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Deep learning image reconstruction 
algorithm for carotid dual‑energy computed 
tomography angiography: evaluation of image 
quality and diagnostic performance
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Abstract 

Objectives:  To evaluate image quality and diagnostic performance of carotid dual-energy computed tomography 
angiography (DECTA) using deep learning image reconstruction (DLIR) compared with images using adaptive statisti-
cal iterative reconstruction-Veo (ASIR-V).

Methods:  Carotid DECTA datasets of 28 consecutive patients were reconstructed at 50 keV using DLIR at low, 
medium, and high levels (DLIR-L, DLIR-M, and DLIR-H) and 80% ASIR-V algorithms. Mean attenuation, image noise, 
signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) at different levels of arteries were measured and calcu-
lated. Image quality for noise and texture, depiction of arteries, and diagnostic performance toward carotid plaques 
were assessed subjectively by two radiologists. Quantitative and qualitative parameters were compared between the 
ASIR-V, DLIR-L, DLIR-M, and DLIR-H groups.

Results:  The image noise at aorta and common carotid artery, SNR, and CNR at all level arteries of DLIR-H images 
were significantly higher than those of ASIR-V images (p = 0.000–0.040). The quantitative analysis of DLIR-L and 
DLIR-M showed comparable denoise capability with ASIR-V. The overall image quality (p = 0.000) and image noise 
(p = 0.000–0.014) were significantly better in the DLIR-M and DLIR-H images. The image texture was improved by DLR 
at all level compared to ASIR-V images (p = 0.000–0.008). Depictions of head and neck arteries and diagnostic perfor-
mance were comparable between four groups (p > 0.05).

Conclusions:  Compared with 80% ASIR-V, we recommend DLIR-H for clinical carotid DECTA reconstruction, which 
can significantly improve the image quality of carotid DECTA at 50 keV but maintain a desirable diagnostic perfor-
mance and arterial depiction.
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Key points

•	 DLIR is suitable for the reconstruction of dual-energy 
computed tomography angiography.

•	 DLIR-H generated the best image quality regarding 
image noise and texture.

•	 DLIR images have similar arterial depictions and 
diagnostic performance to vascular lesions to ASIR-
V.

Open Access

Insights into Imaging

*Correspondence:  huishuy@sina.com

1 Department of Radiology, Peking University Third Hospital, Beijing, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5320-4360
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13244-022-01308-2&domain=pdf


Page 2 of 12Jiang et al. Insights into Imaging          (2022) 13:182 

Introduction
Carotid atherosclerosis is the most prevalent chronic 
disease in the developed world [1, 2]. Computed tomog-
raphy angiography (CTA) offers excellent efficiency to 
detect carotid and intracranial arterial pathology [3], 
which has become an established second-line technique 
for screening carotid artery disease [4]. According to a 
recent survey, between 2007 and 2017 in the emergency 
department, the growth of head and neck CTA far out-
raced the growth of other modalities with a compound 
annual growth rate of around 24% [5]. This rapid increase 
in CTA examination aroused concern about the risk of 
radiation exposure and iodine dose.

To address this issue, various iterative reconstruction 
(IR) algorithms are developed to obtain a better image 
quality with lower radiation dose, such as hybrid IR that 
blend IR with filtered back projection (FBP) [6–9]. Adap-
tive statistical iterative reconstruction-Veo (ASIR-V, GE 
Healthcare) is a vendor-specific hybrid IR allowing more 
aggressive image noise and radiation dose reduction with 
a much short reconstruction time than other IR tech-
niques [10]. However, ASIR-V shares the limitation with 
other IR techniques, that is, it still hardly reached a trade-
off between image noise and unnatural image texture 
[7–9]. Recently, a vendor-specific deep neural network–
based recon engine (TrueFidelity™2.0; GE Healthcare) 
for image denoising algorithms, termed deep learning 
image reconstruction (DLIR), has been proposed for CT 
image reconstruction, which is trained with artifact-free 
FBP datasets of both phantoms and patients to differenti-
ate noise from signals [11]. DLIR allows emulating stand-
ard-dose FBP image texture while providing low image 
noise, artifact suppression, and highly sensitive detect-
ability with high resolution [12–16]. Its utility has been 
demonstrated in both single-energy CT and dual-energy 
CT scans until most recently [17–19]; however, its adap-
tion to dual-energy CTA (DECTA) has not been evalu-
ated yet.

The different predicted monoenergetic kiloelectron 
volt (keV) levels, also known as virtual monochromatic 
images (VMIs) is a common postprocessing option for 
DECTA. Lower energy VMIs enable the enhancement of 
the attenuation of iodine contrast of CTA images by shift-
ing the energy of the photons toward the k-edge of iodine 
at 33 keV, at the expense of a dramatically increased noise 
[20, 21]. A recent carotid DECTA study using IR algo-
rithm indicated VMIs at 50  keV energy level not only 
have a superior CNR than those of single-energy scans 
with 120 kV, but also is the optimal keV energy level for 
subjective assessment for carotid DECTA [22].

We hypothesized that with the application of DLIR 
algorithm in carotid DECTA, low energy VMI may 
possess more favorable image noise and texture while 

maintain better signal-to-noise ratio (SNR) and contrast-
to-noise ratio (CNR) than ASIR-V. Therefore, this study 
aimed to evaluate the image quality and diagnostic per-
formance toward head and neck arterial pathology of 
VMI at 50 keV from carotid DECTA using the DLIR algo-
rithm, compare with those of images reconstructed with 
ASIR-V.

Materials and methods
This study was approved by the institutional review 
board at our institution. Written informed consent was 
obtained from all patients, and retrospective analyses 
were performed using a prospective cohort.

Participants
Forty-four consecutive patients who underwent carotid 
DECTA (Revolution CT; GE Healthcare that was able 
to reconstruct both ASIR-V and DLIR images) between 
November 2021 and December 2021 were included in the 
study. Among them 3 patients had metal implants after 
neck surgery; 5 patients had carotid stents; 5 patients had 
extensive thrombosis were excluded as accurate intravas-
cular evaluations were not possible due to metal artifacts 
and thrombosis; and raw data of 3 patients were lost. 
Finally, 28 patients were included in this study.

Dual‑energy CT technique
All examinations were performed by a fast kilovoltage-
switching DECT scanner (Revolution CT; GE Health-
care) with carotid DECTA imaging parameters: 80/140 
kV peak tube voltage, 12 HU noise index at 5-mm sec-
tion collimation, variable tube current (GSI Assist; GE 
Healthcare); detector configuration, 128 detectors with 
0.625 mm section thickness; 80  mm beam collima-
tion, 0.5  s rotation time, 0.984:1 pitch, 36  cm display 
field-of-view. For contrast enhancement, nonionic-iodi-
nated contrast agent (370 mgI/mL, Omnipaque 350, GE 
Healthcare, Shanghai, China) was injected intravenously 
into the right cubital at a rate of 3.5 mL/s using an auto-
matic injector with a bolus of 40  mL and followed by 
30-mL saline flush at the same injection rate. CTA was 
triggered by a bolus-tracking program (trigger point: 
the ascending aorta, trigger threshold: 120 HU) with a 
5-s delay in image acquisition. CT images were obtained 
from the cranial crest to the aortic arch in the craniocau-
dal direction.

Imaging reconstruction
The raw data were reconstructed at 0.625  mm sec-
tion thickness using 80% ASIR-V (IR 80% + FBP 20%) 
and DLIR algorithm at three selectable strength levels 
(low, DLIR-L; medium, DLIR-M; high, DLIR-H) graded 
by noise reduction capability. All reconstructions used 
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standard kernel. All reconstructed images were pro-
cessed into VMI at 50  keV using GSI Viewer software 
(Advantage Workstation, version 4.7, GE Healthcare).

Quantitative image analysis
Image analysis and measurement were performed on 
GSI Viewer software by one radiologist who was blind to 
images reconstruction algorithms. ROIs were manually 
placed on the axial images at levels of aortic arch (AA), 
common carotid artery (CCA), internal carotid artery 
(ICA), and vertebral artery (VA) at the dominating side 
to measure the mean attenuation (HU) and noise (SD) 
values. ROIs should cover the central parts of the arteries 
as much as possible while avoiding arterial wall, plaques, 
and severe artifacts. To calculate the CNR of the target 
vessel, HU values of sternocleidomastoid were also meas-
ured at the level of hyoid. Values of SNR and CNR were 
calculated using the equation: SNR = target HU / target 
SD and CNR = (target HU − muscle HU)/target SD.

Qualitative image analysis
In order to standardize qualitative analysis, two experi-
enced radiologists were trained for image quality evalua-
tion prior to qualitative image analysis. The VMIs dataset 
reconstructed by 80% ASIR-V, DLIR-L, DLIR-M, and 
DLIR-H were hanged in randomized order at GSI Viewer 
software to each radiologist without any annotations. 
All images were presented with preset window set: level, 
100 HU and width, 800 HU, radiologists were allowed to 
adjust the window set during evaluations.

Two radiologists independently reviewed overall 
image quality for noise and texture of each image using 
a 5-point Likert scale: 5 = excellent for the best image 
quality, 4 = favorable (no influence on image interpreta-
tion), 3 = acceptable for diagnosis (possible influence); 
2 = suboptimal (mild influence), and 1 = poor (impairing 

diagnosis). Two radiologists further rated the arterial 
depiction of head and neck artery using a 5-point Likert 
scale (Table 1) as published previously [23], according to 
vascular edge and subjective contrast to noise: 5 = very 
sharp edge with high contrast; 4 = sharp edge with satis-
fied contrast; 3 = minimal blurring edge with suboptimal 
contrast; 2 = blurring edge with markedly suboptimal 
subjective contrast; 1 = unacceptable blurring and con-
trast. In addition to CCA, ICA, VA and basilar artery 
(BA), we detailed the assessment of intracranial arteries, 
including anterior cerebral artery (ACA), middle cerebral 
artery (MCA), and posterior cerebral artery (PCA), at 
different segments according to Netter’s cerebrovascular 
classification [24].

Diagnostic evaluation
Moreover, two experienced radiologists who were 
blinded to the patient clinical data and images recon-
struction algorithms were asked to evaluate the diag-
nostic performance to carotid plaques of the ASIR-V 
and DLIR images in consensus. Stenotic lesion was 
graded as the following criteria: 0 = no stenosis; 1 = mild 
(0–49%); 2 = moderate (50–69%); 3 = severe (70–99%); 
4 = obstruction. According to composition variation, 
carotid plaques were divided into: 1, non-calcified 
plaques; 2, mixed plaque; 3, calcified plaques. There was 
an interval of 2 weeks between the evaluation of ASIR-V 
and DLIR images.

Statistical analysis
All statistical analyses were performed on software 
SPSS version 26.0 (IBM). Image quantitative parameters 
including HU, SD, SNR and CNR were analyzed using 
repeated measures ANOVA with the Bonferroni post 
hoc test between the ASIR-V, DLIR-L, DLIR-M, and 
DLIR-H groups. For the qualitative analysis including, 

Table 1  Subjective image quality analysis

*Mean statistical higher than ASIR-V

ASIR, adaptive statistical iterative reconstruction-Veo; DLIR, deep learning image reconstruction (low strength, DLIR-L; medium strength, DLIR-M; high strength, 
DLIR-H)

ASIR DLIR-L DLIR-M DLIR p value κ values

Image noise

Reader 1 3.4 ± 0.5 (3–4) 3.3 ± 0.6 (2–4) 3.7 ± 0.4* (3–4) 4.5 ± 0.5* (4–5) 0.000 0.53

Reader 2 3.5 ± 0.5 (3–4) 3.5 ± 0.6 (2–4) 3.7 ± 0.4* (3–4) 4.4 ± 0.5* (4–5) 0.000

Image texture

Reader 1 3.5 ± 0.6 (2–4) 3.8 ± 0.5* (3–5) 3.8 ± 0.4* (3–5) 4.4 ± 0.6* (3–5) 0.000 0.57

Reader 2 3.5 ± 0.6 (2–4) 3.7 ± 0.4* (3–4) 3.8 ± 0.4* (3–4) 4.6 ± 0.6* (3–5) 0.000

Overall image quality

Reader 1 3.4 ± 0.4 (3–4) 3.6 ± 0.4 (3–5) 3.8 ± 0.3* (3–5) 4.4 ± 0.3* (3–5) 0.000 0.44

Reader 2 3.5 ± 0.3 (3–4) 3.6 ± 0.3 (3–4) 3.8 ± 0.3* (3–4) 4.4 ± 0.3* (4–5) 0.000
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overall image quality, and subjective ratings of different 
arterial segments, the Friedman test was conducted to 
compare these subjective indicators among four groups. 
The paired Wilcoxon signed-rank test was performed for 
post hoc subgroup comparisons when a significant differ-
ence was found between the four groups. The McNemar 
test was used to compare the diagnostic performance of 
DLIR and ASIR-V images. Inter-observe agreement and 
the agreement of the diagnostic results between DLIR 
and ASIR-V images were tested using Cohen’s kappa 
test, using the following criteria: poor (κ < 0.4); moderate 
(κ = 0.41–0.60); good (κ = 0.61–0.80); excellent (κ = 0.81–
1.00). A p value < 0.05 was considered to indicate statisti-
cal significance.

Results
Twenty-eight patients comprising 16 males and 12 
females were included in this study, with mean age 
59.9 ± 12.6  years (range 33–81  years) and mean body 
mass index (BMI) 25.7 ± 3.1 kg/m2 (range 20.0–33.4 kg/
m2).

Quantitative image analysis
CT attenuation at levels of AA, CCA, ICA, and VA were 
comparable among the four groups. Difference of SNR, 

CNR at all arterial level, and SD at level of AA, CCA, and 
VA were noted between four reconstructed images (SNR: 
p = 0.000–0.015; CNR: all p = 0.000; SD: 0.001–0.027). 
However, the Bonferroni post hoc test shows SD only at 
level of AA and CCA in DLIR-H images lower than ASIR-
V images (AA: 44.4 ± 7.9 vs 56.1 ± 7.9, p = 0.000 and 
CCA: 9.9 ± 10.4 vs 30.5 ± 10.8, p = 0.002), no difference 
was noted in SD of ICA and VA. More importantly, SNR 
(AA: 13.3 ± 3.1 vs 10.3 ± 1.9, p = 0.017; CCA: 34.1 ± 16.7 
vs 19.7 ± 6.4, p = 0.000; ICA: 25.6 ± 10.6 vs 19.6 ± 6.8, 
p = 0.040; VA: 25.8 ± 7.5 vs 20.9 ± 5.8, p = 0.021) and 
CNR (47.8 ± 11.7 vs 33.5 ± 8.5, p = 0.000; 45.3 ± 11.1 vs 
31.7 ± 8.2, p = 0.000; 44.1 ± 11.2 vs 30.8 ± 8.2, p = 0.000; 
39.9 ± 9.1 vs 27.9 ± 6.9, p = 0.000) at all arterial level 
in DLIR-H significantly outmatched those of ASIR-V. 
Besides, the quantitative analysis of DLIR-L and DLIR-M 
showed comparable denoise capability with ASIR-V. (All 
quantitative analysis is shown in Fig. 1.)

Qualitative image analysis
The results of image qualitative analysis are summa-
rized in Table  1. Significant differences were noted in 
overall image quality, image noise, artifact, and noise 
texture among four groups (Fig.  2). In post hoc sub-
group comparisons, compared with ASIR-V, images 

Fig. 1  Quantitative image analysis for arteries at all level between four reconstructed images. *Mean statistical higher than ASIR-V
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noise in DLIR-M and DLIR-H image was significantly 
lower (reader 1: PDLIR-M = 0.002, PDLIR-H = 0.000; reader 
2: PDLIR-M = 0.014, PDLIR-H = 0.000), DLR at all strength 
levels were superior to ASIR-V in terms of image tex-
ture (reader 1: PDLIR-L = 0.004 PDLIR-M = 0.008, PDLIR-

H = 0.000; reader 2: PDLIR-L = 0.005 PDLIR-M = 0.004, 
PDLIR-H = 0.000). The overall image quality of DLIR-M 
and DLIR-H is significantly better than that of ASIR-V 

(reader 1: PDLIR-M = 0.000, PDLIR-H = 0.000; reader 2: 
PDLIR-M = 0.000, PDLIR-H = 0.000).

In evaluation of arteries depiction, almost all the vas-
cular segments of the head and neck artery showed 
similar depiction (Fig.  3) in the four reconstructed 
images for both readers, except for ACA-A3 segment 
(Table  2). One reader believed the depiction of A3 in 
DLIR-H images was statistically higher than that of 

Fig. 2  Qualitative image analysis for image noise and texture between four reconstructed images. A 71-year-old male with carotid artery occlusion. 
The 80% ASIR-V (a), DLIR-L (b), DLIR-M (c), and DLIR-H (d) are shown. The image noise of DLIR-L seems to be similar to that of ASIR-V, but the image 
of DLIR-M and DLIR-H is obviously better than ASIR-V. The over-smooth “plastic-looking” texture at centrum semiovale the most striking in the ASIR-V 
image, while the unnatural texture was reduced in all DLIR images, especially in DLIR-H
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Fig. 3  Visualization carotid plaques of four different reconstructed images. a–d Calcified plaque at proximal carotid; e–h mixed plaque at carotid 
bifurcation; i–l non-calcified plaque at carotid bifurcation. The visualization of plaque composition and the estimation of stenosis gradation were 
almost identical between 80% ASIR-V and DLIR at all strength level
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Table 2  Arterial depiction on four reconstructed images

*Mean statistical higher than ASIR-V

AA, aortic arch; CCA, common carotid artery; ICA, internal carotid artery; VA, vertebral artery; BA, basilar artery; ACA, anterior cerebral artery; MCA, middle cerebral 
artery; PCA, posterior cerebral artery. ASIR, adaptive statistical iterative reconstruction-Veo; DLIR, deep learning image reconstruction (low strength, DLIR-L; medium 
strength, DLIR-M; high strength, DLIR-H)

ASIR-V (Reader 1)
(Reader 2)

DLIR-L (Reader 1)
(Reader 2)

DLIR-M (Reader 1)
(Reader 2)

DLIR-H (Reader 1)
(Reader 2)

p value κ value

CCA​

4.5 ± 0.6 (3–5) 4.4 ± 0.7 (2–5) 4.5 ± 0.6 (3–5) 4.6 ± 0.6 (3–5) 0.096 0.78

4.4 ± 0.6 (3–5) 4.4 ± 0.7 (2–5) 4.4 ± 0.6 (3–5) 4.5 ± 0.5 (3–5) 0.072

ICA

4.4 ± 0.6 (3–5) 4.4 ± 0.7 (3–5) 4.4 ± 0.6 (3–5) 4.4 ± 0.6 (3–5) 0.261 0.75

4.3 ± 0.7 (3–5) 4.3 ± 0.6 (3–5) 4.2 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 0.300

VA

4.2 ± 0.6 (3–5) 4.1 ± 0.7 (2–5) 4.2 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 0.080 0.67

4.2 ± 0.6 (3–5) 4.0 ± 0.7 (2–5) 4.1 ± 0.6 (3–5) 4.2 ± 0.5 (3–5) 0.181

BA

4.1 ± 0.5 (3–5) 4.0 ± 0.6 (3–5) 4.1 ± 0.5 (3–5) 4.1 ± 0.5 (3–5) 0.511 0.83

4.0 ± 0.6 (3–5) 4.0 ± 0.7 (3–5) 4.0 ± 0.6 (3–5) 4.1 ± 0.6 (3–5) 0.429

ACA​

A1–A2

4.5 ± 0.6 (3–5) 4.5 ± 0.6 (3–5) 4.5 ± 0.6 (3–5) 4.5 ± 0.6 (3–5) 0.779 0.85

4.4 ± 0.6 (3–5) 4.5 ± 0.6 (3–5) 4.5 ± 0.6 (3–5) 4.5 ± 0.6 (3–5) 0.724

A3

3.3 ± 0.8 (2–4) 3.3 ± 0.8 (2–4) 3.4 ± 0.7 (2–4) 3.5 ± 0.5* (3–4) 0.002 0.60

3.2 ± 0.6 (2–4) 3.3 ± 0.6 (2–4) 3.3 ± 0.6 (2–4) 3.3 ± 0.5 (2–4) 0.753

A4

2.2 ± 0.7 (1–4) 2.2 ± 0.7 (1–4) 2.3 ± 0.8 (1–4) 2.3 ± 0.9 (1–4) 0.112 0.89

2.1 ± 0.7 (1–3) 2.1 ± 0.7 (1–3) 2.2 ± 0.8 (1–3) 2.3 ± 0.7 (1–3) 0.248

MCA

M1–M2

4.3 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 4.2 ± 0.6 (3–5) 0.896 0.78

4.3 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 0.494

M3

3.6 ± 0.6 (2–5) 3.6 ± 0.7 (2–5) 3.6 ± 0.6 (2–5) 3.6 ± 0.6 (2–5) 0.261 0.84

3.5 ± 0.6 (2–4) 3.4 ± 0.6 (2–4) 3.5 ± 0.6 (2–4) 3.5 ± 0.6 (2–5) 0.284

M4

3.2 ± 0.7 (2–4) 3.1 ± 0.8 (1–4) 3.2 ± 0.7 (1–4) 3.2 ± 0.8 (1–4) 0.392 0.92

3.2 ± 0.7 (2–4) 3.1 ± 0.9 (1–4) 3.2 ± 0.8 (1–4) 3.1 ± 0.8 (1–4) 0.644

PCA

P1–P2

4.2 ± 0.6 (3–5) 4.2 ± 0.6 (3–5) 4.2 ± 0.6 (3–5) 4.2 ± 0.6 (3–5) 1.000 0.84

4.3 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 4.3 ± 0.6 (3–5) 0.392

P3

3.1 ± 0.7 (1–4) 3.1 ± 0.7 (1–4) 3.1 ± 0.7 (1–4) 3.2 ± 0.7 (2–4) 0.332 0.86

3.0 ± 0.6 (1–4) 3.0 ± 0.7 (1–4) 3.0 ± 0.6 (1–4) 3.0 ± 0.7 (1–4) 0.675

P4

2.0 ± 0.7 (1–4) 2.0 ± 0.7 (1–4) 2.0 ± 0.7 (1–4) 2.2 ± 0.7 (1–4) 0.068 0.82

2.1 ± 0.8 (1–4) 2.0 ± 0.7 (1–4) 2.1 ± 0.8 (1–4) 2.1 ± 0.6 (1–3) 0.463
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ASIR-V (p = 0.014), while no difference was noted by 
reader 2, despite moderate agreement between two 
readers (κ = 0.60). In the subjective analysis of image 
quality and arterial depiction, moderate-to-excellent 
agreement was noted between the two readers (κ value 
ranged from 0.44 to 0.92).

Diagnostic evaluation
We found 35 stenotic lesions with various carotid plaque 
morphology and composition on each ASIR-V and DLIR 
image. As shown in Tables 3 and 4, DLIR of all strength 
and ASIR-V revealed no difference in determination 
of carotid plaque composition and gradation of steno-
sis with almost perfect diagnosis agreement (Table 3 for 
plaque composition, DLIR-L: 91.1%, for DLIR-M: 91.0%, 
for DLIR-H: 86.7%; Table 4 for stenosis gradation, DLIR-
L: 68.0%, for DLIR-M: 80.0%, for DLIR-H: 80.3%).

Discussion
Recently, aortic DECTA with a reduced iodine dose 
protocol had demonstrated clinical utility of DLIR algo-
rithm in DECTA [19]. In this study, we further evaluated 
the utility of DLIR algorithm in head and neck DECTA 
at 50  keV by image objective parameters and subjective 
evaluation including general image quality in terms of 

image noise, image texture, depiction of arteries at differ-
ent levels, and diagnostic performance with conventional 
ASIR-V. Our results indicated that DLIR-H algorithm 
could reduce carotid DECTA image noise and improving 
image quality while maintaining similar arterial depiction 
and diagnostic performance, compared to 80% ASIR-V.

ASIR-V as a vendor-specific hybrid IR has a major limi-
tation of the unnatural textures [9], which was a typical 
finding in IR algorithms and was mentioned as “blotchy” 
“plastic-looking” [6, 7, 9]. Moreover, in past experience 
with CT reconstruction using ASIR-V with a blending 
factor of 30–60% the image blur due to noise texture 
manifested with the blending factor increases in spite of 
enhanced noise reduction [13, 14, 25, 26]. We adopted 
using high blending factors of 80% ASIR-V as reference 
standard to test the capability of DLIR algorithm for two 
reasons. Firstly, 80% ASIR-V is the routine image recon-
struction algorithm for GE Healthcare CT system at 
our organization. Secondly, ASIR-V with blending fac-
tor of 40% was used for comparison in all former DLIR 
algorithms of DECT study [18, 19] and the comparison 
of image texture was also omitted, which makes further 
comparison between ASIR-V with high blending factor 
and DLIR algorithm necessary.

Table 3  Determination of carotid plaque composition between ASIR-V and DLIR images

ASIR, adaptive statistical iterative reconstruction-Veo; DLIR, deep learning image reconstruction (low strength, DLIR-L; medium strength, DLIR-M; high strength, 
DLIR-H)

ASIR-V DLIR-L (n) DLIR-M (n) DLIR-H (n)

Non-calcified Mixed Calcified Non-calcified Mixed Calcified Non-calcified Mixed Calcified

Non-calcified 14 2 0 15 1 0 15 1 0

Mixed 0 6 0 0 6 0 0 6 0

Calcified 0 0 13 0 1 12 0 2 11

p value 0.157 0.368 0.223

κ-values 0.911 0.910 0.867

Table 4  Estimation of stenosis gradation between ASIR-V and DLIR images

ASIR, adaptive statistical iterative reconstruction-Veo; DLIR, deep learning image reconstruction (low strength, DLIR-L; medium strength, DLIR-M; high strength, 
DLIR-H)

ASIR-V DLIR-L DLIR-M DLIR-H

Mild Moderate Severe Obstruction Mild Moderate Severe Obstruction Mild Moderate Severe Obstruction

Mild 6 0 0 0 5 1 0 0 5 1 0 0

Moderate 1 5 2 0 1 6 1 0 0 8 0 0

Severe 0 3 11 0 0 1 13 0 0 3 11 0

Obstruction 0 0 2 5 0 0 1 6 0 0 1 6

p value 0.362 0.801 0.172

κ-values 0.680 0.800 0.803
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In subjective evaluation, overall image quality and image 
noise of DLIR-M and DLIR-H were preferable to 80% 
ASIR-V which was consistent with the previous study. 
Moreover, all strength of DLIR had finer image texture 
compared to 80% ASIR-V. Although the noise texture 
of images is usually evaluated using noise-power spec-
trum (NPS), here, we only perform subjective evaluation, 
because NPS was usually only used in phantom studies [27, 
28], and we consider it more clinically significant to evalu-
ate the influence of such unnatural texture on image inter-
pretation. The subjective evaluation of image texture in this 
study suggested that DLIR might show similar image tex-
ture patterns to FBP with more clinical applicability, com-
pared to high-level ASIR-V.

In our quantitative analysis, DLIR-H algorithm signifi-
cantly improved arteries SNR and CNR at all segments 
as expected. However, the image noise value of ICA and 
VA seemed to decrease significantly compared with 80% 
ASIR-V, which was inconsistent with previous studies [13, 
19]. The small changes in ROI placement can significantly 
alter the measurement results at the segment of ICA and 
VA with a small diameter may be a reasonable explana-
tion. Although DLIR-M had some advantages in subjective 
image evaluation, the quantitative parameters of DLIR-M 
were comparable to that of 80% ASIR-V. As for DLIR-L, 
no advantage over 80% ASIR-V images was noted in both 
qualitative and quantitative analyses.

Jansen et al., as well as subsequent studies [12, 14, 17, 19], 
warned the possibility of DLIR-H obscuring small lesions 
and suboptimal detail evaluation of small vessels compared 
with ASIR-V. But our results seemed to contradict this 
view; the arterial depictions at almost all arterial segment 
were comparable between four reconstruction algorithms, 
even a reader thought that depiction of ACA-A3 segment 
in DLIR-H image was the most superior. We believed this 
was benefit of image noise reduction, generally outweighed 
blurring of small lesion or vessel, which also was men-
tioned by Jansen et  al. [12]. Besides, it was worth noting 
that the factor of ASIR-V used by the previous study was 
relatively low (40–60%), so noise texture was no as signifi-
cantly as 80% ASIR-V to influence observation of small 
arteries in our study. Hence, it is reasonable to believe that 

improvement in image texture and noise reduction by 
DLIR-H compensated for the blurring effect on intracranial 
small arteries.

Our study had another strength; we evaluated the diag-
nostic performance of DECTA based on DLIR algorithm 
for variation of carotid plaque. Although we could not 
evaluate the diagnostic accuracy of images based on dif-
ferent algorithms due to the lack of a gold standard for 
composition of carotid plaque and stenosis gradation, the 
nearly uniform diagnostic performance between DLIR 
and ASIR-V images suggested that DLIR images are suf-
ficient for visualization of actual carotid plaques under 
clinical conditions. Meanwhile, we also noticed an inter-
esting phenomenon: DLIR-H image tends to overestimate 
the stenosis degree of small vessels (Fig.  4). This may be 
due to the blurring effect of the high level of DLIR on the 
residual lumen at the stenosis [12]. This phenomenon was 
only observed in certain cases of severe intracranial arte-
rial stenosis, so it did not affect the detection of positive 
vascular lesions. Further study is desired to evaluate this 
subtle effect of high-level DLIR on characterization of 
small vessel stenosis.

This study had several limitations. First, the sample size 
of this study was relatively small. Second, further studies 
of task-specific lesion detection are necessary to deter-
mine the diagnostic accuracy of DLIR. Three, apart from 
VMI, other postprocessing techniques of DECT, such as 
iodine quantification, effective atomic number map, and 
material decomposition, were not involved in this study. 
The reliability of these postprocessing techniques in 
DLIR-based DECT images still needs further verification. 
Last, our CT system and algorithm were vendor specific. 
Algorithms and results may vary among vendors.

Conclusion
DLIR is promising for DECTA reconstruction which can 
significantly reduce image noise, improve the image qual-
ity of carotid DECTA at 50 keV, but maintain a desirable 
diagnostic performance. Above all, compared with 80% 
ASIR-V algorithm, we recommend DLIR-H for carotid 
DECTA reconstruction. DLIR-M is an acceptable option.

Fig. 4  Examples of overestimated intracranial arterial stenosis on DLIR images. ASIR-V (a, e), DLIR-L (b, f), DLIR-M (c, g), DLIR-H (d–h) of a 69-year-old 
woman (a–d) and a 71-year-old male (e–h) with cerebral atherosclerosis are shown. 80% ASIR-V and DLIR images show similar depiction of the 
proximal and distal cerebral arteries. Moderate-to-severe focal stenosis at segment A3 of right anterior cerebral artery and segment P3 of right 
posterior cerebral artery are noticed (black arrow). The residual lumens at the stenosis are clearly visible in the ASIR-V images, while in the high-level 
DLIR image, residual lumens are vaguely visible

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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