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Improving the diagnosis of acute ischemic 
stroke on non‑contrast CT using deep learning: 
a multicenter study
Weidao Chen1,3†, Jiangfen Wu2,3†, Ren Wei3, Shuang Wu3, Chen Xia3, Dawei Wang3, Daliang Liu4, 
Longmei Zheng5, Tianyu Zou6, Ruijiang Li7, Xianrong Qi8,9* and Xiaotong Zhang1,10,11*    

Abstract 

Objective:  This study aimed to develop a deep learning (DL) model to improve the diagnostic performance of EIC 
and ASPECTS in acute ischemic stroke (AIS).

Methods:  Acute ischemic stroke patients were retrospectively enrolled from 5 hospitals. We proposed a deep learn-
ing model to simultaneously segment the infarct and estimate ASPECTS automatically using baseline CT. The model 
performance of segmentation and ASPECTS scoring was evaluated using dice similarity coefficient (DSC) and ROC, 
respectively. Four raters participated in the multi-reader and multicenter (MRMC) experiment to fulfill the region-
based ASPECTS reading under the assistance of the model or not. At last, sensitivity, specificity, interpretation time 
and interrater agreement were used to evaluate the raters’ reading performance.

Results:  In total, 1391 patients were enrolled for model development and 85 patients for external validation with 
onset to CT scanning time of 176.4 ± 93.6 min and NIHSS of 5 (IQR 2–10). The model achieved a DSC of 0.600 and 
0.762 and an AUC of 0.876 (CI 0.846–0.907) and 0.729 (CI 0.679–0.779), in the internal and external validation set, 
respectively. The assistance of the DL model improved the raters’ average sensitivities and specificities from 0.254 (CI 
0.22–0.26) and 0.896 (CI 0.884–0.907), to 0.333 (CI 0.301–0.345) and 0.915 (CI 0.904–0.926), respectively. The average 
interpretation time of the raters was reduced from 219.0 to 175.7 s (p = 0.035). Meanwhile, the interrater agreement 
increased from 0.741 to 0.980.

Conclusions:  With the assistance of our proposed DL model, radiologists got better performance in the detection of 
AIS lesions on NCCT.

Key points 

•	 The model simultaneously segments infarcts and estimates ASPECTS by using baseline CT.
•	 A mirror-assembly module plus dual-path DCNN model improved the segmentation efficiency.
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Introduction
Stroke is one of the major threats to human health, and it 
is the third leading cause of death in the world with high 
mortality and disability rate [1–3]. Non-contrast com-
puted tomography (NCCT) is deemed as the first choice 
for all stroke diagnosis due to its relative high speed, 
broad accessibility and cost-effectiveness compared 
with magnetic resonance imaging (MRI) and CT perfu-
sion (CTP) [3, 4], especially in the setting of emergence 
department [5]. NCCT not only has high sensitivity to 
the detection of intracranial hemorrhage, but also is a 
widely used tool to select patients for endovascular ther-
apy [6–8]. The Alberta Stroke Program Early Computed 
Tomography Score (ASPECTS) is a quantitative score 
method for early ischemic changes (EIC) evaluation base 
on NCCT [9] and has been used in several randomized 
controlled trials (RCTs) for patient selection and exclu-
sion [10–12]. Until now, NCCT-ASPECTS is still the 
most widely used modality for early ischemic triage and 
thrombolytic outcome prediction in emergency depart-
ment [13–19].

However, EIC detection using NCCT is yet challeng-
ing and the ASPECTS can only be roughly determined 
in practice. The early signs of ischemia and their trans-
lation into ASPECTS suffer from considerable missed 
diagnosis and interrater variability due to the rater’s 
experience difference [20–22], since the mild infarction 
on NCCT is difficult to be recognized by naked eyes, 
and there is no obvious boundary among brain regions 
involved in ASPECTS scoring. As reported in the previ-
ous studies, only 10% acute ischemic stroke (AIS) and 7% 
hyperacute ischemic stroke patients could be detected by 
using NCCT only [5]. Moreover, the EIC detection is also 
experience-dependent and suffers from the limited inter-
observer consistency [23, 24]. More endeavor needs to 
be devoted to improve the EIC detection sensitivity and 
ASPECTS assessment consistency.

Several software applications using artificial intel-
ligence, including classical machine learning and deep 
learning, have been designed for automated EIC detec-
tion and ASPECTS scoring [25–29]. The classical 
machine learning approach usually uses the image gray-
scale-based segmentation and pre-defined features to 
define the lesion, e.g., e-ASPECTS [29] (Brainomix, UK), 
RAPID-ASPECTS [24] (iSchemaView, USA) and Frontier 
ASPECTS [30] (Siemens Healthcare, Germany). These 

methods are limited by hand-crafted texture patterns 
or geometric shapes that rely on data scientists’ exper-
tise, and thus the ASPECTS results vary among studies 
[30, 31]. Deep learning (DL) has emerged to be a pow-
erful technique in medical imaging diagnosis, which can 
discover abstract task-specific features and further uses 
these features to produce accurate clinical interpretations 
in an end-to-end manner [32–35]. The application of DL 
methods in the EIC detection and ASPECTS interpre-
tation has just emerged [27, 28] and showed good per-
formance. However, there are few well-established DL 
approaches for NCCT-ASPECTS scoring and most of the 
existing studies are single-centered; in addition, they only 
focus on the evaluation of the model efficiency rather 
than the model performance in clinical emergency sce-
narios. Therefore, the DL model performance in clinical 
scenarios needs further investigations.

To address the above issues, we propose a novel DL 
model for the automatic AIS lesions detection and 
ASPECTS scoring and further demonstrate the value 
of the model in clinical assistance. Firstly, the model is 
developed based upon a reasonably large NCCT data-
set across 5 stroke centers. Secondly, the model uses a 
mirror assembly module and a dual-path DCNN model 
to enhance the lesion detection ability. Besides, to vali-
date the model clinical performance, we utilize a multi-
reader and multicenter (MRMC) experiment to evaluate 
the radiologists’ diagnosis under the aid of the proposed 
model.

Methods and materials
This retrospective study was approved by the Ethics 
Review Board of all participating hospitals. Patients’ pri-
vate information in the Digital Imaging and Communica-
tions in Medicine (DICOM) header file was desensitized. 
Owing to the retrospective nature, the requirement for 
informed consent was waived in this study.

Participants
The Development Set was acquired by searching for 
the keyword of “acute ischemic stroke” in the radiol-
ogy information system (RIS) between 2013 and 2017 
from two participating hospitals, and AIS patients with 
NCCT-to-DWI time < 24  h were included in this data-
set (1870 patients); then, images with inconsistent pixel 

•	 We evaluated the model in a multi-reader and multicenter (MRMC) setting.

Keywords:  Deep learning, Non-contrast computed tomography, Early ischemic changes, Alberta Stroke Program 
Early Computed Tomography Score, Multi-reader and multi-center study, Acute ischemic stroke
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spacing, insufficient scanning range or low image quality 
were excluded. The development set was divided into a 
training set and an internal validation set at a ratio of 5:1, 
as illustrated in Fig. 1.

The external validation set was curated from the 
other three hospitals. AIS patients with onset-to-NCCT 
time < 6 h and NCCT-to-DWI time < 24 h were included 
(99 patients). The unqualified images were excluded, and 
the clinical characteristics of the enrolled patients were 
also collected.

Specifically, only MCA territory infarcts were included 
to be analyzed in both the development set and the exter-
nal validation set. The image acquisition parameters are 
provided in Additional file 1.

Ground truth determination
Ground truth of ischemic region and ASPECTS for both 
the development set and the external validation set were 
established for each NCCT scan via the consensus of 
three board-certified radiologists (Z.T.Z., L.C.F., P.F.), 
and all the radiologists had at least 10-year experience 
in emergency neuroradiology (these experts received 
guiding instructions on www.​aspec​tsins​troke.​com prior 
to labeling). The ischemic regions were manually drawn 

and scored by one radiologist and validated by the other 
two radiologists independently. All the NCCT ischemic 
regions were delineated using 3D Slicer (version 4.8.1, 
www.​slicer.​org) with reference to the paired DWI images 
and radiology reports. ASPECTS scores for each region 
were also rated according to ASPECTS guidelines.

DL model development
The proposed DL model is shown in Fig. 2, consisting of 
5 key procedures to score the ASPECTS automatically. 
To reduce the influence of noise, we firstly pre-processed 
the NCCT images with median filter and the dark image 
enhancement algorithm [36] (“Detail Enhancement”). 
The manifestations of EIC on NCCT of AIS patients are 
extremely insignificant, and experts can only make deci-
sions based on the slight gray-level difference between 
the left and right brains in NCCT images. For this rea-
son, we designed a “Mirror Assembly Module,” which 
obtained the mirror image by flipping the original NCCT 
image around the midline of the brain, and used the 
original NCCT image to subtract the mirrored one to 
obtain the difference image. Then, we spliced the original 
images, the mirror images and the difference images to 
obtain the input samples of our DL model.

Fig. 1  Flowchart of data inclusion

http://www.aspectsinstroke.com
http://www.slicer.org
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Specifically, the boundaries of acute ischemic lesions 
were not obvious in the NCCT images and hard to be 
delineated accurately, thus they were easy to be misdi-
agnosed. Therefore, if such noisy annotations were used 
for model training, it would lead to model learning bias 
and damage model efficiency, especially when the tradi-
tional panoptic segmentation methods, like UNet [37] 
and panoptic FPN [38], were directly applied for model 
development. In order to tackle this problem and being 
inspired by the idea of ensemble learning, we proposed 
a novel deep convolutional neural network (DCNN) 
model with two pathways—“Global Path” and “Local 
Path.” “Global Path” was built based on ResNeXt-model 
[39, 40] to achieve good global localization and coarse 
segmentation of ischemic lesions and reduce the lesion-
level missed diagnosis rate. However, “Global Path” 
could only output the coarse segmentation images from 
the P3 layer of ResNeXt-50 and ignored the boundary 
details of ischemic lesions, thus we developed a "Local 
Path" as a supplement to “Global Path” to perform 
careful pixel-level segmentation under full-resolution 
images based on the Dense-UNet model [41]. Then, 
we resized the output segmentations of “Global path” 
and “Local Path” to the size of origin NCCT images 
with bilinear interpolation and subsequently fused the 
resized two-pathway output segmentation by element-
wise addition to obtain the final output segmentation. 
Details of the “Global Path” and “Local Path” are pro-
vided in Additional file 1.

In order to score the ASPECTS, we generated blood 
supply maps based on the MNI brain template [42, 43], 
as shown in Additional file  1: Fig. S3. Then, by linearly 
registering the blood supply region maps to the NCCT 
images (“Linearly Registration”), the blood supply regions 
of the corresponding individuals were obtained. At last, 
according to the ASPECTS scoring criteria [9] of calcu-
lating the overlap proportion of the lesion segmentation 
and the blood supply regions, a score for each ASPECTS 
region was obtained (“ASPECTS Scoring Module”). The 
proposed model was implemented by using Python 2.7 
and the MxNet framework (version 1.4.0, mxnet.apache.
org) with two Nvidia GTX 1080Ti GPUs for computation 
accelerations. The model was trained with the stochastic 
gradient descent optimizer and a stepped power-decay-
ing learning rate scheduler starting from 0.002. The deep 
learning model was trained with an input image size of 
512 × 512 and 100 epochs. When the model loss of the 
internal validation set began to increase, the training pro-
cess was stopped. In order to make the model focus on 
the details as well as the overall segmentation contour of 
the lesion, we constructed a loss function integrating the 
cross-entropy and DICE loss functions. The loss function 
is introduced in Additional file 1.

Multi‑reader and multicenter (MRMC) experiment
We conducted a MRMC experiment on the external vali-
dation set to evaluate the clinical efficacy of the proposed 
DL model in the help of four radiologist raters from 

Fig. 2  Overview of the proposed DL model for lesion segmentation and ASPECTS scoring. This model included five key procedures of detail 
enhancement, mirror assembly module, DCNN model, linear registration and ASPECTS scoring module. The model generated two types of data: 
ischemic lesion segmentation and region-based ASPECTS
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different tertiary teaching hospitals; each rater had over 
10  years of clinical experience in emergency radiology. 
Before the experiment, all raters were asked to partici-
pate in an educational session on how to use ASPECTS 
according to the instructions on www.​aspec​tsins​troke.​
com, and then each of them was provided with appa-
ratus like the ones equipped at the emergency depart-
ment. They were also instructed to interpret each scan 
in line with the emergency clinical practice. The raters 
were blind with the patients’ medical histories and onset 
symptoms. Two sessions were operated in this MRMC 
experiment: in the first session, only original scans were 
available for rater review. And the second session was 
performed after a washout period of 2 weeks and the 
model segmentation and region-based ASPECTS were 
provided to the raters. All raters were asked to score the 
region-based ASPECTS on a spreadsheet, and their read-
ing time was also recorded in the two sessions. Interrater 
agreement among the four raters was also calculated and 
compared between the two sessions.

Statistical analysis
Baseline demographic characteristics are demonstrated 
in Table 1. DL models were evaluated in a region-based 
manner according to the ASPECTS criteria. Twenty bino-
mial outcomes (20 ASPECTS regions) were generated for 
each case. The ROC curve was plotted in the following 
manner: we enumerated the probability thresholds for 
the DCNN model between 0 and 1, and for each thresh-
old, the corresponding TPR and FPR were calculated 
based on the model outputs for each ASPECTS region; 
these TPR-FPR pairs were plotted and formed into ROC 
curves. AUC (area under curve) was calculated based on 
the ROC curve, and its confidence interval (CI) was cal-
culated referenced to Dai Feng’s method [44]. Dice simi-
larity coefficient (DSC), precision and recall were used 
for segmentation performance evaluation.

In MRMC experiment, we used the region-based sen-
sitivity and specificity for clinical efficacy evaluation. The 
total time was recorded for each session, and the aver-
aged case-reading time was calculated through averag-
ing the total duration by the total number of cases. The 
averaged time was compared with paired Student’s t test. 
The sensitivity and specificity were compared with the 
McNemar test. The interrater agreement was measured 
using ICC (intraclass correlation coefficient) of two-way 
mixed single absolute agreement [45]. All statistical anal-
ysis was performed by R programming language (version 
3.6.2), and a two-sided α < 0.05 was considered statisti-
cally significant.

Results
Patient data
At last, a total of 1,391 patients (1,179 patients in the 
training set and 212 patients in the internal validation 
set) were enrolled for model development and 85 patients 
were eligible for model external validation (see Fig. 1). All 
eligible patients’ baseline characteristics are summarized 
in Table 1. The age difference among these three sets was 
statistically significant (p < 0.001), and there was no gen-
der difference (p = 0.120); furthermore, post hoc analysis 
of age showed that there was no difference between the 
training set and the internal validation set, and a statis-
tical age difference was found between the two groups 
and the external validation set. It was observed that CT 
scanners made by GE Healthcare (Boston, MA, USA) 
and Siemens Healthineers (Erlangen, Germany) were in 
a majority for development set (Training Set: GE 57.0%, 
SIEMENS 41.7%; Internal Validation Set: GE 61.8%, SIE-
MENS: 37.3%), while PHILIPS Healthcare (Best, The 
Netherlands) was the major vendor in the external vali-
dation set (58.8%), and there was a significant manufac-
turer difference among the three groups (p < 0.001).

Detailed clinical information was only recorded for 
the external validation set. The mean time from onset 
to baseline CT was 176.4 ± 93.6  min, and the median 
NIH Stroke Scale (NIHSS) was 5 (IQR 2–10). The DWI-
ASPECTS distribution and the ASPECTS region of the 
external validation set are illustrated in Fig. 3 with a bar 
graph (median DWI-ASPECTS = 9, IQR 8–10). In total, 
1700 (85 × 20) ASEPECTS regions in the external valida-
tion set were scored.

The DL model efficiency
ROC curves of the internal and external validation sets 
are  shown in Fig.  4a, b). For the internal validation set, 
the model achieved an AUC  of 0.876  (95% CI 0.846–
0.907), while on the external validation set,  the model 
achieved an AUC of 0.729 (95% CI 0.679–0.779). The 
external validation showed that the trained model pro-
vided higher sensitivity and specificity in identifying indi-
vidual ischemia ASPECTS regions than all expert raters. 
The DSC, precision and recall was 0.600, 0.528 and 0.694 
for the internal validation set and 0.762, 1.000 and 0.616 
for the external validation set, respectively.

To visualize the model performance, NCCT segmen-
tation result of two patients is presented in Fig. 5. Obvi-
ously, it is confounded to define the lesion boundary with 
naked eyes, whereas the model could almost achieve this 
goal.

http://www.aspectsinstroke.com
http://www.aspectsinstroke.com
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Performance comparisons of the MRMC study
The performance of the expert raters on the external 
validation set is summarized in Table  2. The average 
sensitivity was 0.254 (95% CI 0.22–0.26) and 0.333 (95% 
CI 0.301–0.345), and the specificity was 0.896 (95% CI 
0.884–0.907) and 0.915 (95% CI 0.904–0.926) without 
vs. with AI, respectively—there was a statistical differ-
ence for average specificity (p = 0.014) but not for the 
average sensitivity (p = 0.196). As shown in Fig.  4b, 
c, with the assistance of the DL model, the sensitiv-
ity and specificity of Expert 1 and 2 were significantly 

improved (Expert 1: sensitivity p < 0.001, specificity 
p = 0.002; Expert 2: sensitivity p = 0.006, specificity 
p = 0.022); for Expert 3, the specificity was significant 
improved (p = 0.019) and the sensitivity behaved no 
significant difference (p = 1); no significant differences 
were observed in the sensitivity (p = 0.281) and speci-
ficity (p = 0.630) of Expert 4. In addition, the region-
based ICC with model aid among the four raters comes 
up to 0.980 compared to 0.741 without model aid, and 
the score-based ASPCETS ICC improved from 0.614 to 
0.809.

Table 1  Baseline demographic and clinical characteristics

Data are percentages with numbers in parentheses for categorical variables. Continuous variables are reported as mean ± standard deviation with number of entries 
in parentheses. Ordinal variables (NIHSS score) are reported as median with interquartile range (IQR) and number of entries in parentheses. ANOVA was used as the 
test for the difference of mean for continuous variables. Fisher’s exact test was used to test for the difference of proportion for categorical variables. The post hoc 
analysis was performed by Tukey’s HSD method. Other manufacturers were omitted from hypothetical tests due to the absence of data

NIHSS, National Institutes of Health Stroke Scale; BP, Blood pressure; CVD, cardiovascular disease

Training set Internal validation set External validation set p value
(n = 1179) (n = 212) (n = 85)

Patient characteristics

Age, mean ± SD, years 61.3 ± 12.5 62.0 ± 11.1 66.6 ± 12.4  < .001

Male 70.80% 72.20% 64.70% 0.12

(835/1179) (153/221) (55/85)

Manufacturer  < .001

GE 57.00% 61.80% 28.20%

(672/1179) (131/212) (24/85)

PHILIPS 1.10% 0.90% 58.80%

(13/1179) (2/212) (50/85)

SIEMENS 41.70% 37.3% (79/212) 12.90%

(492/1179) (11/85)

Other 0.20% 0.00% 0.00%

(2/1179) (0/212) (0/85)

Time from onset to CT (min) – – 176.4 ± 93.6 –

Admission NIHSS score – – 5(2–10) –

(n = 76/85)

Admission systolic BP (mmHg) – – 153 ± 22 –

(n = 84/85)

Risk factors

Previous stroke – – 14.10% –

(12/85)

Hypertension – – 54.10% –

(46/85)

Diabetes – – 16.50% –

(14/85)

Smoking – – 24.70% –

(21/85)

Atrial fibrillation – – 15.30% –

(13/85)

CVD – – 17.60% –

(15/85)
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Regarding the reading time, the average reading time 
of the external validation set is summarized in Table  3. 
Obviously, with the aid of the DL model, the interpreta-
tion time of all expert raters was significantly reduced 
(p = 0.035).

Discussion
Diagnosis of EIC and ASPECTS using NCCT is a per-
sistent challenge in emergency department with urgent 
clinical needs. This study attempts to utilize the DL 

technique to detect infarction area and evaluate the 
DL performance in emergency clinical scenario. Spe-
cifically, our proposed DL model demonstrates good 
efficacy in ASPECTS scoring and achieves an AUC of 
0.729 in the external validation set. The DL model using 
mirror assembly module and dual-path DCNN model 
obtains a high DSC of 0.762 in occult lesion segmenta-
tion. With the model assistance, raters show improved 
performance in ASPECTS scoring with higher sensi-
tivity and specificity, shorter operating time and good 
interrater agreement. To the best of our knowledge, it is 

Fig. 3  DWI-ASPECTS and the ASPECTS-Region distribution of the external validation set. C, Caudate; IC, Internal capsule; I, Insula; L, Lentiform; M1, 
frontal operculum; M2, anterior temporal lobe; M3, posterior temporal lobe; M4, anterior MCA; M5, lateral MCA; M6, posterior MCA
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the first time to investigate the emergency efficiency of 
the DL model in a MRMC manner.

Our proposed DL model outperforms the previously 
reported studies [27, 46] in lesion segmentation, and 
several factors lay the foundation of the good perfor-
mance: firstly, the high-quality ground truth provided 
by stroke experts and follow-up DWI, which assures 
the trained DL model to learn the task-specific fea-
ture effectively; secondly, the DL method is good at 
simulating and integrating the experience of stroke 

experts in detecting AIS lesions; lastly but most impor-
tantly, the innovative model pipeline that comprises 
a mirror assembly module to capture the image dif-
ference between left and right brains and a dual-path 
DCNN model to tackle the problems of indiscernible 
lesion detection and segmentation. This pipeline could 
enhance the feature characteristics associated with 
image segmentation tasks while suppressing redundant 
features. In addition, to score the ASPECTS accurately, 
we also develop an ASPECTS atlas and register it to the 

Fig. 4  Performance of the proposed DL-based model. a ROC curve on region-based ASPECTS analysis (20 regions) for the DL-based model on the 
internal validation set. b ROC curve on region-based ASPECTS analysis for the DL-based model on the external validation set, and the performance 
of the four raters was also depicted using circle or triangle. c Enlarged illustration of the rater performance in (b)

Fig. 5  Visualization cases of the DL-based model. The prediction is the model segmentation output and the annotation denotes the ground 
truth defined by the expert radiologists. The dice, precision and recall were 0.817, 1.0 and 0.690 for subject 1 and 0.670, 1.0 and 0.502 for subject 2, 
respectively
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original NCCT images reversely to reduce image defor-
mation errors; furthermore, in order to suppress the 
segmentation errors, we use the region-level ASPECTS 
to determine the segmentation threshold rather than 
DSC. EIC detection and ASPECTS scoring on NCCT 
is clinically desired, but the subtle signs of EIC cannot 
always be captured visually, as shown in Fig. 5. There-
fore, the efficacy of deep learning in indiscernible fea-
tures detection may be an accelerator to the NCCT 
clinical application in AIS diagnosis.

Performance comparisons between radiologist and 
automatic software in ASPECTS scoring have been 
reported previously [25, 26, 29], whereas our study 
differed from previous ones in using the AI model as 
first-reader. AI as first-reader has been widely accepted 

in pulmonary nodules detection [47], but fewer have 
been reported in NCCT-ASPECTS interpretation. As 
shown in Fig.  4b, c and Table  2, all the stroke experts 
aided with the DL model reached a relatively high 
sensitivity level (sensitivity ≥ 0.3) with improved spe-
cificities  (p = 0.014), along with the reduced reading 
time (p = 0.035). However, we also note that not all 
raters’ sensitivities or specificities are statistically sig-
nificant, which may attribute to the raters’ acceptance 
of the model result. Since the signs are too faint to be 
observed, the confidence for lesion determination may 
vary with the readers’ experience. Various studies have 
shown that only modest to moderate interrater agree-
ment was achieved for determining NCCT-ASPECTS, 
and the ICC of radiologists ranged from 0.579–0.936 
[21, 23, 24, 28, 48, 49]. In contrast, in our study, the 
ASPECTS reliability (ICC 0.980) of the radiologists 
with AI assistance is significantly increased and help to 
improve the diagnostic confidence and medical quality 
consistency. In a word, the AI model can be a valuable 
supplement and/or confirmation to the expert interpre-
tation in ASPECTS scoring with improved performance 
and reliability.

The greatly varied expert diagnosis and software per-
formance in NCCT-ASPECTS evaluation remained 
to be a concern, as reported sensitivity and specificity 
ranged from 0.26 to 0.8 and 0.87 to 0.97, respectively [5, 
25, 26, 28, 29]. In our study, the resulting sensitivity and 
specificity are not superior to previous reported meth-
ods, which can be attributed to the experiment setting 
of the external validation set, including the severity of 
the infarction, the distribution of the ASPECTS and 
the invaded-region, the radiologists’ experience and 
the varied scan vendors. Firstly, compared to previous 
studies, enrolled patients in our external validation set 
have lower NIHSS (5, 2–10) and age (66.6 ± 12.3), mak-
ing the lesion more blurred to be detected compared 
to that of Masaki Naganuma’ study [28]. Secondly, the 
lesion detection sensitivity is greatly affected by the 
ASPECTS distribution, especially for the super acute 
stroke with ASPECTS > 7, while the median ASPECTS 
of this study is only 9 (IQR 8–10) with 29 patients of 
ASPECTS 9 and 29 patients of ASPECTS 10, respec-
tively, raising the difficulty of lesion detection com-
pared to that of Hulin Kuang’ study [50]. In addition, 
the ASPECTS accuracy could also be affected by brain 
region distribution [51]. As shown in Fig. 3B, the lesion 
regions in our study mainly scatter in M5 (n = 24), IC 
(n = 24), L (n = 18) and M2 (n = 16), and it has been 
demonstrated that IC and M5 behave lower agreement 
to the ground truth and higher rate of missed diagnosis 
[52]. Thirdly, to align with the emergency setting, the 
participant raters in this study are general radiologists 

Table 2  Performance of the raters on external validation set

Sensitivity and specificity were expressed as point estimate with lower and 
upper bound of 95% confidence interval (CI) in parentheses. CI for average 
sensitivity and specificity was calculated by the Jackknife method

Baseline Aided p value

Expert 1

Sensitivity 0.163 (0.105, 0.236) 0.319 (0.241, 0.404)  < .001

Specificity 0.882 (0.865, 0.898) 0.913 (0.898, 0.927) 0.002

Expert 2

Sensitivity 0.185 (0.124, 0.261) 0.304 (0.228, 0.389) 0.006

Specificity 0.932 (0.919, 0.944) 0.950 (0.937, 0.960) 0.022

Expert 3

Sensitivity 0.378 (0.296, 0.465) 0.370 (0.289, 0.458) 1

Specificity 0.855 (0.837, 0.872) 0.880 (0.863, 0.896) 0.019

Expert 4

Sensitivity 0.289 (0.214, 0.373) 0.341 (0.261, 0.427) 0.281

Specificity 0.913 (0.898, 0.927) 0.918 (0.903, 0.931) 0.63

Average

Sensitivity 0.254 (0.167, 0.341) 0.333 (0.248, 0.419) 0.196

Specificity 0.896 (0.884, 0.907) 0.915 (0.904, 0.926) 0.014

Region-based ICC 0.741 0.98 –

Score-based ICC 0.614 0.809 –

Table 3  Average time per case in reading experiment

Total time for each reader in each session was recorded and the averaged case-
reading time was calculated. Average time for each session was expressed in 
mean ± standard deviation and was compared with paired Student’s t test

Average time per case (n = 85)

Baseline (s) Aided (s) p value

Expert 1 202.1 176.2 –

Expert 2 250.1 176.8 –

Expert 3 197.7 176.2 –

Expert 4 226.1 173.7 –

Average 219.0 ± 24.2 175.7 ± 1.4 0.035
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rather than neuroradiologists. Compared to the neu-
roradiologist, the sensitivity and specificity of general 
radiologist were lower in ASPECTS scoring. This is 
in line with our findings that the general radiologists 
performed low sensitivity. At last, this is a multicenter 
study that have more complicated image quality than a 
single-center study, which may also weaken the clinical 
performance of the raters in NCCT-ASPECTS scoring. 
In a word, compared to previous studies, the external 
validation data of our study are collected from scan-
ners of multiple vendors, having lower NIHSS and 
higher ASPECTS. Thus, the diagnostic performance in 
the external validation set is reasonably acceptable and 
consistent with reported ones.

Several limitations merit discussion. Firstly, this study 
mainly focuses on the stroke lesion, neglecting the pres-
ence of other neuroimaging signs. Particularly, the 
existence of leukoencephalopathy and old infarctions 
may disturb the calculation of ASPECTS. Secondly, the 
ground truth is MRI infarct images obtained within 24 h 
after patients receiving complete reperfusion, causing a 
time delay between the NCCT infarct and the follow-up 
acquisitions. The time delay may introduce DWI infarct 
bias as infarct grows over time. Thirdly, patients’ out-
come is not taken into consideration yet, and a perspec-
tive study ought to be conducted to evaluate the patient’ 
outcome improvement aroused by the proposed model.

In conclusion, the proposed deep learning model can 
automatically detect EIC and interpret the ASPECTS and 
demonstrate improved and reliable performance in the 
clinical scenario. DL ASPECTS model could be a good 
assistant to the general radiologist, especially in the hos-
pitals with limited expertise and resource, and further 
guide the AIS therapeutic decision-making.
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