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Abstract 

Background:  Intraplaque hemorrhage (IPH), one of the key features of vulnerable plaques, has been shown to be 
associated with increased risk of stroke. The aim is to develop and validate a CT-based radiomics nomogram incorpo-
rating clinical factors and radiomics signature for the detection of IPH in carotid arteries.

Methods:  This retrospective study analyzed the patients with carotid plaques on CTA from January 2013 to January 
2021 at two different institutions. Radiomics features were extracted from CTA images. Demographics and CT charac-
teristics were evaluated to build a clinical factor model. A radiomics signature was constructed by the least absolute 
shrinkage and selection operator method. A radiomics nomogram combining the radiomics signature and independ-
ent clinical factors was constructed. The area under curves of three models were calculated by receiver operating 
characteristic analysis.

Results:  A total of 46 patients (mean age, 60.7 years ± 10.4 [standard deviation]; 36 men) with 106 carotid plaques 
were in the training set, and 18 patients (mean age, 61.4 years ± 10.1; 13 men) with 38 carotid plaques were in the 
external test sets. Stenosis was the independent clinical factor. Eight features were used to build the radiomics sig-
nature. The area under the curve (AUC) of the radiomics nomogram was significantly higher than that of the clinical 
factor model in both the training (p = 0.032) and external test (p = 0.039) sets.

Conclusions:  A CT-based radiomics nomogram showed satisfactory performance in distinguishing carotid plaques 
with and without intraplaque hemorrhage.

Key points 

•	 Distinguishing carotid plaques with intraplaque hemorrhage is difficult by conventional imaging.
•	 A radiomics nomogram facilitates differentiation of carotid plaques with intraplaque hemorrhage.
•	 CT-based nomogram may be a non-invasive tool to identify carotid plaque vulnerability.
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Background
In several guidelines and clinical practice, the preven-
tion of stroke in patients with carotid plaques is based 
on severity of luminal narrowing [1, 2]. However, with 
the advances in imaging techniques, there has been 
renewed interest in characteristic and detection of the 
features of carotid plaque vulnerability beyond luminal 
narrowing [3]. Intraplaque hemorrhage (IPH), one of 
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the key characteristics of vulnerable plaques, has been 
demonstrated to be closely related to incidence of stroke 
independence of the degree of stenosis [4, 5]. Most stud-
ies showed that several imaging methods can be used as 
a non-invasive way to evaluate plaque vulnerability and 
detect the IPH. MRI is considered the best imaging tech-
nique for identification of IPH with high specificity and 
sensitivity with histology as the gold standard [6]. How-
ever, patients with claustrophobia and those who have 
been placed with metal stent cannot undertake  MRI. 
CTA is a valuable imaging modality for pretreatment 
evaluation of atherosclerotic patients due to its speed, 
high spatial resolution, and accessibility. But the detec-
tion of IPH is difficult by conventional CT imaging and 
more dependent on the experience of radiologists.

Radiomics can use computer data mining techniques 
to obtain quantitative, valuable information that cannot 
be obtained from assessing routine imaging by physician. 
[7]. Radiomics analysis provides us with a quantitative 
method to reflect tissue heterogeneity and is more reli-
able compared with subjective evaluation [8]. The studies 
of radiomics analysis for plaque evaluation have emerged 
recently but until now are relatively rare compared to 
oncology [9–11]. Recently, CT- and MRI-based radiom-
ics analysis has been used to identify vulnerable carotid 
plaques [9, 10]. And previous studies have also shown 
that radiomics analysis of plaque texture on MRI can dis-
tinguish between symptomatic and asymptomatic basilar 
plaques [11]. To our knowledge, no relevant studies have 
been performed to detect the IPH in carotid arteries by 
CT-based radiomics approach.

Therefore, in our study, our purpose was to develop 
and validate a CT-based radiomics nomogram incorpo-
rating clinical factors and a radiomics signature for the 
detection of IPH in carotid arteries.

Methods
Study population
Institutional review board approval was obtained for 
all study procedures, and informed consent was waived 
because of the retrospective nature of the study. We 
screened consecutive patients who underwent CTA for 
suspected atherosclerotic disease of the carotid arteries 
from January 2013 to January 2021 in Shandong Provin-
cial Hospital Affiliated to Shandong First Medical Univer-
sity and Shandong Medical Imaging Research Institute. 
The inclusion criterion was patients who underwent MR 
vessel wall imaging examinations within two weeks of 
CTA examination. Exclusions criteria were as follows: (1) 
disease other than atherosclerotic disease, such as aneu-
rysm; (2) poor image quality; and (3) history of carotid 
stenting and endarterectomy. Flowchart for selecting the 
study population is shown in Fig. 1.

MRI image acquisition
The high-resolution MRI was performed on a 3.0 Tesla 
MRI scanner (Prisma, Siemens Healthineerse; Ingenia, 
Philips Healthcar; Verio, Siemens Healthineers) with a 
standard 64-channel head-neck coil. The MRI protocols 
are described in Additional file 1: Table S1.

CTA protocol
CTA examination was performed on multi-slice CT 
scanners (SOMATOM Force, Siemens Healthineers; 
SOMATOM Definition Flash, Siemens Healthineers). A 
60–70  mL volume of contrast agent (Omnipaque-350; 
GE Healthcare) was injected at the speed of 5  mL/s, 
and then followed by 50 mL of saline flush, with a elec-
tric injector. After the aortic arch reached the attenu-
ation threshold of 100 Hounsfield units (HU) for 5  s, 
bolus tracking was used to trigger the acquisition. The 
carotid CTA scanning parameters of all scanners were 
as follows: tube voltage of 100 kVp, reconstructed slice 
thickness of 0.5  mm, reconstructed slice interval of 
0.5 mm, pitch of 1.0 and rotation time of 350 ms. Scan-
ning range was from the aortic arch to skull vertex.

Image analysis
Carotid IPH was defined that the presence of higher 
signal intensity (at least 1 voxel showing 1.5 times 
higher signal intensity compared to adjacent sterno-
cleidomastoid muscle) was seen on the T1-weighted 
fat-saturated turbo spin echo [6]. The measurements of 
CTA markers were obtained by using post-processing 
workstation (Syngo.via, Siemens Force, Germany). The 
degree of stenosis of carotid arteries was defined on 
CTA according to the North American Symptomatic 
Carotid Endarterectomy Trial criteria [12]. Plaque 
ulceration was determined as the existence of at least 
2 mm of contrast agent protruding into the plaque on 
any single plane [13].

Development of clinical factor model
Univariable analysis was applied to compare the differ-
ences in clinical factors between the two groups. Then, 
a multiple logistic regression analysis was applied to 
construct the clinical factor model by using the signifi-
cant variables from the univariable analysis as inputs. 
Odds ratios (OR) as estimates of relative risk with 95% 
confidence intervals (CI) were calculated for each inde-
pendent factor.

Segmentation of plaque images and radiomics feature 
extraction
Regions of interests (ROIs) were manually segmented 
in the segmentation and feature extraction were 
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performed with a postprocessing platform (Huiying 
Medical Technology Co., Ltd) cross-sectional area of 
the plaque. Contouring was drawn within the border 
of the plaque, and the adjacent normal tissues were 
not covered. Two radiologists (B.K. and G.H., with 7 
and 8 years of experience in vascular radiology, respec-
tively) independently performed the ROI segmenta-
tion. In order to eliminate the influence of dimension 
between features and make the intensity information 
consistent, the image was normalized before analysis, 
which eliminated the interference caused by different 
CT equipment manufactures.

Development of radiomics signature and radiomics 
nomogram
The radiomics features that met the criteria of having 
intraclass correlation coefficients (ICCs) greater than 0.75 
were tested by one-way analysis of variance (ANOVA) to 
select important features. The remaining features were 
then included in select_k_best method and least absolute 
shrinkage and selection operator (LASSO) regression 
model to choose the most valuable features in the train-
ing cohort. Then, the selected features were applied to 

compose a radiomics signature. Fivefold cross-validation 
was performed by iterating over feature selection and 
model development for each subset. A radiomics score 
(Rad-score) was calculated. A radiomics nomogram was 
constructed by combining the radiomics signature and 
the significant variables of the clinical features. The over-
all workflow of the radiomics model development is dis-
played in Fig. 2.

Assessment of the performance of three models
The diagnostic performance of the clinical factor model, 
the radiomics signature, and the radiomics nomogram 
for identification of IPH in carotid arteries was assessed 
from the area under curve (AUC) of the receiver opera-
tor characteristic (ROC) curve in both the training and 
validation sets. To evaluate the clinical practicability of 
nomogram, a decision curve analysis (DCA) was carried 
out by calculating the net benefits.

Statistical analysis
Univariable analysis was used to compare differences 
in the clinical factors between the two patient groups, 
with independent samples t tests for quantitative data, 

Fig. 1  Flow diagram of the study. IPH = intraplaque hemorrhage
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and chi-square or Fisher’s exact tests for qualitative 
data, as appropriate. One-way ANOVA was performed 
to compare the values of each radiomics feature for the 
differentiation of carotid plaques with and without IPH. 
Differences in the AUC values among three models 
were evaluated by Delong test. Statistical significance 
was considered at p < 0.05. Statistical analysis was per-
formed with SPSS (version 22.0, IBM) and R statistical 
software (version 3.3.3, https://​www.r-​proje​ct.​org).

Results
Clinical factors of the patients
Thirty-four patients who had a carotid dissection, forty-
eight patients who had previously undergone carotid 
endarterectomy and stenting, and thirty patients who had 
poor image quality were excluded. A total of 46 patients 
(mean age ± standard deviation, 60.7 ± 10.4  years; 36 
men) with 106 carotid plaques from Shandong Provincial 
Hospital Affiliated to Shandong First Medical University 

Fig. 2  Overall workflow of the radiomics model development

Table 1  Clinical factors of the training and validation sets

Continuous variables are described as mean ± standard deviation, and categorical variables are presented as numbers (%)

BMI Body mass index, CAD Coronary artery disease, IPH Intraplaque hemorrhage

Clinical factors Training set (n = 106) External test set (n = 38)

Plaques with IPH 
(n = 46)

Plaques without IPH 
(n = 60)

p Plaques with IPH 
(n = 18)

Plaques without IPH 
(n = 20)

p

Age, y 65.4 ± 9.4 62.0 ± 8.1 0.55 63.7 ± 9.4 65.0 ± 8.0 0.653

Sex, male 39 (84.8%) 47 (78.3%) 0.460 12 (66.7%) 18 (90.0%) 0.117

BMI, kg/m2 25.9 ± 1.4 26.5 ± 1.8 0.89 26.6 ± 1.4 26.4 ± 1.3 0.747

Hypertension 34 (73.9%) 50 (83.3%) 0.334 16 (88.9%) 7 (35.0%) 0.001

Hyperlipidemia 23 (50.0%) 27 (45.0%) 0.696 13 (72.2%) 8 (40.0%) 0.058

Diabetes 17 (37.0%) 17 (28.3%) 0.404 3 (16.7%) 0 (0%) 0.097

Smoking 25 (54.3%) 31 (51.7%) 0.846 11 (61.1%) 17 (85.0%) 0.144

CAD 24 (52.2%) 21 (35.0%) 0.112 11 (61.1%) 7 (35.0%) 0.193

Antihypertension use 29 (63.0%) 33 (55.0%) 0.433 15 (83.3%) 4 (20.0%)  < 0.001

Statin use 25 (54.3%) 31 (51.7%) 0.846 8 (44.4%) 7 (35.0%) 0.741

Antiplatelet use 21 (45.7%) 31 (51.7%) 0.562 9 (50.0%) 11 (55.0%) 0.758

Calcification 36 (78.3%) 51 (85.0%) 0.447 12 (66.7%) 15 (75.0%) 0.724

Degree of stenosis, % 48.5 ± 19.5 32.6 ± 15.8 < 0.001 40.3 ± 21.8 36.4 ± 16.5 0.540

Maximum thickness, mm 4.0 ± 1.6 2.9 ± 1.0 < 0.001 4.2 ± 1.3 2.7 ± 0.9 < 0.001

Ulceration 6 (13.0%) 0 (0%) 0.005 3 (16.7%) 0 (0%) 0.097

https://www.r-project.org
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comprised the training set. An external validation set 
contained 18 patients (mean age, 61.4 ± 10.1  years; 13 
men) with 38 carotid plaques from Shandong Medical 
Imaging Research Institute.

The clinical characteristics of the patients in the train-
ing and external test sets are summarized in Table  1. 
Degree of luminal stenosis, maximum plaque thickness, 
and ulceration showed significant differences between 
the plaques with IPH and plaques without IPH (p < 0.05) 
in training set. The multiple logistic regression analy-
sis showed that stenosis (OR 10.4; 95% CI 1.01–1.07; 
p = 0.008) remained as independent predictors in the 
clinical factor model.

Feature extraction, selection, and radiomics signature 
establishment
Among 1409 radiomics features extracted from CTA 
images, 946 features met the standard of an inter-
observer and intra-observer ICCs greater than 0.75. A 
total of 602 radiomics features showing significant dif-
ferences between plaques with and without IPH on 
one-way ANOVA were performed the select_k_best 
method to eliminate the redundant and irrelated fea-
tures. These features were then passed through the 
LASSO to select the most valuable ones; 8 features 
for constructing the radiomics signature were finally 
selected by LASSO. These features were included 
in the Rad-score calculated as follows: Radscore =  
w a v e l e t - H L L _ g l d m _ D e p e n d e n c eVa r i a n c e  ×  
0.068140989 + wavelet-HLH_glcm_Imc1 × 0.022492042 - 
wavelet-LHH_ngtdm_Strength × 0.008320669 - wavelet- 
HLL_glcm_Imc2 × 0.023842802 + wavelet-HHL_first-
order_Variance × 0.035072963 + wavelet-HLH_first-
order_Kurtosis ×  0.030005675 +  exponential_first 
order_Variance × 0.008876562 +  wavelet-LHL_first-
order_Variance × 0.014908661. The more details of the 
radiomics features can be found in Additional file  1: 
Table S2. A significant difference was found in the Rad-
score between plaques with and without IPH in the train-
ing set (0.67 ± 0.13 vs. − 0.05 ± 0.12; p < 0.001), which was 
then confirmed in the external test set (0.19 ± 0.17 vs. 
− 0.16 ± 0.18; p < 0.001).

The radiomics nomogram establishment and evaluation 
of the performance of three models
The Rad-score and stenosis were incorporated into a 
radiomics nomogram (Fig.  3a). Figure  3b, c shows the 
calibration curve of the nomogram. The calibration curve 
and the Hosmer–Lemeshow test showed good calibra-
tion in the training set (p > 0.05) and external test set 
(p > 0.05).

The diagnostic performances of the clinical factor 
model, radiomics signature, and radiomics nomogram 

are summarized in Table 2. The ROC curves of the three 
models are shown in Fig.  4 for both the training and 
external test sets. The area under the curve (AUC) of the 
radiomics nomogram (AUC, 0.743; 95% confidence inter-
val [CI], 0.650–0.835) was higher than that of the clini-
cal factor model (AUC, 0.631; 95%CI, 0.524–0.738) in the 
training (p = 0.032). In the validation set, the radiomics 
nomogram (AUC, 0.811; 95%CI, 0.661–0.961) performed 
better (p = 0.039) than the clinical factor model (AUC, 
0.761; 95%CI, 0.596–0.927). In the validation set, the sen-
sitivity, specificity, and accuracy, respectively, were 62.5% 
(11 of 18 patients), 69.2% (14 of 20 patients) and 63.2% 
(24 of 38 patients) for radiomics signature model; 80.0% 
(14 of 18 patients), 77.8% (16 of 20 patients) and 78.9% 
(30 of 38 patients) for clinical model; and 88.9% (16 of 18 
patients), 80.0% (16 of 20 patients) and 84.2% (32 of 38 
patients) for radiomics nomogram.

The DCA of three models is shown in Additional 
file 1: Fig. S1. The DCA showed that the overall net ben-
efit of the radiomics nomogram in differentiating carotid 
plaques with IPH and without IPH plaques was higher 
than that of the clinical factors model and radiomics 
signature, within most reasonable threshold probabili-
ties. Figure 5 shows MRI and CTA images in representa-
tive patients with IPH and without IPH and nomogram 
results in these patients.

Discussion
The detection of IPH is difficult by conventional CT 
imaging. In this study, we developed and validated a CT-
based radiomics nomogram which incorporates a radi-
omics signature and clinical factor for the detection of 
intraplaque hemorrhage in carotid arteries. A CT-based 
radiomics nomogram demonstrated 84.2% accuracy, 
88.9% sensitivity, and 80.0% specificity in distinguishing 
carotid plaques with or without intraplaque hemorrhage 
in an external test set. The CT-based radiomics nomo-
gram showed better diagnostic performance than the 
clinical factor model in the external test sets (p = 0.039).

Several studies demonstrated that IPH is one of the 
most powerful predictors of cardiovascular event [14, 
15]. If the IPH occurs, the treatment approach of the 
patient is significantly altered [16, 17]. Previous studies 
have tried to differentiate carotid plaques with IPH and 
those without IPH by using stenosis [18]. Several studies 
found that plaques with IPH in the carotid artery showed 
greater stenosis than those without IPH [15, 18], which 
are consistent with our studies. The reason may be that 
the stenosis of the lumen affected hemodynamic parame-
ters, which in turn affected the status of intraplaque neo-
vascularization. And, most investigators think that the 
rupture of immature neovessels may be the pathological 
basis of IPH [15], thus linking luminal stenosis with IPH. 
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Fig. 3  The radiomics nomogram and calibration curves for the radiomics nomogram. a The radiomics nomogram, combining stenosis and 
Rad-score, developed in the training set. Calibration curves for the radiomics nomogram in the training (b) and external test sets (c). Calibration 
curve indicates the goodness-fit for the nomogram. The 45° dotted line represents an ideal prediction, and the other dotted line represents the 
predictive performance of the nomogram. A closer distance between two lines indicates better prediction. The solid line represents the bias 
corrected

Table 2  Diagnostic performance of the clinical factor model, radiomics signature, and radiomics nomogram for detection of 
intraplaque hemorrhage

AUC​ Area under the curve, CI Confidence interval

Set Model AUC (95%CI) Sensitivity (%) Specificity (%) Accuracy (%)

Training set Clinical model 0.631 (0.524–0.738) 61.8 (28/46) 49.0 (29/60) 56.7 (60/106)

Radiomics signature 0.717 (0.620–0.814) 68.9 (32/46) 60.0 (36/60) 65.1 (69/106)

Radiomics nomogram 0.743 (0.650–0.835) 69.1 (32/46) 56.9 (34/60) 63.2 (67/106)

External test set Clinical model 0.761 (0.596–0.927) 80.0 (14/18) 77.8 (16/20) 78.9 (30/38)

Radiomics signature 0.725 (0.562–0.888) 62.5 (11/18) 69.2 (14/20) 63.2 (24/38)

Radiomics nomogram 0.811 (0.661–0.961) 88.9 (16/18) 80.0 (16/20) 84.2 (32/38)
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In this study, the degree of luminal stenosis was finally 
found as independent predictor, and the AUC of the 
clinical factor model was 0.631 for differentiating plaques 
with IPH and without IPH.

Currently, MRI is considered to be the best modality to 
detect the IPH in carotid arteries because the occurrence 

of IPH depends on the oxidate status of hemoglobin and 
it can be easily detected by common imaging sequences 
[19, 20]. However, MRI is not suitable for patients with 
metal stent and claustrophobia. CTA is a widely quick 
and convenient imaging modality for the pretreatment 
evaluation of patients with atherosclerosis due to its fast 

Fig. 4  Receiver operating characteristic curves of the clinical factor model, the radiomics signature, and radiomics nomogram in the training (a) 
and external test (b) sets, respectively

Fig. 5  Application of nomogram to predict probability of IPH. a, b The carotid plaque (arrow) is shown on MRI and CTA. And MRI shows 
hyper-intensity on T1-weighted imaging suggestive of IPH. c, d The carotid plaque (arrow) is shown on MRI and CTA. And MRI shows no 
hyper-intensity on T1-weighted imaging suggestive of no IPH. e For patient in a and b (blue dashed arrows), nomogram yields total of 111.3 points 
and corresponding risk of IPH greater than 0.8. For patient in c and d (red solid arrows), nomogram yields total of 52.4 points and corresponding risk 
of IPH less than 0.2. IPH = Intraplaque hemorrhage
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scanning speed, high spatial resolution, and accessibil-
ity [21]. Although several studies have shown that IPH 
shows a mean density of about 97.5 HU in CT, it is still 
difficult to differentiate IPH and lipid-rich necrotic core 
[22]. Therefore, the detection of IPH is difficult by con-
ventional CT imaging and more dependent on the expe-
rience of radiologists.

Radiomics is an emerging technique that can automati-
cally extract quantitative features from medical images 
[7, 8, 23]. Some researches about radiomics in oncology 
have been showed in predictions of the stages of tumors, 
differentiation between benign and malignant tumors, 
and predictions survival in patients with cancer [24, 25]. 
Radiomics research in the cardiovascular imaging has 
lagged behind the oncology field. The previous studies 
have investigated the prediction of thoracic aortic dis-
sections with CT-based radiomics analysis [26]. Recent 
studies have shown the CT- and MRI-based radiomics 
analysis can accurately distinguish symptomatic from 
asymptomatic carotid and basilar plaques [9–11]. And 
several studies demonstrated that plaque texture analysis 
of ultrasound can identify the vulnerable carotid plaques 
and predict future ischemic events in asymptomatic 
patients [27, 28].

To our knowledge, our study is first to detect the IPH in 
carotid arteries by CT-based radiomics analysis. To date, 
several studies have considered IPH to be caused by the 
rupture of immature neoangiogenesis [29]. And IPH has 
been shown to promote plaque progression and instabil-
ity, thereby increasing the risk of cerebrovascular events 
[30]. In addition, previous findings have demonstrated 
that the use of antithrombotic therapy may increase the 
progression of IPH in carotid plaques [16, 17]. There-
fore, it is of great significance that our radiomics research 
makes up for the deficiency that conventional CT images 
cannot accurately recognize IPH in carotid arteries.

In this study, we constructed a CT-based radiomics 
nomogram, which showed satisfactory predictive efficacy 
with good calibration. In addition, more net benefit could 
be obtained from the decision curve analysis for most of 
the threshold probability model, implying that using our 
nomogram to identify carotid IPH would achieve bet-
ter clinical outcomes. Secondly, three-dimensional ROI 
was performed in for our study. It is showed that three-
dimensional radiomics analysis indicated heterogeneity 
better than two-dimensional ROI [31, 32]. Furthermore, 
unlike other single-center studies, the data in this study 
come from different institutions, which can yield more 
trustworthy results.

There are several limitations in our study. First, 
this is a retrospective study. But our finding warrants 
future prospective studies of predicting stroke risk 
after IPH by radiomics nomogram. Second, histological 

validation of IPH remains the goal standard, but our 
study has only a few with pathological validation that 
not all. However, MRI is currently the best in  vivo 
image modality for IPH with high specificity and sen-
sitivity. High-resolution MRI was available for each 
plaque in our study. Third, the quality of scans is 
dependent on the equipment manufacturer. Different 
equipment manufacturer in different hospitals can lead 
to inconsistencies in image quality. However, in order 
to eliminate the influence of dimension between fea-
tures and make the intensity information consistent, 
the image was normalized before analysis in our study, 
which eliminated the interference caused by the incon-
sistent image quality caused by different CT equipment 
manufactures.

In conclusion, our study presented a CT-based 
nomogram that showed satisfactory performance in 
distinguishing carotid plaques with and without intra-
plaque hemorrhage. The radiomics nomogram may act 
as a non-invasive and potential tool to identify carotid 
intraplaque hemorrhage and make risk stratification.
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