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Abstract 

Objectives:  Accurate zonal segmentation of prostate boundaries on MRI is a critical prerequisite for automated 
prostate cancer detection based on PI-RADS. Many articles have been published describing deep learning methods 
offering great promise for fast and accurate segmentation of prostate zonal anatomy. The objective of this review was 
to provide a detailed analysis and comparison of applicability and efficiency of the published methods for automatic 
segmentation of prostate zonal anatomy by systematically reviewing the current literature.

Methods:  A Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) was conducted until June 
30, 2021, using PubMed, ScienceDirect, Web of Science and EMBase databases. Risk of bias and applicability based on 
Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria adjusted with Checklist for Artificial Intel‑
ligence in Medical Imaging (CLAIM) were assessed.

Results:  A total of 458 articles were identified, and 33 were included and reviewed. Only 2 articles had a low risk of 
bias for all four QUADAS-2 domains. In the remaining, insufficient details about database constitution and segmen‑
tation protocol provided sources of bias (inclusion criteria, MRI acquisition, ground truth). Eighteen different types 
of terminology for prostate zone segmentation were found, while 4 anatomic zones are described on MRI. Only 2 
authors used a blinded reading, and 4 assessed inter-observer variability.

Conclusions:  Our review identified numerous methodological flaws and underlined biases precluding us from 
performing quantitative analysis for this review. This implies low robustness and low applicability in clinical practice 
of the evaluated methods. Actually, there is not yet consensus on quality criteria for database constitution and zonal 
segmentation methodology.

Key points 

•	 Several limitations exist with current methods of automatic prostate segmentation.
•	 There is wide variability of databases, imaging tasks and assessment criteria.
•	 No preferred methodology for prostate zonal segmentation methodology and terminology was used.
•	 Vast majority of papers share common methodological flaws discussed in this review.
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Introduction
Magnetic resonance imaging (MRI) is the first imaging 
choice for detecting and localizing prostate cancer [1, 
2], based on the Prostate Imaging Reporting and Data 
System (PI-RADS) scoring system [3] and depending 
on zonal anatomy. Zonal segmentation of the prostate 
plays a crucial role for prostate cancer detection as the 
PI-RADS score differs depending on the areas studied, 
based on diffusion-weighted imaging (DWI) for periph-
eral zone lesions and T2-weighted (T2W) imaging for 
transitional zone lesions, but also for multiple clinical 
application such as reproducible prostate volume and 
Prostate Specific Antigen (PSA) density evaluation [4], 
MRI-ultrasound fusion biopsy, radiotherapy, or focal 
planning.

Zonal segmentation of the prostate is usually per-
formed manually on T2W images by contouring the 
prostate in a slice-by-slice manner. It is extremely 
time-consuming, tedious, and prone to inter and intra-
observer variability due to the subjective human inter-
pretation of organ boundaries and large variability in 
prostate anatomy and gland intensity heterogeneity 
across patients [5]. There is a real need to develop auto-
matic methods to accelerate the whole process and offer 
robust and accurate prostate segmentation.

Automatic zonal segmentation of the prostate is a chal-
lenging task for multiple reasons. Prostate gland is sub-
ject to large morphological variation, intra-prostatic 
heterogeneity, and poor contrast with adjacent tissues, 
making delineation of prostatic zonal contours laborious. 
Multi-institutional applicability can be difficult to evalu-
ate as there is a wide technically induced variability in the 
image acquisition, as MRI signal intensity is not stand-
ardized and image characteristics are strongly influenced 
by acquisition protocol, field strength, scanner type, coil 
type, etc. [6].

Finally, the performances of an automated segmenta-
tion method depend in part on the database (heteroge-
neity of the data used, knowledge of possible selection 
biases), quality of ground truth (manual delineation of 
the prostate performed by human experts), training time 
and hardware requirements. First commonly used meth-
ods were based on machine learning methods, such as 
atlas-based registration models in which several refer-
ence images with corresponding labels are registered and 
deformed onto the target image [7, 8] or C-means clus-
tering models [9, 10]. Most common methods described 
after 2017 are based on deep learning with convolutional 
neural networks (CNN) allowing automatic extraction 

of features and semantic image segmentation. Common 
architectures such as U-net [11], V-net or ResNet have 
been extensively used. Modification and fine tuning of 
existing models, by either combining multiple U-nets 
[12–14], adding attention modules such as squeeze and 
excitation [15], feature pyramid attention [16], adding 
blocks [17], transition layers or up-sampling strategies 
[18], allowed either improving accuracy of classical CNN 
or obtaining same accuracy with reduced memory and 
storage requirements.

The primary objective of this review was to provide a 
detailed analysis and comparison of applicability and 
efficiency of the published methods for automatic seg-
mentation of prostate zonal anatomy by systematically 
outlining, analyzing, and categorizing the relevant pub-
lications in the field to date. We also aimed to identify 
methodological flaws and biases to demonstrate the need 
for a consensus on quality criteria for database constitu-
tion and prostate zonal segmentation methodology.

Materials and methods
This systematic review was conducted and reported 
in accordance with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses statement 
(PRISMA) [19]. The methods for performing this system-
atic review were registered on PROSPERO [20] database 
(registration number CD42021265371), and were agreed 
by all authors before the start of the review process to 
avoid bias. This study was exempt from ethical approval 
at our institution because the analysis involved only de-
identified data.

Data sources and search
Medical literature published in the English language 
published until 30 June 2021 was searched in multiple 
databases (Medline, Science direct, Embase and Web of 
Science) using the following terms:

(prostatic OR prostate) AND (automated OR auto-
matic) AND (segmentation OR segmented) AND (zone 
OR zonal) AND (\"magnetic resonance\" OR mri OR 
\"magnetic resonance\"OR mri OR mr) AND (\"artificial 
intelligence\" OR \"deep learning\" OR \"machine learn-
ing\") and all possible combinations.

No beginning date was applied.

Study selection
Full-text selection was independently performed by two 
radiologists, one experimented radiologist specialized 
in uroradiology and prostate imaging (S.M., 5  years in 
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prostate imaging, with more than 1000 cases of pros-
tate MRI per year) and one radiology fellow specialized 
in uroradiology and prostate imaging (C.W., 1  year in 
prostate imaging, with more than 1000 cases of prostate 
MRI per year). A third experimented professor of radiol-
ogy specialized in prostate imaging (R.R.P., 15  years in 
prostate imaging, with more than 1000 cases of prostate 
MRI per year) intervened in case of disagreement. We 
summarized search strategy details for each database in 
Fig. 1.

We imported all articles retrieved into the reference 
manager Zotero and removed all duplicates. The same two 
radiologists (C.W., S.M.) then independently and manu-
ally screened titles and abstracts of the resultant database 
to ensure relevance. Articles that were obviously out of 
the scope of the research topic were excluded at this stage. 
Subsequently, all the remaining articles full texts were 
retrieved and read, applying inclusion and exclusion crite-
ria (explained below) with conflicts resolved by consensus 
with the third reviewer. Reference lists of these relevant 
articles were also reviewed for possible papers missed in 
the primary search, and those papers were screened using 

the same initial inclusion and exclusion criteria.

Selection criteria
Inclusion criteria
Articles were included if they were original articles, used 
machine learning or deep learning algorithms and aimed 
to segment prostate human MRI images by zonal anat-
omy, using a fully automated method with manual seg-
mentation as ground truth.

Exclusion criteria
Articles were excluded if they were commentaries, edi-
torials, letters, case reports or abstracts. Were also 
excluded articles with semi-automated segmentation 
methods, no description of segmentation method, seg-
mentation of the whole gland (WG), or prostate cancer 
without zonal anatomy, absence of similarity metrics or 
of evaluation against ground truth segmentations.

Data collection and extraction process
The qualifying papers were then reviewed, and various 
data of the studies were extracted and tabulated prior to 
analysis (Table 1).

Fig. 1  Flow diagram based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations for systematic 
reviews
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Assessment of methodological quality
The two same radiologists (C.W., S.M.) independently 
assessed and extracted data from each of the included 
articles, using the Quality Assessment of Diagnos-
tic Accuracy Studies tool-2 (QUADAS-2) framework 
[21] adjusted with topics from the Checklist for Arti-
ficial Intelligence in Medical Imaging (CLAIM) [22] 

to evaluate the risk of bias and applicability for each 
selected study, with conflicts resolved by consensus 
with the third reviewer.

Extracted data were tabulated, synthesized, and evalu-
ated for methodological flaws and applicability of the 
proposed techniques.

Table 1  Data extraction

DSC dice similarity coefficient

Sources Patients Data Flow and timing Reference standard Test

Scientific database Public or in-house 
database

Vendor Cross-validation Type of annotation Validation or test on 
external data

Title Eligibility criteria: inclu‑
sion and exclusion criteria

Field Splitting in training, 
validation and test set

Annotation tool if used Performance metrics

Authors Sample size Array Number of annotators Results based on DSC

Year of publication Ethic consent Field of view Ground truth segmenta‑
tion and rationale

Journal name Presence of benign pros‑
tate hypertrophia

Pre-processing Measurements of inter- 
and intra-rater variability 
if any

Presence of prostate 
cancer

Post-processing Type of annotators

Percentage of prostate 
cancer

Number of vendors Experience of annotators

Uni or multicentric Slice thickness

Prospective or retrospec‑
tive

Type of slice and 
sequence

Cross-validation

Fig. 2  Chronological distribution of the 33 reviewed articles. 1st model for prostate zonal anatomy segmentation was published in 2011. 1st 
convolutional neural network (CNN) was published in 2017
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Results
After removing duplicates, 458 articles were remaining. 
Final consensus was reached yielding a total of 33 articles 
[6–10, 12–18, 23–43] (Figs. 1, 2).

Datasets
Training, validation, and test sets
All articles used retrospective datasets.

Wide heterogeneity in training, validation and test 
datasets was found (Table 2).

Performance testing of the algorithms can be done on 
same source than for the development or use different 
source of data, and based on either public data, private 
data or a combination of both. Public data were used 
in 15/33 articles for testing. Only 7 studies [6, 9, 14, 30, 
33, 36, 37] used both private and public data for testing, 
allowing better generalizability of their algorithms. None 
of them used prospective data for validation and testing.

Most used public datasets were PROSTATEx [44], 
NCI-ISBI 2013 [45] and PROMISE12 [46] (Additional 
file 1: Table S1).

Eight authors applied cross-validation, using a subset of 
available dataset as training set, while the remaining data 
constituted the test set to evaluate the segmentation per-
formance and accuracy. Nine reported using cross-vali-
dation for testing, averaging the results from the different 
rounds, hence adding bias.

Technique
We identified major technical differences in datasets 
regarding the number of vendors, field strength, type of 
coils, sequences, slice thickness, field of view (FOV) and 
input data used for automatic segmentation (Table  3). 
Less than half (14/33) studies used more than one type of 
vendors and 7/33 used both 1.5T and 3T MRI machines. 
More than 2/3 (24/33) used mono-modal input, mainly 
T2-weighted planes, in combination with apparent diffu-
sion coefficient (ADC) map in one study [13] or with mul-
tiparametric and multi-incidence MR images in another 
[9]. The slice thickness of T2-weighted axial planes was 
consistent with the PI-RADS v2.1 recommendations in 
13/33 studies (≤ 3 mm), which was not the case for the 
public data base PROSTATEx (3.6  mm). Only 7 studies 
provided sequence details (type of sequence, slice thick-
ness, FOV) used for ground truth manual segmentation.

Zonal anatomy
We found 18 different types of very heterogeneous and 
unclear terminologies of zonal anatomy (Fig.  3, Addi-
tional file  1: Fig.  S1). Out the 33 articles reviewed, less 
than 1/4 (8/33) [23, 25, 32, 34, 36, 37, 40, 43] provided 
precise terminology and segmentation protocol. Fre-
quently the inappropriate term “central gland” (CG) was 

used, with ambiguous definition of central zone (CZ) 
and anterior fibro-muscular stroma (AFMS) alternatively 
included in peripheral zone (PZ) or transition zone (TZ), 
or mainly not described at all. Two studies mis-used the 
term “central zone” to refer to the “central gland” [27, 39].

Ground truth
Manual delineation of the prostate gland performed 
by human experts was used to generate ground truth 
(Table 4).

Annotation tool
Twenty studies (61%) reported using manual contour-
ing, while a third (11/33) reported using annotation 
tools. One team [31] specified that the radiologist did not 
delineate zones on all slices but relied on interpolation 
performed by their annotation tools. Two studies [32, 33] 
did not provide any information.

Qualifications of annotators
Most studies (27/33, 81%) reported a radiologist or a 
radiation oncologist as human expert. In 3 papers, no 
detail was provided on annotators qualification, although 
one [15] specified using an “expert” reader. Definition of 
an “expert” reader was mostly unclear with no specifica-
tion of number of MRI they interpreted, for example [10, 
15, 26, 31, 34, 39].

Number of readers
Number of readers and their experience are described 
in Table  4. Number of readers was not available in two 
studies. While 2/3 of teams (22/33) reported using more 
than one reader, with splitted, stratified or blinded read-
ing approaches, 7 did not provide information on reading 
approach.

Intra and inter‑rater variability
Inter-rater variability for annotations was rated in only 
4 studies [7, 10, 23, 39]. Some studies used alternative 
techniques to approach better homogeneity of ground 
truth. In [13], the four radiologists met for a training ses-
sion and together segmented two example patients to 
achieve a similar methodology for the rest of the dataset, 
using only experienced radiologists. In [6], the contours 
segmented by three radiologists were cross-checked and 
reviewed by two radiation oncologists, resulting in better 
homogeneity of ground truth. In [18], the initial prostate 
masks were drawn by two students who were trained in 
segmenting prostate zones.

Risk of bias and quality assessment
The detailed results are presented in Fig.  4 and Addi-
tional file 1: Table S2.
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Regarding patient selection, we considered a low risk of 
bias if there were clear data inclusion and exclusion crite-
ria, inclusion of patients with and without PCa. Models 
were considered less applicable if datasets were com-
posed of only one type of scanners or if no information 
was specified.

For reference standard, number of readers and type of 
reading for ground truth segmentation were reviewed.

Clear partitioning of the database (into training, vali-
dation, and test sets) was needed to waive risk of bias 
for flow and timing. Some articles used cross-validation 
methods without keeping a clear independent test data-
set [6–8, 15, 25, 26, 30, 33, 36].

Overall, all 33 included studies were judged to have a 
low risk of bias in the domain “index test” and 22 of 33 
(67%) of the studies were judged to have a low risk of bias 
considering “flow and timing”. However, only 1/4 of the 
studies (8/33) were judged to have a low risk of bias in 
the domain “patient selection”, 1/3 (10/33) in the domain 
“reference standard”. Only 2 articles were judged to have 
a low risk of bias in all four domains.

AI methodology
Before 2017, authors mostly used machine learning-based 
methods for automatic segmentation of prostatic zones. 
After 2017, almost all publications were based on deep 
learning with convolutional neural networks (CNN) (72%, 
24/33). Common architectures such as U-net [11] have been 
extensively used, with modification and fine tuning of exist-
ing models, allowing either improved accuracy of classical 
networks or reduced memory and storage requirements.

Dice coefficient (DSC) and Hausdorff distance [47] 
were commonly used metrics. Almost all authors found 
inferior results for PZ than WG, CG or TZ segmentation, 
attributing this to the more complex shape and struc-
ture of PZ, especially within the anterior bundles. Eleven 
authors subsequently stratified their DSC results based 
on prostate height, with various methods:in three equal 
parts [13], in 25% apex, 50% mid gland and 25% base [39] 
in 30%, 40% and 30%, respectively [31]. Five authors did 
not provide any details on how they divided the volume.

These results as well as the remaining metrics are sum-
marized in Table 5.

Fig. 3  Schematic of the four major types of protocol of zonal segmentation. Type A: articles for which “central gland” included CZ, TZ and AFMS. 
Type B: articles for which “central gland” included TZ and CZ. No details for AFMS. Type C: articles which did not provide details for AFMS, CZ or 
CG. CZ seemed to be mostly segmented PZ, while AFMS seemed to be mostly segmented with TZ, usually called “CG”. Type D: articles which did 
not provide details for AFMS or CZ. CZ and AFMS seemed to be mostly segmented with PZ. CZ central zone, TZ transition zone, AFMS anterior 
fibro-muscular stroma, PZ peripheral zone, CG central gland
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Table 4  Type of ground truth segmentation

(A) Radiologist

(B) Radiation oncologist

(C) Research fellow

? Data not reported

*Experience of reader(s), in years
† Unclear for PROMM, in-house data
¶ Splitted but consensus per binome resident-senior
₸ Only one reading for ground truth segmentation but evaluation of intra and inter observator variability on some masks
§ Measure of inter- observator variability for 10 masks

Splitted: database is divided such as each set of images is read only once, resulting in an equivalent of single reader

Stratified: first reading (mostly by a less experienced reader) subsequently corrected by a more experience reader

Blinded: blinded reading by at least 2 readers
1 Rundo et al., USE-Net: incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation

of multi-institutional MRI datasets [30]
2 Rundo et al., CNN-based Prostate Zonal Segmentation on T2-weighted MR Images: A Cross-dataset Study[27]

First author, year of publication Annotation Annotators

Type Tool Qualification Number Type of reading Experience*

Cuocolo et al. [43] Software itk-SNAP (A) 4 Splitted¶ 2 to 5

Bardis et al. [42] Software In house (A) 12 Stratified 10

Lai et al. [41] Manual – (A) 1 – 10

Nai et al. [18] Software MITK Medical physicist 4 Stratified 2 to 10

Sanford et al. [40] Software pseg (A) 1 – 10

Aldoj et al. [39] Manual – (A) 1 –₸ "Expert"

Zavala-Romero et al. [6] Manual – (A) + (B) 3 Stratified 10

Lee et al. [38] Manual – (A) 2 ? 4

Liu et al. [37] Software Osirix (C) + (A) More than 2 Stratified 10 and 19

Qin et al. [36] Manual – (A)† ? – ?

Motamed et al. [35] Manual – (A) 2 ? 4 and 6

Zabihollahy et al. [13] Software itk-SNAP (A) 4 Splitted 5 and 14

Padgett et al. [8] Manual – (B) 2 Blinded§ 10 and 26

Rundo et al. [15]1 Manual – ? Multiple ? "Expert"

Meyer et al. [34] Software 3DSLICER Medical student + urologist + (A) 4 Stratified "Expert"

Liu et al. [16] Software Osirix (C) + (A) 7 Stratified 10–15

Rundo et al. [33]2 ? ? (A) Multiple ? ?

Hambarde et al. [32] ? ? (A) Multiple ? ?

Jensen et al. [31] Software ? (A) 1 – "Expert"

Khan et al. [17] Manual – (A) 3 ? ?

Cheng et al. [30] Software pseg (A) 1 – 10

Zhu et al. [12] Manual – ? 2 ? More than 5

Mooij et al. [29] Manual – ? ? ? ?

Can et al. [28] Manual – (A) 3 ? ?

Clark et al. [14] Manual – (A) 1 ? ?

Chilali et al. [9] Manual – (A) 1 – 15

Makni et al. [10] Manual – (A) 3 Blinded "Expert"

Chi et al. [27] Manual – (A) 1 – 5

Toth et al. [26] Software 3DSLICER (A) 1 – "Expert"

Litjens et al. [7] Manual – (A) 3 ? ?

Moschidis and Graham [25] Manual – (A) 2 ? ?

Yin et al. [24] Manual – "Radiologist-trained operators" 2 Splitted ?

Makni et al. [23] Manual – (A) 3 Blinded 4, 6 and 9
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Discussion
Our systematic review highlights the high prevalence of 
deficiencies in methodology in the literature on auto-
matic segmentation of prostate gland on MRI.

Since 2011, 33 studies proposed new or fine-tuned 
existing approaches for automatic prostatic zonal seg-
mentation. Many studies are hampered by issues with 
limitation of the dataset used in the model, methodo-
logical mistakes, poor reproducibility, and biases in study 
design. Most studies focused on achieving the best accu-
racy for their algorithms, sometimes putting aside valid-
ity and applicability in clinical practice. Indeed, only two 
articles presented with an overall low risk of bias.

The common limitations concerned datasets used for 
the model development, definition of the ground truth 
for evaluation of the model and strategies used for model 
evaluation.

Regarding the datasets used, some are private, and 
some are public open source. For private databases, 
advanced technical characteristics of images (e.g., imag-
ing sequence, field of view, noise) used and patient’s 
inclusion and exclusion criteria were poorly or not 
described. Most databases lacked representability of 
patients’ variability as prostate volume, prostate tis-
sue heterogeneity, prostatic pathology as PCa or benign 
hypertropia. Open-source prostate MRI databases also 
have several limitations such as selection bias, limited 
annotations, low-resolution images, unclear terminology, 
lack of demographic statistics and of precise histologic 
data.

This can have a direct impact on the generalizability 
of the model developed. Indeed, it has been shown for 

example that prostate morphological differences con-
tribute to segmentation variability: Montagne et al. [48], 
showed that the smaller the prostate volume was, the 
higher the variability was; several authors [18, 39, 43] 
found poorer performance of their model applied on 
special cases such as history of trans-urethral-resection 
of prostate (TURP), while most databases lacked repre-
sentativity of patients variability.

Even though it is tedious and time-consuming, refer-
ence segmentation should require at least two trained 
readers because inter- and intra-rater variability can be 
significant. Quality of images (slice thickness, partial 
volume artifacts), apex or base location [48, 49] or pros-
tate morphological differences [48] have been shown 
to decrease accuracy of segmentation. Meyer et  al. [34] 
showed that training on segmentation obtained by a sin-
gle reader introduced bias into the training data. Indeed, 
performance was higher when obtained from the expert 
who created the training data in comparison with eval-
uation against other expert segmentation. Aldoj et  al. 
[39] emphasized the need for finely annotated sets as 
they improved overall performances of their algorithms, 
showing the greater importance of well annotated 
databases compared to large and coarsely annotated 
databases.

Quality of the resulting auto segmentation is evalu-
ated against the corresponding reference segmenta-
tion, so called the ground truth. The main approach is 
manual delineation of the prostate zones performed by 
human experts. We found a great heterogeneity on the 
segmentation protocols and terminology used. Eighteen 
different types of prostate delineation were found; each 

Fig. 4  Stacked bar charts showing results of quality assessment for risk of bias and applicability of included studies. QUADAS-2 scores for 
methodologic study quality are expressed as the percentage of studies that met each criterion. For each quality domain, the proportion of included 
studies that were determined to have low, high, or unclear risk of bias and/or concerns regarding applicability is displayed in green, orange, and 
blue, respectively. QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies 2
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Table 5  Overview of segmentation methods with performance based on DSC. Number of articles reporting stratification by gland 
height, and reporting pre- or post-processing steps

CNN convolutional neural network
† Dice similarity coefficient (DSC) for whole gland (WG), transition zone (TZ), peripheral zone (PZ) or central gland (CG) (means)

*Best results if several models were tested
¶ no Dice Similary Coefficien (DSC) provided
a,b Trained on combined datasets and, respectively, tested on GEa or Siemensb dataset

First author, year of 
publication

Type DSC results† Stratification 
by gland 
height

Pre-
processing 
details

Post-
processing 
detailsWG TZ PZ CG

Cuocolo et al. [43] CNN 0.9063* – 0.7142* 0.8692* × ✓ ×
Bardis et al. [42] CNN 0.94 0.91 0.774 – × ✓ ×
Lai et al. [41] CNN – 0.93 0.7004 – × ✓ ×
Nai et al. [18] CNN 0.89* – 0.712* 0.856* ✓ ✓ ×
Sanford et al. [40] CNN 0.915 0.89 – – × ✓ ×
Aldoj et al. [39] CNN 0.921* – 0.781* 0.895* ✓ ✓ ×
Zavala-Romero et al. [6] CNN 0.825a

0.892b
– 0.788 a

0.811 b
– × ✓ ✓

Lee et al. [38] CNN 0.8712 0.7648 – – × ✓ ×
Liu et al. [37] CNN – 0.89*c

0.87*d
0.80*c

0.79*d
– ✓ ✓ ×

Qin et al. [36] CNN – – 0.806 0.901 × ✓ ✓
Motamed et al. [35] CNN 0.89e

0.85f
0.86e

0.84f
– – × × ✓

Zabihollahy et al. [13] CNN 0.9533g

0.9209h
– 0.8678g

0.861h
0.9375g

0.8989h
✓ ✓ ✓

Padgett et al. [8] Atlas 0.83* 0.75* 0.59* – ✓ × ×
Rundo et al. [15]1 CNN – – 0.919i

0.831j

0.801k

0.871i

0.886j

0.937k

× ✓ ✓

Meyer et al. [34] CNN – 0.876 0.798 – × ✓ ✓
Liu et al. [16] CNN – 0.86c

0.79d
0.74c

0.74d
– ✓ ✓ ×

Rundo et al. [33]2 CNN – – 0.91* (with 
pre-train‑
ing)

0.85* (with 
pre-train‑
ing)

× ✓ ✓

Hambarde et al. [32] CNN – – 0.8733 – × ✓ ×
Jensen et al. [31] CNN – – 0.692 0.794 ✓ ✓ ✓
Khan et al. [17] CNN – – 0.703* 0.88* × × ×
Cheng et al. [30] CNN 0.9235* – – 0.9006* ✓ ✓ ✓
Zhu et al. [12] CNN 0.927 – 0.793 – ✓ ✓ ×
Mooij et al. [29] CNN – 0.85* 0.6* – × ✓ ×
Can et al. [28] CNN – – 0.722* 0.89* × × ×
Clark et al. [14] CNN 0.886c

0.862d
0.847c – – × ✓ ×

Chilali et al. [9] C means + Atlas 0.9478 0.7023 0.62 – × ✓ ×
Makni et al. [10] C means – 0.88 0.78 – × ✓ ×
Chi et al. [27] Gaussian model 0.8 – 0.53 0.83 × × ×
Toth et al. [26] Active appearance model 0.81 – 0.68l

0.60m
0.79l

0.72m
✓ ✓ ×

Litjens et al. [7] Atlas – – 0.75 0.8 × × ×
Moschidis and Graham [25] Random Forrest + Graph 

Cuts
– – – – × ✓ ×

Yin et al. [24] Graph Cuts – – – 0.81 × × ×
Makni et al. [23] C means – – 0.76l 0.87l ✓¶ × ×
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anatomical zone was segmented directly or obtained by 
subtraction from one region to another (resulting in CZ, 
AFMS and PZ, which can be obtained either by delinea-
tion or by subtraction of WG and TZ). Terminology used 
was extremely variable from one study to another and did 
not always respect the one used and referenced in the PI-
RADS [3, 50] (for example, use of “central gland” instead 
of CZ or TZ).

Number of readers, level of expertise, inter- and intra-
variability evaluation were mostly absent, limiting the 
generalizability of the developed models due to inter-
observer variability. Only 2/33 studies [10, 23] used 
blinded reading for ground truth. Nonetheless, prostate 
segmentation is a very challenging task. The prostate 
gland usually has fuzzy boundaries. Pixel intensities are 
heterogeneous both inside and outside the prostate, and 
contrasts and pixel intensities are very similar for pros-
tate and non-prostate regions. The manual delineation of 
the prostate zones is therefore limited by the subjective 
interpretation of the organ boundaries. Becker et al. [49] 
found in a multi-reader study a higher variability at the 
extreme part of the gland (apex and base) and for the TZ 
delineation. Similar results were found by Padgett et  al. 
[8] who found a difference of DSC from 0.88 to 0.81 for 
WG and TZ. Meyer et  al. [34] showed that training on 
segmentation obtained by a single reader introduced bias 
into the training data.

Strategies used for model evaluation were limited by 
the lack of external validation Only 7 studies [6, 9, 14, 30, 
33, 36, 37] used both private and public data to evalu-
ate their model. The absence of an external testing data-
set is a critical limitation to the clinical applicability of 
the developed models. Data augmentation and transfer 
learning were also used to help addressing this issue [6, 
14–16, 29, 31, 33, 35–41, 43, 51]. It is important to note 
that some bias cannot be balanced-out by increasing the 
sample size by data augmentation or repetition of train-
ing. For example, data augmentation of a dataset consti-
tuted without prostate cancer patients cannot decrease 
risk of bias induced by the more homogeneous contours 
it provides.

Even without data augmentation, MRI images con-
tains wide heterogeneity and most of the times pre-pro-
cessing steps involving intensity normalization or noise 

reduction to remove confounding features and improve 
image quality are necessary [52]. Some authors [6, 13, 
15, 31, 33, 35, 51] also reported post-processing. Not 
reporting some of the pre- or post-processing steps can 
affect reproducibility and sufficient detail enables read-
ers to determine the quality and generalizability of the 
work. While several checklists can be used such as those 
from Enhancing the Quality and Transparency Of health 
Research (EQUATOR) Network guidelines [53], the use 
of the recently published Checklist for Artificial Intelli-
gence in Medical Imaging [22] would be helpful to lower 
risk of bias of ongoing work.

In the future, there is a need for well-sampled databases 
including large number of representative cases for the 
anatomical variability of the prostate gland and technical 
specificities (2D T2 versus 3D T2, slice thickness, FOV, 
vendors) to account for the anatomical, disease related, 
acquisition related variabilities, with a multi-readers seg-
mentations and a well-defined delineation guideline of 
the prostate (as it is already done for example in organs at 
risk for radiotherapy planning [54]).

Constitution of quality database should be based on 
latest PI-RADS recommendations, by associating qual-
ity criteria such as the consensual quality requirements 
ESUR/ESUI [55] or Prostate Imaging Quality (PI-QUAL) 
[56] score to guarantee essential image quality for zonal 
segmentation and tumor detection.

The main limitation of this review is the absence of 
details of technical information used; each study mak-
ing its own contribution for networks with countless 
hyperparameters, sometimes without enough details to 
be gathered. This precluded us from comparing models’ 
accuracy without bias.

Some other relevant papers also could be missing 
because of incongruences between search terms, article 
keywords, or indexing in the databases, such as for con-
ference proceedings papers. In particular, databases such 
as ArXiv were not searched as it also provides access to 
preprints, without peer review.

Conclusion
This review systematically synthesizes published auto-
matic prostate zonal segmentation methods using MRI. 
We found that no papers in the literature currently have 

c,d Respectively for testing on internalc or externald data
e,f Respectively for sourcee or targetf with 115 patients for training (best results)
g,h Respectively for T2-weightedg and apparent diffusion coefficient (ADC) maph

I,j,k Trained on combined datasets and, respectively, tested on dataset #1i, #2j or #3k

l,m Using pre-segmented whole gland (WG)l, or with whole processm

1 Rundo et al., USE-Net: incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets[30]
2 Rundo et al., CNN-based Prostate Zonal Segmentation on T2-weighted MR Images: A Cross-dataset Study[27]

Table 5  (continued)
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both sufficiently documented datasets selection and seg-
mentation criteria and enough external validation.

This underlines the critical need for higher quality 
datasets, a documented reproducible method and ter-
minology for zonal segmentation and sufficient external 
dataset to develop the best quality methods free from 
biases: an essential step for future development of auto-
matic detection of prostate cancer.
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