likely that deep learning in assessing the nature 
of an ovarian tumor will reach higher test performances 
than traditional machine learning. For MRI and CT, the 
number of studies in this review is limited and needs to 
be broadened [22].

Strengths and weaknesses
To the best of our knowledge, this is the most compre-
hensive review on computer-aided diagnostics for dif-
ferentiating benign from borderline and malignant 
ovarian tumors on ultrasound, MRI and CT scans. We 
have worked by a clearly defined protocol that was first 
submitted to PROSPERO, to provide transparency in 
the review process and avoid reporting bias. There was 
no substantial disagreement in inclusion of articles by 
the authors, and this can be regarded as a strong point 
in the review process. A meta-analysis of the studies with 
an external validation set was attempted. A limitation of 
this review is the heterogeneity between studies, the lack 
of independent validation sets and comparison with SA.

Conclusions
In conclusion, this review shows that CAD certainly has 
potential as a noninvasive model to preoperatively pre-
dict whether an ovarian tumor is benign, borderline or 
malignant and thus can aid the physician with assessment 
of ovarian tumors. However, this depends on the type of 
imaging modality assessed and thus should be evaluated 
per imaging technique. CAD for CT displays the best 
performance overall. However, the three studies included 
are all lacking an external validation. The results of CAD 
for MRI were similar; however, more studies used exter-
nal validation to test their CAD. Nevertheless, the risk of 
bias for the domain ‘CAD model’ for half of the studies 
was found to be unclear. Furthermore, it is important to 
take into account that MRI is clinically less relevant for 
detecting and classifying ovarian tumors. Finally, most 
research has been done on CAD for ultrasound, of which 
the results are reasonable in comparison with exist-
ing models, but has limited external validation and risks 
overfitting. Moreover, included studies per image modal-
ity show great heterogeneity, and thus, results most likely 
cannot be generalized to other data.

Studies in which all methods are validated in the same 
population should be performed in order to prove which 
techniques demonstrate the best diagnostic performance. 
Above all, it is important that new CAD techniques are 
tested and validated with an independent, prospectively 
collected dataset.

Future perspectives
In the near future, it is likely that CAD will facilitate diag-
nostics and will be used as a decision support system by 
clinicians, depending on the imaging modality the CAD 
is developed for. The performance of CAD for discrimi-
nating the nature of an ovarian tumor on CT and MRI 
is good, and studies assessing these two imaging tech-
niques show a low risk of bias. Consequently, a majority 
of research should focus on these two imaging modalities. 
Particularly, since both MRI and CT are more standard-
ized than ultrasound imaging and therefore more suitable 
for CAD development. However, it should be taken into 
account that MRI is less clinically relevant in diagnosing 
ovarian tumors. In addition, in order to increase accu-
racy, CAD for CT or MRI could be combined with clinical 
markers, e.g., menopausal age or liquid biopsies, such as 
circulating cell free tumor DNA (ct-DNA). Implementa-
tion of CAD for ultrasound in clinical practice will pre-
sumably take longer due to the dynamic character of this 
imaging method and the high and unclear risk of bias.
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