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Abstract 

Background:  This study evaluated the predictive potential of histogram analysis derived from apparent diffusion 
coefficient (ADC) maps in radiation-induced temporal lobe injury (RTLI) of nasopharyngeal carcinoma (NPC) after 
intensity-modulated radiotherapy (IMRT).

Results:  Pretreatment diffusion-weighted imaging (DWI) of the temporal lobes of 214 patients with NPC was retro-
spectively analyzed to obtain ADC histogram parameters. Of the 18 histogram parameters derived from ADC maps, 7 
statistically significant variables in the univariate analysis were included in the multivariate logistic regression analysis. 
The final best prediction model selected by backward stepwise elimination with Akaike information criteria as the 
stopping rule included kurtosis, maximum energy, range, and total energy. A Rad-score was established by combining 
the four variables, and it provided areas under the curve (AUCs) of 0.95 (95% confidence interval [CI] 0.91–0.98) and 
0.89 (95% CI 0.81–0.97) in the training and validation cohorts, respectively. The combined model, integrating the Rad-
score with the T stage (p = 0.02), showed a favorable prediction performance in the training and validation cohorts 
(AUC = 0.96 and 0.87, respectively). The calibration curves showed a good agreement between the predicted and 
actual RTLI occurrences.

Conclusions:  Pretreatment histogram analysis of ADC maps and their combination with the T stage showed a satis-
factory ability to predict RTLI in NPC after IMRT.
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Key points 

•	 Histogram parameters from pretreatment ADC maps are associated with RTLI in NPC.
•	 The ADC and combined models show better performance than the T stage alone.
•	 The combined model shows excellent performance in predicting RTLI in different subgroups.

Keywords:  Nasopharyngeal carcinoma, Diffusion-weighted MRI, Temporal lobe, Radiation therapy, Radiomics

Background
Radiotherapy remains the primary treatment for naso-
pharyngeal carcinoma (NPC) [1]. However, radiation-
induced temporal lobe injury (RTLI) can be a serious 
complication that severely affects the quality of life and 
long-term prognosis [2, 3]. Although radiotherapy tech-
niques with better conformance, such as intensity-mod-
ulated radiotherapy (IMRT), provide better long-term 
disease control and are less toxic [4], RTLI is still reported 
in 4.6–8.5% of patients [5, 6]. Symptom-based diagnosis 
of RTLI is problematic in clinical practice because most 
patients are asymptomatic even at a very late stage or are 
already in a stage of non-reversible deterioration when 
noticeable symptoms start to appear, during which treat-
ment has limited effect [7]. In contrast, if RTLI could 
be identified early or even predicted before the onset of 
symptoms, personalized intervention could be provided 
in advance to reverse the unfavorable situation. There-
fore, it is particularly important to predict RTLI noninva-
sively after IMRT.

Several recent studies have focused on predicting RTLI 
in patients with NPC [8–10]. Studies based on radia-
tion dosimetry-related factors have shown some predic-
tive potential [9–11]; however, the optimal dose/volume 
predictors of RTLI still vary among different studies, and 
clinical applications are limited [12]. The imaging diagno-
sis of RTLI mainly depends on magnetic resonance imag-
ing (MRI) findings. MRI is a suitable tool with multiple 
techniques available, which not only enables structure 
depiction, but also function quantification.

Diffusion-weighted imaging (DWI) is a functional tech-
nique that provides information about the tissue micro-
environment depending on the microscopic mobility 
of water [13]. Because of the Brownian motion of water 
molecules, DWI can be quantified using the apparent dif-
fusion coefficient (ADC) derived from the Gaussian dif-
fusion model. DWI and dynamic contrast-enhanced MRI 
showed potential for predicting the response to radiation 
therapy for head and neck paragangliomas [14], promise 
in differentiating head and neck schwannomas and para-
gangliomas [15], detecting occult primary head and neck 
squamous cell carcinoma [16], and survival prediction 

in patients with head and neck squamous cell carci-
noma treated with (chemo)radiation [17]. Diffusion ten-
sor imaging (DTI) and DWI can be used to differentiate 
benign and malignant head and neck lesions [18]. DWI 
and ADC images can also be used for segmentation [19]. 
Histogram analysis is a mathematical method that pro-
vides information about the distribution of data in the 
selected region of interest (ROI), providing more infor-
mation that is often ignored by the human eye [20]. To 
the best of our knowledge, only a few studies have inves-
tigated the association between MRI features and RTLI 
occurrence in NPC patients [21–25]. Moreover, histo-
gram analysis has not been extensively explored in this 
field.

This study aimed to investigate the value of pretreat-
ment histogram analysis of ADC in the prediction of 
RTLI in patients with NPC.

Methods
Patients
This retrospective single-center study was approved 
by the local institutional review board, which waived 
the requirement for informed consent. Our radiologi-
cal database was queried between January 2017 and 
December 2021. The inclusion criteria were as follows: 
(a) histopathologically confirmed NPC; (b) head–neck 
MRI including DWI performed in our institution within 
2  weeks before any treatment; (c) receiving IMRT; and 
(d) RTLI after IMRT was found during follow-up. The 
exclusion criteria were as follows: (a) history of any 
prior local–regional therapies, (b) poor image quality 
due to severe artifacts, (c) temporal lobe invasion, and 
(d) recurrent NPC. In total, 107 patients with RTLI were 
included according to the inclusion and exclusion crite-
ria. Propensity score matching was performed for this 
cohort of patients. The control group included patients 
without RTLI after IMRT who were matched 1:1 to each 
case by sex (Fig. 1). Thus, 214 patients were included in 
this study, who were randomly allocated to a training set 
(135 patients) and a validation set (79 patients) at a ratio 
of 6:4.
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Clinical data
Clinical information was analyzed in this study, includ-
ing sex, age, neutrophil-to-lymphocyte ratios, TNM 
stage, pathologic subtype, treatment regimen, date 
of pretreatment MRI scan, dosimetric parameters 
including maximum dose for each temporal lobe, and 
planning gross tumor volume including the primary 
nasopharyngeal tumor or enlarged retropharyngeal 
nodes.

Treatment regimen and follow‑up
All patients underwent a standard treatment regimen 
consisting of IMRT and concurrent or adjuvant chem-
otherapy, with or without induction chemotherapy, 
based on the National Comprehensive Cancer Network 
guidelines [26]. All patients were treated with IMRT 
using the HiArt TomoTherapy system (Accuray, Sunny-
vale, CA) or a Varian-600CD linear accelerator (Varian 
Medical Systems, Palo Alto, CA) with a prescribed dose 
of 70–74 Gy in 30–33 fractions [27].

After radiation therapy, patients routinely underwent 
follow-up MRI every 1–3 months during the first 2 years, 

every 6 months in years 3–5, and annually thereafter. The 
endpoint of this study was the development of RTLI or 
the last follow-up for non-RTLI (> 36 months).

Diagnostic criteria of RTLI
The diagnostic criteria for temporal lobe injury (TLI) 
were as follows [28]: (a) white matter lesions with homo-
geneous high signal intensity on T2-weighted images and 
low signal intensity on T1-weighted images without con-
trast enhancement, (b) contrast-enhanced lesions with or 
without necrosis on post-contrast T1-weighted images 
with heterogeneous signal abnormalities on T2-weighted 
images, and (c) cysts or round or oval well-defined lesions 
with very high signal intensity on T2-weighted images 
with a thin or imperceptible wall.

Image acquisition
All patients were examined using a 3.0-T MR scan-
ner (GE Discovery MR 750; GE Healthcare, Chicago, 
IL) with an 8-channel head and neck phased array coil. 
DWI-MRI examinations were acquired axially using 
a single-shot echo-planar imaging technique with a 

Fig. 1  Diagram for inclusion of patients into the study. IMRT = intensity-modulated radiotherapy, NPC = nasopharyngeal carcinoma, 
RTLI = radiation-induced temporal lobe injury
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spectral pre-saturation attenuated inversion-recovery fat-
suppressed pulse sequence (repetition time/echo time, 
4000/51  ms; bandwidth, 250  kHz; field of view, 24  cm; 
slice thickness, 5 mm; slice gap, 1 mm; number of excita-
tions, 6.0). Diffusion gradients were applied with b values 
of 0 and 800 s/mm2.

Temporal lobe segmentation
ADC maps were automatically calculated from b0 and 
b800 images using the MRI console. MRI images were 
reviewed by two radiologists (with 18 and 5 years of expe-
rience in head and neck imaging, respectively). A tempo-
ral lobe ROI was drawn on the b = 800 s/mm2 DWI of the 
pretreatment MRI using ITK-SNAP (version 3.6.0-RCI; 
http://​www.​itk-​snap.​org). The ROI was manually deline-
ated along the boundaries of the middle and lower por-
tions of the bilateral temporal lobes from the top level of 
the cerebral peduncle to the bottom of the temporal lobe 
(Additional file 1: Figure S1). One junior radiologist (Dan 
Bao) manually delineated and a senior neuroradiologist 
(Yanfeng Zhao) verified that both were blinded to clini-
cal outcomes. The ROIs were then propagated to ADC 
maps. Inter-observer segmentation variability was evalu-
ated using the Dice similarity coefficient (DSC) [29] in 50 
randomly selected patients.

Histogram analysis
Quantitative analysis was performed by a radiologist with 
five years of experience in head and neck MRI. For quan-
titative analysis, all ROIs were merged into the volume 
of interest in the ADC maps. Histogram features were 
extracted using the non-open source software Analysis 
Kit (Version v3.0.1. A, GE Healthcare) with the following 
parameters: skewness, kurtosis, entropy, energy, range, 
uniformity, mean, median, minimum, maximum, vari-
ance, 10th percentile, 90th percentile, interquartile range 
(IQR), mean absolute deviation, robust mean absolute 
deviation, root mean square, and total energy.

Development and validation groups
The training cohort used 60% of the dataset and the vali-
dation cohort used the remaining 40%. Univariate and 
multivariate logistic regression analyses were performed 
using the training data to determine the predictive fac-
tors for RTLI. The backward stepwise was used to select 
variables included in the best models, and the Akaike’s 
information as the stopping criterion [30, 31]. A function 
based on the variance inflation factor was used to check 
the collinearity of the variables included in the regression 
equation, with a variance inflation factor greater than 
10 indicating multicollinearity [32]. Receiver operating 

characteristic curve (ROC) analyses of significant find-
ings and combined analyses were performed to evaluate 
the predictive performance. Sensitivity, specificity, nega-
tive predictive value, and positive predictive value with 
95% confidence intervals (CIs) were calculated. The areas 
under the curve (AUC) were compared using the DeLong 
method.

According to the results of the multivariate analysis, the 
predictive model was visualized as a nomogram to strat-
ify the individual risk of RTLI. A calibration curve was 
used to describe the agreement between predicted and 
observed RTLI occurrence probabilities. The Hosmer–
Lemeshow test was performed to explain the goodness-
of-fit of the multivariate logistic model. Decision curve 
analysis (DCA) was used to evaluate the clinical useful-
ness by quantifying the net benefits of the predictive 
model in the validation set. The optimum cutoff value of 
the signature was identified using ROC analysis based on 
its association with the RTLI outcome. Accordingly, the 
patients were divided into low- and high-risk groups, for 
which the RTLI predictive outcomes were compared by 
ROC analysis in subgroups within clinical–pathologic 
factors from the entire dataset.

Statistical analysis
Baseline characteristics were compared using the inde-
pendent t test or the Mann–Whitney U test (for continu-
ous variables) and Pearson’s chi-square test or Fisher’s 
exact test (for categorical variables). Statistical analyses 
were conducted using SPSS (version 26.0; IBM, Armonk, 
NY) and R software (version 3.4.4; R Foundation, Vienna, 
Austria). A two-sided p value less than 0.05 indicated a 
significant difference.

Results
Patient characteristics
A total of 214 patients with pathologically proven NPC 
and IMRT treatment (median age 47.50 years; IQR 37.8–
56 years; 69 females) were included, including 135 in the 
training set and 79 in the validation set. During follow-
up, 107 patients were confirmed with RTLI (bilateral, 
23; left, 39; right, 45). The median duration of follow-up 
from the pretreatment MRI was 33.4 months (IQR 26.2–
41.9  months) in the RTLI group and 61.4  months (IQR 
53.5–68.5 months) in the non-RTLI group. The baseline 
clinical characteristics are given in Table 1. No significant 
differences were observed between the training and vali-
dation groups (all p > 0.05). The rates of RTLI occurrence 
were 55.56% (75/135) and 40.50% (32/79) in the training 
and validation cohorts, respectively.

http://www.itk-snap.org
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Temporal lobe segmentation
In assessing the reliability of segmentation, the intra-
reader Dice value was 0.981 ± 0.002 (range 0.979–0.982).

Univariate analysis of histogram parameters
Of the 18 histogram parameters derived from ADC maps, 
energy, kurtosis, maximum, minimum, range, skew-
ness, and total energy were significant in the univariate 

analysis for predicting RTLI occurrence in the training 
cohort (Additional file 1: Table S1).

Multivariate analysis of histogram parameters
Statistically significant variables in the univariate analy-
sis were included in the multivariate logistic regression 
analysis. The final best prediction model selected by 
backward stepwise elimination with Akaike information 

Table 1  Characteristics of patients in the training and validation cohorts

* Data are mean ± standard deviation; data in parentheses are range. Treatment: A-Radiotherapy, B-Concurrent Chemoradiotherapy, C-Concurrent 
Chemoradiotherapy + Targeted Therapy, D-Induction chemotherapy + Concurrent Chemoradiotherapy, E-Induction chemotherapy + Concurrent 
Chemoradiotherapy + Targeted therapy, F-Radiotherapy + Targeted therapy. p > 0.05 suggests no significant difference between the subjects in the two cohorts. 
LDmax = maximum dose of left temporal lobe, NLRs = neutrophil-to-lymphocyte ratios, PGTVNX = planning gross tumor volume included the primary nasopharyngeal 
tumor or enlarged retropharyngeal nodes, RDmax = maximum dose of right temporal lobe, TNM = tumor-node-metastasis

Characteristic Training cohort Validation cohort p value
(n = 135) (n = 79)

Age (y)* 46.67 ± 12.81 (9–73) 44.43 ± 13.59 (11–69) 0.23

Sex

 Male 88 57 0.29

 Female 47 22

NLRs (mean ± SD) (range) * 3.22 ± 4.38 (0.43–48.63) 3.43 ± 2.31 (0.90–14.18) 0.70

T stage 0.34

 T1 8 4

 T2 8 6

 T3 62 45

 T4 57 24

N stage 0.53

 N0 16 12

 N1 47 28

 N2 51 32

 N3 21 7

TNM stage 0.22

 I 1 1

 II 6 3

 III 56 44

 IV 72 31

Pathology 0.98

 Differentiated 43 25

 Undifferentiated 92 54

Treatment 0.51

 A 17 16

 B 51 24

 C 31 14

 D 19 13

 E 8 4

 F 9 8

PGTVNX (mean ± SD) (range) (Gy) * 73.51 ± 1.25 (67.72–74.20) 73.72 ± 0.87 (69.96–73.92) 0.20

LDmax (mean ± SD) (range) (Gy) * 68.41 ± 5.68 (53.72–78.16) 68.11 ± 5.94 (52.86–86.07) 0.72

RDmax (mean ± SD) (range) (Gy) * 68.78 ± 5.28 (55.16–78.57) 68.62 ± 5.67 (55.93–86.07) 0.84
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criteria as the stopping rule included kurtosis (p = 0.06), 
maximum energy (p = 0.05), range (p = 0.06), and total 
energy (p < 0.001) (Table 2).

Clinical feature selection
The results of the univariate and multivariate logistic 
analyses for clinical and dosimetric features are pre-
sented in Table 3. In the multivariate regression analysis, 
the T stage was a significant clinical predictor of RTLI.

Development and validation of predictive models
Predictive model derived from ADC map
Based on the results of the multivariate logistic analysis, four 
histogram parameters were integrated into a Rad-score. 
The Rad-score was calculated using a linear combination of 
these histogram parameters based on their respective coef-
ficients. The calculation formula is as follows:

A difference in Rad-score was present between the 
RTLI and non-RTLI groups in the training set (median 
[IQR], 0.97 [0.82–0.99] vs. 0.11 [0.03–0.31]; p < 0.001) 
and confirmed in the validation cohort (median [IQR], 
0.95 [0.56–0.99] vs. 0.08 [0.02–0.25]; p < 0.001) (Addi-
tional file 1: Figure S2). The Rad-score yielded an AUC of 
0.95 (95% CI 0.91–0.98) in the training cohort and 0.89 
(95% CI 0.81–0.97) in the validation cohort.

Combination of clinical and histogram findings
The variance inflation factors of the five potential pre-
dictors ranged from 1.004 to 1.278, indicating no mul-
ticollinearity. A combined model incorporating two 

log (Rad− scrore) =10.34 ± 0.28× Kurtosis + 0.005

×Maximum± 0.004× Range

± 8.28E− 11× Total Energy

Table 2  Results of multivariate logistic regression histogram parameters in the training set

CI = confidence interval, OR = odds ratio, SE = standard error. * indicates significant difference

Variable β SE Wald p OR 95% CI

Lower Upper

Skewness 0.82 1.48 0.31 0.58 2.27 0.13 46.15

Kurtosis − 0.39 0.21 3.62 0.06* 0.67 0.43 0.99

Energy 6.42E−11 1.10E−10 0.34 0.56 1 1 1

Range − 0.01 0.01 3.49 0.06* 0.99 0.98 1.00

Minimum − 0.01 0.01 1.51 0.22 0.99 0.97 1.01

Maximum 0.01 0.01 3.75 0.05* 1.01 1.00 1.02

Total energy − 1.02E−10 2.81E−11 13.20  < 0.001* 1 1 1

Table 3  Clinical predictive factors according to univariate and multivariate logistic regression in the training set

CI = confidence interval, LDmax = maximum dose of left temporal lobe, NLRs = neutrophil-to-lymphocyte ratios, OR = odds ratio, PGTVNX = planning gross tumor 
volume included the primary nasopharyngeal tumor or enlarged retropharyngeal nodes, RDmax = maximum dose of right temporal lobe, TNM = tumor-node-
metastasis. * indicates significant difference

Univariate  analysis Multivariate  analysis

Coefficient OR (95% CI) p Coefficient OR (95% CI) p

Age 0.01 1.01 (0.986–1.039) 0.37

Sex − 0.15 0.86 (0.152–1.575) 0.69

NLRs 0.13 1.14 (0.932–1.356) 0.21

T stage 1.12 3.07 (2.516–3.618)  < 0.001 0.88 2.41 (1.204–5.724) 0.02*

N stage − 0.18 0.83 (0.450–1.218) 0.35

TNM stage 0.96 2.60 (1.996–3.211) 0.002 0.18 1.19 (0.450–2.883) 0.70

Pathology − 0.02 0.98 (0.256–1.714) 0.97

Treatment − 0.18 0.83 (0.577–1.085) 0.15

PGTVNX 0.35 1.42 (1.105–1.735) 0.03 0.19 1.21 (0.878–1.771) 0.26

LDmax 0.07 1.07 (1.006–1.131) 0.04 − 0.02 0.98 (0.898–1.073) 0.70

RDmax 0.10 1.11 (1.037–1.176) 0.004 0.08 1.08 (0.984–1.194) 0.11
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independent predictors (Rad-score and T stage) was 
developed and presented as a nomogram (Fig.  2A 
and Additional file  1: Table  S2). The calibration plots 
showed that the predicted RTLI probabilities of the 
combined model were in excellent agreement with 
actual observations (Fig.  2B and C). The Hosmer–
Lemeshow test of model calibration showed no depar-
ture from a good fit, with no statistical significance 
(p = 0.23).

Performance and validation of predictive models
The ROC curves of the Rad-score and the combined 
model are shown in Fig.  3 and Table  4. Compared with 
the T stage alone (AUC, 0.63 [95% CI 0.52–0.74]), both 
the Rad-score (p < 0.001) and the combined model 
(P < 0.001) exhibited better predictive performance for 
RTLI after IMRT. The AUC value of the Rad-score (AUC, 

0.89) was slightly higher than that of the combined model 
(AUC, 0.87) in the validation cohort, but the difference 
was not significant (p = 0.47).

After obtaining the risk scores based on the combined 
model, an optimal threshold of 0.55 was determined 
according to the maximized Youden index from the train-
ing cohort. Accordingly, all patients were classified into 
high- (Rad-score ≥ 0.55) and low-risk (Rad-score < 0.55) 
RTLI groups (Additional file  1: Figure S3). Accord-
ing to the proposed risk classifier, the combined model 
achieved a sensitivity of 81.3% and a specificity of 82.0% 
for predicting RTLI in the validation cohort, whereas the 
positive and negative predictive values were 81.3% and 
87.2%, respectively. Moreover, when the patients were 
stratified based on clinicopathological factors, the overall 
diagnostic accuracy of the risk classifier was excellent in 
all subgroups (AUC, 0.79–0.98). The performance of the 

Fig. 2  Nomogram and calibration curves. a A nomogram was developed in training cohort, with Rad-score and T stage incorporated. Calibration 
curves of the nomogram in (b) training and (c) validation cohorts
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constructed combined model in patients within different 
clinicopathological subgroups is presented in Additional 
file 1: Figure S4.

Additionally, DCA indicated that the Rad-score or 
combined model achieved moderately better net ben-
efits than clinical factors alone (Additional file  1: Fig-
ure S5). The positive values of integrated discrimination 
improvement (53.0% [95% CI 0.45–0.61], p < 0.001) and 
net reclassification index (69.0% [95% CI 0.55–0.83], 
p < 0.001) are shown.

Discussion
In this study, we assessed the capability of pretreatment 
histogram parameters in predicting RTLI in patients with 
NPC after IMRT. Our results showed that the Rad-score 
integrating the four histogram parameters was an inde-
pendent predictive factor of RTLI and showed a favorable 
predictive performance. A nomogram combining T stage 
and Rad-score as a quantitative tool could facilitate RTLI 
risk stratification and clinical decision-making in NPC 
patients treated with IMRT.

Fig. 3  Performances of two models in training cohort and validation cohort, respectively. a, b Rad-score, including four histogram parameters. c, d 
Combined model, integrated T stage and four histogram parameters
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While histogram analysis has been successfully dem-
onstrated in various organs [33–35] and the predictive 
potential of radiomics features has been explored in RTLI 
in NPC patients [21, 22, 24, 25], the utility of histogram 
parameters in predicting RTLI still needs to be further 
investigated. As previously suggested, image heteroge-
neity is correlated with physiological heterogeneity [20]. 
We found that some of the histogram parameters derived 
from ADC mapping of the temporal lobes were associ-
ated with RTLI occurrence. Kurtosis yielded the highest 
(negative) coefficient in selected histogram parameters, 
which is a measure of the “peakedness” of the distribution 
of values in the image ROI [36]. A lower kurtosis implies 
that the mass of the distribution is concentrated toward 
a spike near the mean value, implying that the temporal 
lobes were more functionally homogeneous. The range 
represents the range of gray values in the voxel of inter-
est (VOI), whereas total energy refers to the value of the 
energy feature scaled by the volume of the voxel in mm3 
[36]. Higher values of range and total energy may indicate 
the complexity of the tissue components. In this study, 
lower values of kurtosis, range, and total energy, which 
led to a higher Rad-score, were associated with patients 
more prone to developing RTLI. As no histological 
proof of the precise mechanism that leads to RTLI and 
its association with the heterogeneity of temporal lobes 
was available by this point, we can hypothesize that less 
heterogeneous image textures corresponded to the abun-
dance of cells in the VOI of the temporal lobe, with the 
cells arranged tightly and regularly [37, 38]. Furthermore, 
the abundant blood supply and high oxygen demand of 
the corresponding temporal lobe, which means greater 
sensitivity to radiotherapy [39, 40], were more prone to 
developing RTLI. It is well known that a high cell den-
sity is associated with a low ADC [41, 42], and the region 

showing the maximum ADC may reflect the lowest cellu-
lar area within the temporal lobe. However, the results of 
our study indicate that the maximum value was positively 
correlated with RTLI occurrence, which contradicts our 
previous hypothesis. It is difficult to provide a reasonable 
explanation based on the current research, and further 
research on the histological proof of temporal lobe het-
erogeneity and RTLI occurrence is required.

Compared with other studies that established predic-
tion models for predicting RTLI based on pretreatment 
MRI parameters, the AUC of the model in this study was 
lower than that of the prediction model based on radi-
omics features extracted from contrast-enhanced T1- or 
fat-suppressed T2-weighted MRI (AUC, 0.89 vs. 0.92) 
[24], and higher than that of the proposed model based 
on features extracted from T1- and T2-weighted MRI 
(AUC, 0.82) [25]. Therefore, the prediction model based 
on ADC histogram parameters showed persuasive per-
formance in predicting RTLI in NPC, and the feasibility 
of a multiparametric MRI model to predict RTLI should 
be explored in future studies.

Concerning clinical predictors, the T stage was identi-
fied as a clinical predictor for RTLI in our study, which 
was consistent with the findings of Wen et  al. [9] and 
Guan et al. [8]. This study demonstrated that the nomo-
gram incorporating histogram parameters and T stage 
yielded satisfactory predictive performance, with favora-
ble calibration and positive net reclassification improve-
ment. DCA also illustrated that both the combined model 
and the Rad-score outperformed the T stage alone in 
predicting RTLI occurrence, but interestingly, the com-
bined model did not significantly improve the predictive 
performance compared to the Rad-score; a similar lack of 
improvement in the extended model compared with indi-
vidual components has been previously observed in brain 

Table 4  Predictive performances of two models in predicting the radiation-induced temporal lobe injury in the training and 
validation cohort

AUC = area under the receiver operating characteristic curve, CI = confidence interval, NPV = negative predictive value, PPV = positive predictive value. *Features used 
for the Model-ADC are kurtosis, maximum, range, and total energy

Model AUC​ 95% CI Sensitivity Specificity PPV NPV

Lower Upper

Model—ADC

 Training cohort 0.95 0.91 0.98 0.85 (64/75) 0.93 (56/60) 0.94 (64/68) 0.83 
(56/67)

 Validation cohort 0.89 0.81 0.97 0.75 (24/32) 0.89 (42/47) 0.83 (24/29) 0.89 
(42/47)

Model—combined

 Training cohort 0.96 0.92 0.99 0.88 (66/75) 0.93 (56/60) 0.94 (66/70) 0.86 
(56/65)

 Validation cohort 0.87 0.78 0.96 0.81 (26/32) 0.82 (41/50) 0.81 (26/32) 0.87 
(41/47)
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tumors [43] and is attributed to the high intra-correlation 
of ADC histogram parameters.

This study had several limitations. First, selection bias 
exists because of the retrospective design of the study. 
Removing a significant portion of patients for a variety of 
reasons may have generated bias. Second, patients with-
out RTLI after IMRT were included by a propensity score 
matching at 1:1 to each RTLI case by gender in this study. 
Third, patients without RTLI after IMRT were included 
by propensity score matching at 1:1 for each RTLI case by 
sex in this study. The preferred design should include all 
patients to ensure that no bias is introduced for all relevant 
risk factors and outcomes; however, the low incidence of 
RTLI in the clinic and the long follow-up time needed 
for RTLI outcomes in NPC may make the research diffi-
cult to implement. Fourth, we performed DWI using only 
two b values of 0 and 800 s/mm2 on a 3.0-T MRI machine 
from a single manufacturer; further studies on DWI with 
multiple b values with various MRI scanners and tech-
niques may contribute to the generalizability of the results. 
Finally, the dosimetric parameters included in this study 
were limited and not independent predictors of RTLI in 
the training set; therefore, we did not include them in the 
final prediction model. Although patients with NPC who 
received radiotherapy were one of the causative factors for 
possible RTLI, patients included in this study were treated 
with IMRT and standardized treatment according to their 
conditions. Therefore, in this case, the predictive model 
still had predictive potential for RTLI in patients with 
NPC who received IMRT. The prediction model used in 
this study was based on MRI obtained before treatment. 
Patients receiving radiotherapy may have subtle changes 
that are invisible to the naked eye and can be detected 
early using radiomics. Prediction models based on MRI 
obtained immediately after IMRT may yield different 
results [21, 22, 24]. In general, the feasibility of histograms, 
clinical and dosimetric parameters, white and gray matter, 
and their associated variables were considered separately, 
and MRI after IMRT to predict RTLI should be explored 
in future studies, especially prospective studies with larger 
sample sizes at multicenter institutions.

Conclusions
In summary, our study revealed that histogram parame-
ters of ADC mapping based on temporal lobes are related 
to RTLI occurrence in patients with NPC after IMRT. 
The combined model achieved satisfactory pretreatment 
risk prediction of RTLI in patients with NPC, which may 
help stratify high-risk patients who require intensive fol-
low-up and effective treatment guidance.
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