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Predictive performance of radiomic models 
based on features extracted from pretrained 
deep networks
Aydin Demircioğlu*    

Abstract 

Objectives:  In radiomics, generic texture and morphological features are often used for modeling. Recently, fea-
tures extracted from pretrained deep networks have been used as an alternative. However, extracting deep features 
involves several decisions, and it is unclear how these affect the resulting models. Therefore, in this study, we consid-
ered the influence of such choices on the predictive performance.

Methods:  On ten publicly available radiomic datasets, models were trained using feature sets that differed in terms 
of the utilized network architecture, the layer of feature extraction, the used set of slices, the use of segmentation, and 
the aggregation method. The influence of these choices on the predictive performance was measured using a linear 
mixed model. In addition, models with generic features were trained and compared in terms of predictive perfor-
mance and correlation.

Results:  No single choice consistently led to the best-performing models. In the mixed model, the choice of architec-
ture (AUC + 0.016; p < 0.001), the level of feature extraction (AUC + 0.016; p < 0.001), and using all slices (AUC + 0.023; 
p < 0.001) were highly significant; using the segmentation had a lower influence (AUC + 0.011; p = 0.023), while the 
aggregation method was insignificant (p = 0.774). Models based on deep features were not significantly better than 
those based on generic features (p > 0.05 on all datasets). Deep feature sets correlated moderately with each other 
(r = 0.4), in contrast to generic feature sets (r = 0.89).

Conclusions:  Different choices have a significant effect on the predictive performance of the resulting models; how-
ever, for the highest performance, these choices should be optimized during cross-validation.

Key points 

•	 Extraction of deep features entails several decisions influencing the predictive performance.
•	 Models built with pretrained deep features did not outperform generic models.
•	 Correlations between pretrained deep and generic feature sets were rather moderate (r = 0.43).
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Background
Radiomics can be outlined as the automation of the 
extraction of quantitative data from radiological imaging 
to support medical tasks such as diagnosis and progno-
sis. Although such an approach was already spelled out in 
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the late 1970s [1], it became prominent only when it was 
introduced in a seminal paper by Lambin et al. [2].

Analogous to a classical machine learning pipeline 
(Fig.  1), radiomics proceeds in several steps [3]. A key 
issue is the generation of features since these need to 
extract the information in the data. In the radiomics 
approach, one uses almost exclusively generic morpho-
logical and texture features (like diameter and inten-
sity variance) since they are predictive in the context of 
oncology [4–6]. Even though these features have proven 
very useful for building highly predictive models [7–9], 
they are generic, not tailored to a specific problem, and, 
therefore, suboptimal.

Deep learning (DL), a subset of machine learning 
based on neural networks, has recently been successfully 
applied to various classification tasks [10, 11]. The ben-
efit of applying DL in radiomics is that it circumvents the 
suboptimal choice of generic features since a network can 
learn an optimal feature set specific to the task at hand, 
which could, in turn, could lead to higher predictive per-
formance [12–15]. However, in practice, radiomic data-
sets often have very small sample sizes, which prevent the 
network from learning highly predictive features [16–18].

As an alternative, neural networks trained on data 
from other domains are used for feature extraction [19–
21]. The intuition for using features adapted to another 
domain is based on the hope that they might also be 
informative when applied to radiomic data [22, 23]. In 
addition, these features could capture other aspects com-
pared to generic ones, e.g., more global information [24]. 
The application of pretrained networks to radiomic data 
has other advantages as well. Most importantly, they 
may bypass the time-consuming fine segmentation of the 
pathologies often required to apply generic textural fea-
tures; a simple volume of interest may be sufficient for a 
network to be predictive [25].

Therefore, one might assume that applying pretrained 
networks is simpler and more efficient than mod-
eling using generic features. Unfortunately, to employ a 

pretrained network, several choices have to be consid-
ered, for example, the choice of network architecture and 
if and how to utilize fine segmentations. These choices 
are usually called hyperparameters and strongly affect the 
resulting model in general [26]. However, the impact of 
such choices on predictive performance in the radiomic 
context is unclear and has been studied only for specific 
datasets [27–29].

Accordingly, the goal of our study was to benchmark 
the effects of five choices, namely regarding the network 
architecture, the level of feature extraction, the use of 
segmentation, the number of used slices, and the type of 
feature aggregation, on the prediction performance using 
several radiomic datasets.

Methods
Ethical statement
Since only openly accessible and previously published 
datasets were used, ethical approval for this study was 
waived by the local Ethics Committee (Ethik-Kommis-
sion, Medizinische Fakultät der Universität Duisburg-
Essen, Germany).

Datasets
Ten publicly available datasets were used in this study 
(Table  1); six were taken from the “WORC” database 
[30], and the others were from The Cancer Imaging 
Archive (TCIA) [31]. Due to different reasons (e.g., miss-
ing or mismatching segmentation, too coarse slice thick-
ness), a few scans have been removed from the datasets. 
More information is provided in Additional file 1.

Study design
The overall study design follows best practices in machine 
learning and can be seen in Fig. 2.

Preprocessing
All scans were first isotropically resampled to a resolu-
tion of 1 mm3 using spline interpolation. Corresponding 

Fig. 1  General radiomics pipeline
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segmentations were interpolated using the nearest neigh-
bor interpolation. MR images were first rescaled into the 
range 0–1, while for CT images, HU-values below -1024 
and above 2048 were first set to zero before all values 
were rescaled into the range 0–1.

Deep feature extraction
Deep features were extracted slice by slice from the vol-
ume of interest (VOI) of a given scan (Fig. 3); here, the 
VOI is determined by the smallest bounding box around 
the segmentation. Since the slices were fed to pretrained 
networks trained on the ImageNet dataset, they were first 
rescaled to 224 × 224 pixels and then normalized so that 
their size, mean, and standard deviation fitted to those of 
the ImageNet dataset.

Extraction proceeded by feeding each scan slice to the 
selected network architecture, which outputted a feature 
vector. These feature vectors were then aggregated to 
form a single feature vector, which was inputted to the 
subsequent classifier.

There were several choices of how the extraction 
should proceed, which we treated as hyperparameters 
(Fig. 3): (A) whether to use all slices or only the slice with 
the largest (in-plane) segmentation; (B) whether to use 
the segmentation as an extra channel (ROI-channel), to 
use it to remove all pixels outside the area (ROI-cutout), 
or whether to ignore it (ROI-full); (C) which network 
architecture to use; (D) at which layer of the network to 
extract the features; and (E) how to aggregate the feature 
vectors of all extracted slices.

Altogether, we considered 96 = 4*2*3*2*2 different 
choices (Table 2) and thus 96 different feature sets. How-
ever, there is a dependency in these choices: If only the 
slice with the largest segmentation is selected, then the 
aggregation has no effect. Thus, in total, 72 different fea-
ture sets were considered.

Generic feature extraction
For comparison, generic feature sets were also extracted. 
Generic features depend on a discretization method in 
which the original intensity values are partitioned into 
bins [32]. Two different methods were considered: using 
a fixed bin width (of 10, 25, 50, and 100 units) and using 
a fixed bin count (with 10, 25, 50, and 100 bins). The 
extracted features comprised shape, first-order, gray-level 
co-occurrence matrix (GLCM), gray-level run length 
matrix (GLRLM), gray-level size zone matrix (GLSZM), 
neighboring gray-tone difference matrix (NGTDM), and 
gray-level dependence matrix (GLDM) features. All pre-
processing filters were enabled, resulting in 2016 features 
for each patient. PyRadiomics 3.0.1 was used for extrac-
tion [33]. The complete list of features and other details 
can be found in Additional file  1 and the source code 
(https://​github.​com/​aydin​demir​cioglu/​radPr​etrai​ned).

Feature preprocessing
Features were normalized by z-scores since it is well 
known that classifiers can be sensitive to different scales 
in the features. Constant features were removed from the 
dataset.

Training
For modeling, six feature selection methods and five clas-
sifiers were employed. Hyperparameters were chosen 
from a prefixed set (Table 3). The feature selection meth-
ods provided a score for each feature that corresponded 
to its importance. Since it is not known beforehand 
which number of features works best, selecting 1, 2, 4, …, 
64 features were tested.

A stratified tenfold cross-validation was employed for 
training the models; the data were split into ten  folds, 
and in each round, one  fold was used for testing, 

Table 1  Datasets used in the experiments

For MR imaging, the used weighting is reported in parenthesis; N denotes the number of samples; and in-plane resolution and slice thickness are reported as median 
and range

Dataset Modality (weighting) N In-plane resolution Slice thickness Source

C4KC-KiTS CT 203 0.8 (0.4–1.0) 3.0 (1.0–5.0) TCIA [14]

CRLM CT 76 0.7 (0.6–0.9) 5.0 (1.0–8.0) WORC [12]

Desmoid MR (T1) 195 0.7 (0.2–1.8) 5.0 (1.0–10.0) WORC [12]

GIST CT 244 0.8 (0.6–1.0) 3.0 (0.6–6.0) WORC [12]

HN CT 134 1.0 (1.0–1.1) 3.0 (1.5–3.0) TCIA [7]

ISPY-1 MR (DCE) 157 0.8 (0.4–1.2) 2.1 (1.5–3.4) TCIA [15]

Lipo MR (T1) 113 0.7 (0.2–1.4) 5.5 (1.0–9.1) WORC [12]

Liver MR (T2) 186 0.8 (0.6–1.6) 7.7 (1.0–11.0) WORC [12]

Melanoma CT 97 0.7 (0.5–1.0) 1.2 (0.6–2.0) WORC [12]

TCGA-GBM MR (T1) 53 0.8 (0.4–1.0) 5.0 (1.0–5.5) TCIA [16]

https://github.com/aydindemircioglu/radPretrained
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while the other folds were used for training. Feature 
normalization, feature selection, and classifier train-
ing were processed only on the training fold [34]. The 
trained model was then applied to the test fold. These 
predictions were then pooled over all test folds to 
form a single receiver operating characteristics (ROC) 
curve, from which the area under the curve (AUC) was 
computed.

Evaluation
First, the predictive performance of the models was eval-
uated. Since only the best model is essential from a prac-
tical point of view, the model with the highest AUC was 
selected for each parameter combination. A linear mixed 
model was then fitted to these data to measure the effects 
of the selected hyperparameters on the resulting AUCs. 
In the model, the dataset was treated as a random effect, 

Fig. 2  Flow diagram of the design of the study
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which amounts to each dataset having its own baseline 
AUC; the influence of the parameters is then determined 
using this baseline value. In addition, the predictive per-
formance was compared between the models based on 
deep and generic features using a DeLong test. Calibra-
tion curves were also plotted to judge the quality of the 
predictions.

Second, correlations between deep and generic fea-
ture sets were calculated to measure the extent to which 
they are capture similar information. For this, the aver-
age Pearson correlation between each pair of features was 
computed.
p values below 0.05 were considered to be statistically 

significant. Results were corrected for multiple testing 
using the method of Holm. The mixed model was com-
puted using Python 3.8 and the statsmodel package.

Fig. 3  Graphical display of the choices for the extraction of deep features

Table 2  Hyperparameters for the extraction of deep features

Hyperparameter Choices

Architecture ResNet-18

ResNet-50

VGG-19

DenseNet-169

Feature extraction level Near-top

Top

Segmentation Only region of interest (ROI-full)

Region of interest with mask as 
extra channel (ROI-channel)

Cutout region of interest (ROI-cut)

Slices Slice with largest segmentation area

All slices

Aggregation Maximum

Mean

Table 3  Overview of feature selection and classifier methods used

C denotes a hyperparameter regarding the regularization; higher C will make the model fit to the data more tightly

Method Hyperparameter

Feature selection ANOVA –

Bhattacharyya distance –

Extra trees Trees = 100

LASSO C = 1

Random Forest Trees = 100

t-Score –

Classifier Logistic regression C in 2^{− 6, − 4, − 2, 0, 2, 4, 6}

Naive Bayes –

Neural network Three layers with 4, 16 or 64 neurons each

Random forest Number of estimators 50, 125 or 250

Support vector machines C in 2^{− 6, − 4, − 2, 0, 2, 4, 6}, gamma 
was determined automatically
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Results
Overall, 80 feature sets (72 deep and 8 generic) were 
extracted for each of the seven datasets.

Predictive performance
Considering the best-performing models (Table  4), no 
clear pattern in the parameters of the deep models could 
be seen, although models ignoring the fine segmenta-
tion (ROI) were performing best on only one dataset. 
The same is valid to some extent for models using generic 
features; here, models using bin count as a discretization 
method were less likely to perform best.

These best-performing models were used to fit a mixed 
linear model; because 10 datasets and 72 feature sets 
per dataset were employed, overall, 10*72 = 720 data 
points were utilized in the regression. In the model, all 
factors were statistically significant (Table  5), except for 
the aggregation of feature vectors, where no difference 
was found between using the mean or the maximum 
value (p = 0.774). However, using the ResNet-50 archi-
tecture instead of DenseNet-169 resulted in a statistically 
significant effect of + 0.016 in AUC (p < 0.001), while 
no significance was reached when using ResNet-18 or 
VGG-19. Regarding the feature extraction level, using 
features from a level below the top level was beneficial 
(AUC + 0.016; p < 0.001). Concerning the segmenta-
tion, not using it was no different from using it to mask 
intensity values (p = 0.455). However, adding them as an 
additional channel was slightly helpful (AUC + 0.011; 
p = 0.023). In addition, using only the slice with the maxi-
mum segmentation area instead of all slices produced 
worse results (AUC − 0.023; p < 0.001).

Differences in AUC could be seen when comparing the 
best-performing model based on deep features with the 
best-performing model using generic features (Table  4). 
All absolute differences were smaller than 0.03, except 
on three datasets (ISPY-1, Melanoma, and TCGA-GBM), 
where the difference was 0.08–0.10. However, on all data-
sets, the differences in AUC were not significant when 
compared with a DeLong test. Regarding the calibration 
curves (Additional file 1: Fig. S1), the models are rather 
calibrated except for CRLM and ISPY-1.

Correlations
The mean correlations between the different deep feature 
sets were moderate on average, r = 0.4, varying between 
r = 0.25 and r = 0.92 (Fig.  4a). For the generic feature 
sets, the correlation was much higher, r = 0.89, and var-
ied between 0.83 and 0.98 (Fig.  4b). When comparing 
generic and deep features, the correlation was moderate, 
r = 0.43, and varied between 0.25 and 0.66 (Fig. 4c).

Discussion
Deep features extracted from pretrained networks have 
been used in radiomics for several reasons; however, 
no systematic study of the impact of these choices on 
different radiomics datasets has been performed yet. 
Our study investigated different choices for deep fea-
ture generation from a practical perspective using ten 
publicly available datasets and demonstrated that these 
choices have a large impact on the predictive perfor-
mance of the resulting feature sets.

Yet, when considering the best-performing models, 
no clear pattern emerged. For example, using features 
from the top layer of the networks yielded the best-
performing model for three of the datasets. This shows 
that it is not a single model that gives the best results 
but that the feature extraction parameters must be 
optimized during cross-validation to achieve the best 
performance.

To determine statistically which of the choices had a 
significant influence on the predictive performance, we 
employed a mixed linear model. In this model, the most 
influential parameter was whether to use all the slices 
or only the one with the largest mask (AUC − 0.023; 
p < 0.001). This finding is not unexpected since using 
only the slice with the largest mask potentially disregards 
much information, especially concerning the spatial 
structure of the pathology.

Next, the network architecture had the largest impact 
(AUC + 0.016; p < 0.001). While there was no statistically 
significant difference between the DenseNet-169, the 
ResNet-18, and the VGG-19, the ResNet-50 performed 
better. This is partly surprising because no training was 
performed. We suspect this might be related to the net-
work size: Larger networks extract features that might be 
too fine-grained for the radiomic context while smaller 
networks might extract too coarse features. The medium 
size of the ResNet-50 seems to be a good balance.

Furthermore, extracting features from a level below the 
top level was beneficial (AUC 0.016; p < 0.001). One rea-
son could be that the features at the top level are more 
adapted to the training set on which the pretraining was 
performed. In contrast, features from a lower level could 
be more general and thus more helpful in the radiological 
context.

Regarding the segmentation, no considerable differ-
ence was seen between ignoring it and using it to cut 
out the region of interest (AUC + 0.005; p = 0.455); 
however, adding the segmentations as another channel 
was slightly beneficial (AUC + 0.011; p = 0.023). This 
difference could indicate that the peritumoral region 
has some information that the deep network can use, 
which has already been observed in some studies [35, 
36]. However, it is unclear how fine the pathology must 
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be delineated; in a few cases, a rough outline can work 
well [37], while in others, it might not be feasible [38].

Finally, aggregating the information into multiple 
slices using the feature-wise maximum did not dif-
fer from using the feature-wise average (AUC + 0.001; 
p = 0.774).

Therefore, considering all these observations, it should 
be beneficial to use a medium-scale network such as the 
ResNet-50 with features extracted from a level below the 
last convolutional layer. All slices should be processed, 
and segmentations should be added as an additional 
channel.

Surprisingly, deep features did not outperform general 
modeling consistently in our study. While the overall 
AUCs are generally higher (except for C4KC-KiTS), the 
difference was always not statistically significant. How-
ever, two things should be kept in mind: The overall sam-
ple sizes were relatively small, and the pretrained deep 
networks were based on single slices. It is conceivable 
that 3-D networks with larger sample sizes will perform 
better.

Regarding the correlation among the feature sets, some 
correlations were very low (r = 0.25), while some were 
very high (r = 0.92). It shows that the different decisions 
to extract the deep features greatly impacted the resulting 
features. Similarly, comparing the correlation between 
the generic and the deep features, there were sets with 
low (r = 0.25) and moderate correlations (r = 0.66). 
Therefore, it is reasonable to expect the feature sets to 
be relatively different and capture different information. 
Finally, the correlations among the generic feature sets 
were quite large, and correlations between 0.83 and 0.98 
were seen. In other words, the influence of the choice of 
bin width and bin counts on the resulting dataset is much 
lower than using deep features.

Our study has limitations. For one, it is limited by 
the fact that only cross-validation was used. However, 
the sample sizes of radiomics datasets make it hard to 

Table 5  Results of the mixed linear model

For the mixed linear model, the dataset was considered to be a random effect. 
Only the best-performing models measured in AUC were included in the mixed 
model. p values were corrected for multiple testing using the Holm method

Parameter Estimate Confidence 
interval

p value

Fixed effects

Architecture DenseNet-169 (Baseline)

ResNet-18 0.004 − 0.004; 0.012 0.647

ResNet-50 0.016 0.008; 0.024 < 0.001

VGG-19 0.01 0.002; 0.018 0.096

Extraction level Near-top (Baseline)

Top − 0.016 − 0.021; − 0.01 < 0.001

Segmentation ROI (Baseline)

ROIchannel 0.011 0.003; 0.018 0.023

ROIcut 0.005 − 0.002; 0.012 0.455

Slices All (Baseline)

Mean − 0.023 − 0.03; − 0.016 < 0.001

Aggregation Max (Baseline)

Mean 0.001 − 0.006; 0.008 0.774

Intercept 0.741 0.703; 0.78 < 0.001

Random effects

Dataset (vari-
ance)

0.002 < 0.001

Fig. 4  Graphical display of the correlations between all feature sets. Mean pairwise Pearson correlation between (a) deep, (b) generic, (c) deep 
and generic feature sets. Red colors correspond to higher correlations and blue colors to lower. The mapping is the same for all three figures and is 
displayed in the legend at the right
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split off a reasonably sized hold-out set, and external 
validation sets are unavailable for the datasets we used. 
Because of this, we cannot rule out that overfitting 
might have occurred in our study. Yet, for the WORC 
datasets, a comparison to the results of the study by 
Starmans et al. [39] shows that the AUCs we obtained 
from the deep networks are very well within the 95% 
confidence interval (CI) they have stated. A large dis-
crepancy was seen in the Melanoma dataset. Starmans 
et  al. state that they failed to build a predictive model 
for the melanoma dataset and argue that this was a 
good thing since physicians could also not predict the 
BRAF mutation staging. Therefore, our result may indi-
cate overfitting. However, this is not the only explana-
tion since radiomics models are thought to exploit the 
structures in given data better than humans [2]; only 
with an independent  validation set can a decision be 
made in this regard.

In addition, we only considered the predictive per-
formance, although many other aspects play a crucial 
role, especially for application in clinical routine. This 
encompasses the reproducibility of the features, which 
in turn depends on the imaging protocols and scanning 
hardware. It is also well known that there is a significant 
effect on the features stemming from the intra- and inter-
variability of the segmentations [40–42]. Unfortunately, 
analyzing these aspects would require corresponding 
datasets, which are currently not openly available.

Furthermore, the predictive performance for a single 
dataset can have more hyperparameters than consid-
ered here. For example, multiparametric MRI or PET-CT 
needs another aggregation step regarding the different 
modalities. We also restricted ourselves to pretrained 
2-D networks since end-to-end modeling with low sam-
ple sizes might not be feasible and considered five dif-
ferent options for extracting features from these. In 
practice, numerous other techniques are used to increase 
predictive performance; for example, augmentations (at 
train time and test time) can partly be used to circumvent 
the problem of low sample sizes. These points should be 
taken into consideration in future studies.

Conclusions
Our study demonstrated that deep feature sets depend 
significantly on the choices regarding the extraction from 
the pretrained deep network. These choices should ide-
ally be optimized for obtaining the best-performing 
model during cross-validation. Nonetheless, we could 
not find a significant increase in the predictive perfor-
mance of these models compared to models trained on 
generic features.
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