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Abstract 

Objective:  To update the systematic review of radiomics in osteosarcoma.

Methods:  PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang Data were 
searched to identify articles on osteosarcoma radiomics until May 15, 2022. The studies were assessed by Radiomics 
Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) statement, Checklist for Artificial Intelligence in Medical Imaging (CLAIM), and modified Quality Assessment 
of Diagnostic Accuracy Studies (QUADAS-2) tool. The evidence supporting radiomics application for osteosarcoma 
was rated according to meta-analysis results.

Results:  Twenty-nine articles were included. The average of the ideal percentage of RQS, the TRIPOD adherence rate 
and the CLAIM adherence rate were 29.2%, 59.2%, and 63.7%, respectively. RQS identified a radiomics-specific issue of 
phantom study. TRIPOD addressed deficiency in blindness of assessment. CLAIM and TRIPOD both pointed out short-
ness in missing data handling and sample size or power calculation. CLAIM identified extra disadvantages in data 
de-identification and failure analysis. External validation and open science were emphasized by all the above three 
tools. The risk of bias and applicability concerns were mainly related to the index test. The meta-analysis of radiomics 
predicting neoadjuvant chemotherapy response by MRI presented a diagnostic odds ratio (95% confidence interval) 
of 28.83 (10.27–80.95) on testing datasets and was rated as weak evidence.

Conclusions:  The quality of osteosarcoma radiomics studies is insufficient. More investigation is needed before using 
radiomics to optimize osteosarcoma treatment. CLAIM is recommended to guide the design and reporting of radiom-
ics research.

Keywords:  Osteosarcoma, Radiomics, Machine learning, Quality improvement, Systematic review

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Key points

•	 The MRI-radiomics in predicting neoadjuvant chem-
otherapy response is supported by weak evidence.

•	 The quality of osteosarcoma radiomics studies has 
been improved recent two years.

•	 CLAIM can adapt the increasing trend of deep learn-
ing application in radiomics.
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Introduction
Osteosarcoma is the most common primary high-grade 
sarcoma of the skeleton, in which the tumor cells pro-
duce neoplastic bone [1]. Imaging is the key examination 
in the work-up of osteosarcoma management, from diag-
nosis, staging, treatment evaluation, to follow-up [1–3]. 
The diagnosis of osteosarcoma generally starts with X-ray 
radiography and is followed by CT for further evalua-
tion. A contrast-enhanced MRI scan is useful in diagnosis 
completion and soft tissue involvement assessment and is 
usually the last step before biopsy of local disease. A chest 
CT scan is substantial for lung metastases detection. For 
patients with pathologically confirmed osteosarcoma, a 
whole-body PET examination has been recommended 
for initial staging rather than a bone scintigraphy nowa-
days. The treatment evaluation and follow-up imaging 
commonly include local CT and MRI scans and chest CT 
scan. In most cases, the current imaging approach with 
physical, laboratory, and histopathological examinations 
can guide clinicians to an appropriate curation plan, but 
there remain difficulties in differential diagnosis of osteo-
sarcoma subtypes, prediction of response to treatment, 
and prognosis concerns including survival, recurrence, 
and lung metastasis [2, 3]. Radiomics, utilizing a pleth-
ora of strategies for extracting underlying information 
from medical images, has been used to overcome such 

challenges [4–7]. Radiomics models have been deemed 
as a promising approach for addressing clinical problems 
related to osteosarcoma patients, especially for predict-
ing their response to neoadjuvant chemotherapy (NAC) 
[8].

Our preliminary search suggested that radiomics stud-
ies in osteosarcoma patients have doubled since the pub-
lication of the previous review [8], indicating necessity 
for updates on this rapidly developing field. It is unclear 
whether the radiomics study quality has improved in 
recent years. Next, the study quality and risk of bias of 
radiomics research on osteosarcoma have been only 
assessed by the Radiomics Quality Score (RQS) [7] and 
the modified Quality Assessment of Diagnostic Accu-
racy Studies (QUADAS-2) tool [9]. An additional evalu-
ation using the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) checklist [10] has been recommended to iden-
tify several significant items for reporting transparency 
of radiomics studies [11–14]. Further, RQS and TRIPOD 
may not be totally suitable for current radiomics studies, 
since recently developed deep radiomics applies convo-
lutional neural networks to analyze these extracted fea-
tures [15–18]. The Checklist for Artificial Intelligence in 
Medical Imaging (CLAIM) [19] has been demonstrated 
as a useful tool to improve design and reporting of deep 

Fig. 1  Flow diagram of study inclusion
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learning research [20, 21]. It is potentially better for the 
evaluation of current radiomics studies with increasing 
application of deep learning. Finally, the level of evidence 
supporting the radiomics application in osteosarcoma 
has not been evaluated yet [22]. It is of importance to 
provide an overall evidence strength rating before trans-
lating radiomics into clinical practice [23, 24]. Therefore, 
we hypothesized that the publication of the previous 
review could improve the radiomics study quality in oste-
osarcoma, and that CLAIM is a better tool for current 
radiomics studies.

The aim of the present study is to provide an updated 
systematic review of radiomics in osteosarcoma with 
quality assessment and evidence-level rating and find out 
whether CLAIM can better identify disadvantages in cur-
rent radiomics studies.

Methods
Protocol and registration
The updating of this systematic review was decided 
according to a three-step decision framework [25] and 
was conducted in the style of the Preferred Report-
ing Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) statement [26]. The review protocol 

(CRD42020175383) and updating information are pre-
sent in Additional file 1: Note S1. The PRISMA checklist 
for current systematic review and meta-analysis  is pre-
sent as Additional file 2.

Literature search and selection
An up-to-date literature search was performed via Pub-
Med, Embase, Web of Science, China National Knowl-
edge Infrastructure, and Wanfang Data until May 15, 
2022, by two reviewers each with 4 years’ experience in 
radiology and radiomics research. Disagreements were 
solved by a review group consisting of radiologists, ortho-
pedists, and pathologists with different levels of experi-
ence. All primary research assessing the role of radiomics 
in osteosarcoma treatment for diagnostic, prognostic, 
or predictive purposes was considered eligible for the 
current review. No publication period  restrictions were 
applied, while only articles in English, Japanese, Chi-
nese, German or French were available. The two review-
ers screened the titles and abstracts after the removal of 
duplications and obtained the full-texts and their sup-
plementary materials. The same reviewers determined 
their eligibility according to the inclusion and exclusion 
criteria. Other potentially eligible articles were identified 

Table 1  Study characteristics

There were 33 radiomics models identified in 29 included studies. The model type was determined according to criteria in TRIPOD statement. TRIPOD Transparent 
Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis

Study Characteristics Data

Sample size, mean ± standard deviation, median (range) 86.6 ± 45.8, 
81 (17–191)

Journal type, n (%) N = 29

 Imaging 13 (44.8)

 Non-imaging 16 (55.2)

First authorship, n (%) N = 29

 Radiologist 19 (65.5)

 Non-radiologist 10 (34.5)

Imaging modality, n (%) N = 29

 CT 9 (31.0)

 MRI 14 (48.3)

 PET 6 (20.7)

Biomarker, n (%) N = 33

 Diagnostic 3 (9.1)

 Predictive 18 (54.5)

 Prognostic 12 (36.4)

Model type, n (%) N = 33

 Type 1a: Developed model validated with exactly the same data 8 (24.2)

 Type 1b: Developed model validated with resampling data 8 (24.2)

 Type 2a: Developed model validated with randomly splitting data 12 (36.4)

 Type 2b: Developed model validated with non-randomly splitting data 1 (3.0)

 Type 3: Developed model validated with separate data 4 (12.1)

 Type 4: Validation only 0 (0.0)
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from the reference lists of relevant articles and reviews. 
For uncertainties, the review group was consulted. The 
search and selection strategy is shown in Additional 
file 1: Note S2.

Data extraction and quality assessment
We used a data collection sheet for bibliographical infor-
mation, study characteristics, radiomics considerations, 
and model metrics (Additional file  1: Table  S1) [8]. The 
eligible studies employed RQS [7], TRIPOD [10], CLAIM 
[19], and QUADAS-2 tools [9] (Additional file 1: Tables 
S2–S5). The RQS is a consensus list composed of sixteen 
items for methodological issues specific to radiomics 
studies and is later summarized to six key domains [12–
14]. The TRIPOD statement provides a checklist consist-
ing of thirty-seven items in twenty-two criteria aiming to 
promote transparency of prediction model studies and is 
recommended for identifying room of improvement in 
radiomics studies [12–14]. The CLAIM includes forty-
two items in seven topics that should be viewed as a best 
practice to guide presentation of AI research [19]. The 

CLAIM has seldomly been employed for quality assess-
ment of radiomics studies [20, 21]. However, we assumed 
that CLAIM is suitable for radiomics studies evalua-
tion, as radiomics is a subset of AI application in medi-
cal imaging [15–18]. The QUADAS-2 tool was tailored to 
our review by modifying the signaling questions [8]. Two 
reviewers independently extracted the data and evaluated 
the studies. Disagreements were solved by discussion 
with the review group. Topics discussed are recorded in 
Additional file 1: Note S3.

Data synthesis and analysis
The statistical analysis was performed with R language 
version 4.1.3 within RStudio version 1.4.1106 [27]. The 
RQS rating, the ideal percentage of RQS, and adherence 
rates of RQS, TRIPOD and CLIAM were calculated. 
In case a score of at least one point for each item was 
obtained without minus points, it was considered to have 
basic adherence, as those have been reported [12–14]. 
For example, if the item of validation in RQS obtained 
2–5 points, it was considered as basic adherent, while 

Fig. 2  Imaging in osteosarcoma and radiomics study topics. Imaging examination is a routine in diagnosis and treatment decision in osteosarcoma. 
Radiomics has shown potential in personal precision medicine in this process. The study topics and number of radiomics studies in osteosarcoma 
with imaging modality were summarized. Note two studies built a prediction model for the response to NAC and a prognostic model for survival, 
respectively; and two studies built one prediction model for response to NAC a prognostic model for survival, respectively. This resulted in 33 
radiomics models in 29 included studies. OS osteosarcoma, ES Ewing sarcoma, CS chondrosarcoma
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it was regarded as without basic adherence when it was 
rated as -5 points. The QUADAS-2 assessment result 
was summarized. Pearson correlation test was used for 
the correlation analysis between the ideal percentage of 
RQS, the TRIPOD adherence rate and the CLAIM adher-
ence rate. Subgroup analysis was performed to compare 
the ideal percentage of RQS, the TRIPOD adherence 
rate and the CLAIM adherence rate by journal type, first 
authorship, imaging modality, and publication period. A 
two-tailed p value < 0.05 indicated statistical significance, 
unless otherwise specified. Post hoc multiple compari-
sons were adjusted using the Bonferroni method. The 
detailed data analysis method is described in Additional 
file 1: Note S4.

The meta-analysis was performed using Stata soft-
ware version 15.1 [28]. In the current systematic review, 
the role of MRI-driven radiomics in prediction of oste-
osarcoma patients’ response to NAC was addressed 
repeatedly. To present the true performance of the 
radiomics model, corresponding meta-analysis was 
conducted based on results of testing datasets. The two-
by-two tables were directly extracted from the articles 
or reconstructed based on available data. The diagnostic 
odds ratio (DOR) with 95% confidence interval (CI) and 
corresponding p value were calculated using the random-
effect model. Sensitivity, specificity, positive and nega-
tive likelihood ratio were estimated. A summary receiver 

operating characteristic (SROC) curve was drawn. The 
Cochran’s Q test and the Higgins I2 test were used for 
heterogeneity assessment. The funnel plot was drawn 
with Egger’s test and Begg’s test, and the Deeks’ funnel 
plot was constructed with Deeks’ funnel plot asymmetry 
test for publication bias. A two-tailed p value > 0.10 indi-
cated a low publication bias. The trim and fill method 
was employed to estimate the number of missing studies. 
The level of evidence supporting the clinical application 
of radiomics in osteosarcoma was rated based on results 
of meta-analysis (Additional file 1: Table S6) [22].

Results
Literature search
The search yielded 251 records in total, in which 142 
remained after removing duplicates. After screening the 
titles and abstracts, full-texts of 47 articles were retrieved 
and reviewed. Ultimately, 29 articles were included in 
this systematic review [29–57] (Fig.  1). No additional 
eligible study was identified through hand search of rel-
evant reviews and reference lists of eligible articles.

Study characteristics
Table 1 and Fig. 2 summarized the characteristics of 33 
models described in the 29 included studies. The sam-
ple size of studies ranged from 17 to 191 patients with a 
median of 81 patients. More than a half of studies were 
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Fig. 3  Quality assessment of included studies. a ideal percentage of RQS; b TRIPOD adherence rate; c CLAIM adherence rate; d QUADAS-2 
assessment result
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published on non-imaging journals (55.2%), while the 
majority of first authorship belonged to radiologists 
(65.5%). The most utilized imaging modality was MRI 
(48.3%). Almost half of the models aimed to predict the 
response to NAC (48.5%), followed by prognostic models 
for survival (18.2%) and those for recurrence or metasta-
sis (9.1%). Most models were validated within the same 
data with or without resampling (48.5%), while a limited 
number of models were externally validated (12.1%). The 
detailed characteristics of studies are present in Addi-
tional file 1: Tables S7–S10.

Study quality
Figure 3 summarized the results of study quality evalua-
tion. Table 2 showed that the median (range) of RQS for 
current osteosarcoma radiomics studies was 10 (3–18), 
with a percentage of the ideal score of 29.2% (305/1044) 
and the adherence rate of 44.6% (207/464). Tables 3 and 4 
presented that the TRIPOD and CLAIM adherence rates 
were 59.2% (481/812) and 63.7% (961/1508), respectively. 
The risk of bias and applicability concerns were mainly 

related to the index test. The individual assessment for 
each study is present in Additional file 1: Tables S11–S14.

RQS addressed a radiomics-specific issue of phantom 
study (0.0%) and the deficiency in cut-off analysis (0.0%) 
and cost-effectiveness analysis (0.0%). TRIPOD empha-
sized the shortness in reporting title (6.9%), blindness of 
assessment for outcomes and predictors (10.3%; 13.7%), 
and stating study objective in introduction (24.1%). Both 
RQS and CLAIM indicated a low percentage of compar-
ing the model with the benchmark (27.6%; 27.6%), while 
both TRIPOD and CLAIM pointed out the disadvantages 
in sample size or power calculation (10.3%; 13.7%), and 
missing data handling (20.7%; 20.7%). CLAIM identi-
fied extra lacking in reporting in data de-identification 
(10.3%), stating study hypothesis in introduction (13.8%), 
and failure analysis (17.2%). All the above three tools 
emphasized the validation (25/145, 17.2%; 32/64, 50.0%; 
16/29, 55.2%) and open science or additional informa-
tion (10/116, 8.6%; 6/58, 10.3%; 6/87, 6.9%). The corre-
lation between RQS and TRIPOD (r = 0.7498, p < 0.001) 
was moderate, while that between TRIPOD and CLAIM 

Table 2  RQS rating of included studies

The ideal score was described as score and percentage of score to ideal score for each item. In the cases where a score of one point per item was obtained, the study 
was considered to have basic adherence to each item. The adherence rate was calculated as proportion of the number of articles with basic adherence to number of 
total articles

RQS Radiomics Quality Score

16 items according to 6 key domains Range Median (range) Percentage of ideal 
score, n (%)

Adherence rate, n (%)

Total 16 items − 8–36 10 (3–18) 305/1044 (29.2) 207/464 (44.6)

Domain 1: protocol quality and stability in image and 
segmentation

0–5 2 (0–3) 50/145 (34.5) 50/116 (43.1)

 Protocol quality 0–2 1 (0–1) 22/58 (37.9) 22/29 (75.9)

 Multiple segmentations 0–1 1 (0–1) 20/29 (69.0) 20/29 (69.0)

 Test–retest 0–1 0 (0–1) 8/29 (27.6) 8/29 (27.6)

 Phantom study 0–1 0 (0–0) 0/29 (0.0) 0/29 (0.0)

Domain 2: feature selection and validation − 8 to 8 5 (− 8 to 8) 94/232 (40.5) 49/58 (84.5)

 Feature reduction or adjustment of multiple testing − 3 to 3 3 (3–3) 69/87 (79.3) 26/29 (89.7)

 Validation − 5 to 5 2 (− 5 to 5) 25/145 (17.2) 23/29 (79.3)

Domain 3: biologic/clinical validation and utility 0–6 2 (0–5) 69/174 (39.7) 61/116 (52.6)

 Non-radiomics features 0–1 1 (0–1) 18/29 (62.1) 18/29 (62.1)

 Biologic correlations 0–1 1 (0–1) 27/29 (93.1) 27/29 (93.1)

 Comparison to “gold standard” 0–2 0 (0 to 2) 16/58 (27.6) 8/29 (27.6)

 Potential clinical utility 0–2 0 (0–1) 8/58 (13.8) 8/29 (27.6)

Domain 4: model performance index 0 to 5 2 (1–4) 61/145 (42.1) 35/87 (40.2)

 Cut-off analysis 0–1 0 (0–0) 0/29 (0.0) 0/29 (0.0)

 Discrimination statistics 0–2 2 (1–2) 49/58 (84.5) 29/29 (100.0)

 Calibration statistics 0–2 0 (0–2) 12/58 (20.7) 6/29 (20.7)

Domain 5: high level of evidence 0–8 0 (0–7) 21/232 (9.1) 3/58 (5.2)

 Prospective study 0–7 0 (0–7) 21/203 (10.3) 3/29 (10.3)

 Cost-effectiveness analysis 0–1 0 (0–0) 0/29 (0.0) 0.29 (0.0)

Domain 6: open science and data 0–4 0 (0–2) 10/116 (8.6) 9/29 (31.0)
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Table 3  TRIPOD adherence of included studies

37 Selected items in 22 criteria according to 7 sections (N = 29) Study, n (%)

Overall (excluding items 5c, 11, 14b, 10c, 10e, 12, 13, 17, and 19a) 481/812 (59.2)

Section 1: Title and Abstract 18/58 (31.0)

 1. Title—identify developing/validating a model, target population, and the outcome 2/29 (6.9)

 2. Abstract—provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, 
and conclusions

16/29 (55.2)

Section 2: Introduction 36/58 (62.1)

 3a. Background—Explain the medical context and rationale for developing/validating the model 29/29 (100.0)

 3b. Objective—Specify the objectives, including whether the study describes the development/validation of the model or both 7/29 (24.1)

Section 3: Methods 218/277 (57.8)

 4a. Source of data—describe the study design or source of data (randomized trial, cohort, or registry data) 29/29 (100.0)

 4b. Source of data—specify the key dates 29/29 (100.0)

 5a. Participants—specify key elements of the study setting including number and location of centers 29/29 (100.0)

 5b. Participants—describe eligibility criteria for participants (inclusion and exclusion criteria) 22/29 (75.9)

 5c. Participants—give details of treatment received, if relevant (N = 25) 16/25 (64.0)

 6a. Outcome—clearly define the outcome, including how and when assessed 27/29 (93.1)

 6b. Outcome—report any actions to blind assessment of the outcome 3/29 (10.3)

 7a. Predictors—clearly define all predictors, including how and when assessed 10/29 (34.5)

 7b. Predictors—report any actions to blind assessment of predictors for the outcome and other predictors 4/29 (13.8)

 8. Sample size—explain how the study size was arrived at 3/29 (10.3)

 9. Missing data—describe how missing data were handled with details of any imputation method 6/29 (20.7)

 10a. Statistical analysis methods—describe how predictors were handled 29/29 (100.0)

 10b. Statistical analysis methods—specify type of model, all model-building procedures (any predictor selection), and method for internal 
validation

21/29 (72.4)

 10d. Statistical analysis methods—specify all measures used to assess model performance and if relevant, to compare multiple models 
(discrimination and calibration)

6/29 (20.7)

 11. Risk groups—provide details on how risk groups were created, if done (N = 0) n/a

Section 4: Results 117/174 (67.2)

 13a. Participants—describe the flow of participants, including the number of participants with and without the outcome. A diagram may be 
helpful

16/29 (55.2)

 13b. Participants—describe the characteristics of the participants, including the number of participants with missing data for predictors and 
outcome

26/29 (89.7)

 14a. Model development—specify the number of participants and outcome events in each analysis 23/29 (79.3)

 14b. Model development—report the unadjusted association between each candidate predictor and outcome, if done (N = 5) 4/5 (80.0)

 15a. Model specification—present the full prediction model to allow predictions for individuals (regression coefficients, intercept) 21/29 (72.4)

 15b. Model specification—explain how to the use the prediction model (nomogram, calculator, etc.) 11/29 (37.9)

 16. Model performance—report performance measures (with confidence intervals) for the prediction model 20/29 (69.0)

Section 5: Discussion 86/87 (98.9)

 18. Limitations—Discuss any limitations of the study 28/29 (96.6)

 19b. Interpretation—Give an overall interpretation of the results 29/29 (100.0)

 20. Implications—Discuss the potential clinical use of the model and implications for future research 29/29 (100.0)

Section 6: Other information 6/58 (10.3)

 21. Supplementary information—provide information about the availability of supplementary resources, such as study 0/29 (0.0)

 22. Funding—give the source of funding and the role of the funders for the present study 6/29 (20.7))

Section 7: Validation for Model type 2a, 2b, 3, and 4 (N = 16) 32/64 (50.0)

 10c. Statistical analysis methods—describe how the predictions were calculated 15/16 (93.8)

 10e. Statistical analysis methods—describe any model updating (recalibration), if done (N = 0) n/a

 12. Development versus validation—Identify any differences from the development data in setting, eligibility criteria, outcome, and predic-
tors

10/16 (62.5)

 13c. Participants (for validation)—show a comparison with the development data of the distribution of important variables 2/16 (12.5)

 17. Model updating—report the results from any model updating, if done (N = 0) n/a

 19a. Interpretation (for validation)—discuss the results with reference to performance in the development data and any other validation data 5/16 (31.3)
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(r = 0.9004, p < 0.001) and that between RQS and CLAIM 
(r = 0.8158, p < 0.001) were high (Additional file  1: Fig. 
S1).

Figure  4 presents results of study quality evaluation 
with impact factor, sample size, and publication year. 
We compared the quality of studies published before 
and after the previous review and found that the ideal 
percentage of RQS (22.7% vs 33.8%, p = 0.020), the TRI-
POD adherence rate (53.6% vs 63.4%, p = 0.026), and 
the CLAIM adherence rate (56.1% vs 69.1%, p = 0.007) 
have all been improved (Additional file 1: Table S15 and 
Additional file  1: Fig. S2). Subgroup analysis also found 
that imaging modalities utilized in studies have influ-
ence on TRIPOD and CLAIM adherence rates (p = 0.002, 
p = 0.004). The journal type and first authorship did not 
significantly influence study quality (both p > 0.05).

Meta‑analysis
The meta-analysis of radiomics predicting NAC response 
by MRI presented a DOR of 28.83 (95%CI 10.27–80.95) 
on testing datasets of 115 osteosarcoma patients in total 
[35, 39, 55, 57] (Fig. 5). The corresponding metrics indi-
cates a dramatic performance (Additional file  1: Figs. 
S3–S7). The Cochran’s Q test (Q = 5.18, p = 0.160) and 
Higgins I-square statistic (I2 = 42.04%) indicated that the 
heterogeneity was moderate. The funnel plot with Egger’s 
test (p = 0.035) and Begg’s test (p = 0.089) and the Deeks’ 
funnel plot with Deeks’ asymmetry test (p = 0.069) 
revealed that the likelihood of publication bias was high 
(Additional file  1: Figs. S8–S9). The trim and fill analy-
sis estimated that two studies were missing (Additional 
file  1: Fig. S10). However, the adjusted DOR was 20.53 
(95%CI 7.80–54.06; p < 0.001). The level of evidence sup-
porting the application of radiomics in predicting NAC 
response by MRI is rated as weak (Table 5). All meta-ana-
lyzed data are presented in Additional file 1: Table S16.

Discussion
We provided an updated systematic review on osteo-
sarcoma radiomics. Although the overall methodologi-
cal and reporting quality of included studies was still 
suboptimal, it has improved after the publication of the 
previous review. The evidence supporting MRI-driven 
radiomics to predict NAC response in osteosarcoma has 
been rated as weak based on meta-analysis of testing 
data. CLAIM has shown unique ability in capturing defi-
ciency in radiomics studies with deep learning.

In the previous review, the most frequently investi-
gated question was whether radiomics could predict the 
NAC response [8], and it is still the most attractive topic 
nowadays in osteosarcoma radiomics [29–32, 35, 38–44, 
49, 53, 55, 57]. The current review identified two stud-
ies each for differential diagnosis [37, 54], for metastasis 
at diagnosis [46, 47], and for early recurrence [33, 34] of 
osteosarcoma, while none of the previous twelve studies 
touched upon these topics. These achievements cover 
the routine for osteosarcoma and have potential in aid-
ing clinicians to improve their treatment decision. MRI 
is currently the most frequently utilized imaging modal-
ity, and CT has exceeded PET to become the second. In 
terms of MRI techniques, T1 mapping and dynamic con-
trast-enhanced MRI have been introduced into osteosar-
coma radiomics studies [31, 55]. However, whether these 
advanced techniques allow radiomics to better answer 
the clinical questions has not been fully investigated. 
Although most of studies segmented ROIs manually, two 
studies and one study, respectively, employed the region 
growing method based on the threshold of SUV [40, 42] 
and a deep learning nnU-Net [57] for automatic segmen-
tation. These approaches may liberate radiologists from 
time-consuming segmentation workloads and potentially 
make osteosarcoma radiomics an automatic pipeline for 
clinical use. In addition to segmentation, deep learning 
models have been compared with radiomics models and 
showed better performance in predicting NAC response 
and metastasis [41, 42], and the performance of radiom-
ics models improved when incorporating deep learn-
ing features [50]. The application of deep learning has 
not been detected by the previous review, but currently 
more studies used deep learning to further mine infor-
mation in images. More studies tested their model using 
datasets from other institutions [33–35, 45] or splitting 
testing datasets [39, 44, 46–48, 50–57] to show the true 
performance of their models, while none of the studies 
in the previous review has been externally validated. The 
improvements in validation settings allow us to meta-
analyze the performance of radiomics for prediction of 
NAC response based on testing datasets. The pooled 
DOR is lower than that in the previous review (28.83 vs 
43.68), but result of the present review is more robust and 
interpretable [23]. We only included MRI-driven radiom-
ics models which have been evaluated on testing datasets 
[35, 39, 55, 57], while the previous meta-analysis was car-
ried out based on any imaging modality or dataset.

Table 3  (continued)
In the cases where a score of one point per item was obtained, the study was considered to have basic adherence to each item. The adherence rate was calculated as 
proportion of the number of articles with basic adherence to number of total articles. During the calculation, the “if done” or “if relevant” items (5c, 11, and 14b) and 
validation items (10c, 10e, 12, 13, 17, and 19a) were excluded from both the denominator and numerator

TRIPOD Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis, n/a not applicable
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Table 4  CLAIM adherence of included studies

CLAIM items (N = 29) Study, n (%)

Overall (excluding item 27) 961/1508 (63.7)

Section 1: Title and Abstract 53/58 (91.4)

 1. Title or abstract—Identification as a study of AI methodology 29/29 (100.0)

 2. Abstract—Structured summary of study design, methods, results, and conclusions 24/29 (82.8)

Section 2: Introduction 55/87 (63.2)

 3. Background—scientific and clinical background, including the intended use and clinical role of the AI approach 29/29 (100.0)

 4a. Study objective 22/29 (75.9)

 4b. Study hypothesis 4/29 (13.8)

Section 3: Methods 700/1044 (67.0)

 5. Study design—Prospective or retrospective study 29/29 (100.0)

 6. Study design—Study goal, such as model creation, exploratory study, feasibility study, non-inferiority trial 29/29 (100.0)

 7a. Data—Data source 29/29 (100.0)

 7b. Data—Data collection institutions 29/29 (100.0)

 7c. Data—Imaging equipment vendors 25/29 (86.2)

 7d. Data—Image acquisition parameters 22/29 (75.9)

 7e. Data—Institutional review board approval 28/29 (96.6)

 7f. Data—Participant consent 24/29 (82.8)

 8. Data—Eligibility criteria 22/29 (75.9)

 9. Data—Data pre-processing steps 20/29 (69.0)

 10. Data—Selection of data subsets (segmentation of ROI in radiomics studies) 26/29 (89.7)

 11. Data—Definitions of data elements, with references to Common Data Elements 29/29 (100.0)

 12, Data—De-identification methods 3/29 (10.3)

 13. Data—How missing data were handled 6/29 (20.7)

 14. Ground truth—Definition of ground truth reference standard, in sufficient detail to allow replication 27/29 (93.1)

 15a. Ground truth—Rationale for choosing the reference standard (if alternatives exist) 0/29 (0.0)

 15b. Ground truth—Definitive ground truth 29/29 (100.0)

 16. Ground truth—Manual image annotation 17/29 (586)

 17. Ground truth—Image annotation tools and software 10/29 (34.5)

 18. Ground truth—Measurement of inter- and intra-rater variability; methods to mitigate variability and/or resolve discrepancies 9/29 (31.0)

 19a. Data Partitions—Intended sample size and how it was determined 29/29 (100.0)

 19b. Data Partitions—Provided power calculation 4/29 (13.8)

 19c. Data Partitions—Distinct study participants 23/29 (79.3)

 20. Data Partitions—How data were assigned to partitions; specify proportions 22/29 (75.9)

 21. Data Partitions—Level at which partitions are disjoint (e.g., image, study, patient, institution) 22/29 (75.9)

 22a. Model—Provided reproducible model description 21/29 (72.4)

 22b. Model—Provided source code 0/29 (0.0)

 23. Model—Software libraries, frameworks, and packages 20/29 (69.0)

 24. Model—Initialization of model parameters (e.g., randomization, transfer learning) 23/29 (79.3)

 25. Training—Details of training approach, including data augmentation, hyperparameters, number of models trained 16/29 (55.2)

 26. Training—Method of selecting the final model 21/29 (72.4)

 27. Training—Ensembling techniques, if applicable (N = 14) 8/14 (57.1)

 28. Evaluation—Metrics of model performance 29/29 (100.0)

 29. Evaluation—Statistical measures of significance and uncertainty (e.g., confidence intervals) 20/29 (69.0)

 30. Evaluation—Robustness or sensitivity analysis 10/29 (34.5)

 31. Evaluation—Methods for explainability or interpretability (e.g., saliency maps), and how they were validated 11/29 (37.9)

 32. Evaluation—Validation or testing on external data 16/29 (55.2)

Section 4: Results 90/174 (51.7)

 33. Data—Flow of participants or cases, using a diagram to indicate inclusion and exclusion 16/29 (55.2)

 34. Data—Demographic and clinical characteristics of cases in each partition 25/29 (86.2)
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Study quality has improved since the publication of 
the previous review. However, the overall study qual-
ity is suboptimal. RQS and TRIPOD have identified 

disadvantages in phantom study, cut-off analysis, cost-
effectiveness analysis, blindness of assessment, sample 
size calculation, and missing data handling, which have 

Table 4  (continued)

CLAIM items (N = 29) Study, n (%)

 35a. Model performance—Test performance 16/29 (55.2)

 35b. Model performance—Benchmark of performance 8/29 (27.6)

 36. Model performance—Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals) 20/29 (69.0)

 37. Model performance—Failure analysis of incorrectly classified cases 5/29 (17.2)

Section 5: Discussion 57/58 (98.3)

 38. Study limitations, including potential bias, statistical uncertainty, and generalizability 28/29 (96.6)

 39. Implications for practice, including the intended use and/or clinical role 29/29 (100.0)

Section 6: Other information 6/87 (6.9)

 40. Registration number and name of registry 0/29 (0.0)

 41. Where the full study protocol can be accessed 0/29 (0.0)

 42. Sources of funding and other support; role of funders 6/29 (20.7)

CLAIM Checklist for Artificial Intelligence in Medical Imaging. In the cases where a score of one point per item was obtained, the study was considered to have basic 
adherence to each item. The adherence rate was calculated as proportion of the number of articles with basic adherence to number of total articles. During the 
calculation, the “if applicable” item (27) was excluded from both the denominator and numerator
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been repeatedly addressed [8, 12–14]. The previous 
review only employed RQS for quality assessment. RQS 
was a specialized tool proposed to help the radiomics 
community assess the quality and value of a radiomics 
study. However, RQS was tailored on hand‐crafted fea-
tures. As deep learning is gaining momentum, the cur-
rent version of RQS may not capture the strengths and 
weaknesses of deep learning radiomics studies correctly 
[58]. TRIPOD is a similar example that aimed to promote 
transparency reporting of diagnostic accuracy model 
studies and has been recommended to identify room for 
improvements in radiomics studies [11]. Nevertheless, 
the current version of TRIPOD may not capture some 
unique challenges with machine learning or AI applica-
tion [59]. In contrast, CLAIM captured unique shortness 
in our review, such as data de-identification and failure 
analysis. CLAIM has been employed as a useful tool for 
quality evaluation in deep learning studies [20, 21], and 
our review demonstrated the feasibility of CLAIM in 
radiomics studies. We further confirmed that CLAIM 
can serve as a better review and study design guideline 
in radiomics studies. CLAIM may guide the update of 
TRIPOD and RQS, because it not only includes general 
reporting criteria, but also allows extra distinguishment 
of unique shortness in deep learning. CLAIM may even 
replace RQS and TRIPOD, considering the overlapping 
items and high correlation between these tools. The 
researchers are still reticent in publishing the RQS and 
TRIPOD for their radiomics studies [58]. Only one study 

in our review included RQS, TRIPOD and CLAIM as 
supplementary materials [57].

Our review has several limitations. First, our review 
focused on osteosarcoma radiomics studies. The conclu-
sion should be interpreted with caution when expanded 
to other diseases. However, it provided insights for the 
design and reporting radiomics studies. Second, our 
study only included AI research applying the radiom-
ics approach, but overlooked those conducted with only 
deep learning for segmentation [60–62] or modeling [63]. 
However, the secondary aim of our study is to find out 
whether CLAIM can better identify disadvantages in 
radiomics studies than the currently recommended RQS 
and TRIPOD. As CLAIM is suitable for both radiom-
ics and deep learning radiomics studies, future review is 
encouraged to carry out without the restriction of radi-
omics. Third, it has not been investigated in our review 
how to weigh each item in CLAIM. The previous reviews 
have created subitems for some evaluations [20] and 
weighed them as equal [21]. We treated each subitem as 
equal, but it is necessary to find out whether it is appro-
priate. Fourth, we did not employ more specific tools for 
evaluation, because they are not suitable or are currently 
under development [59, 64–68]. The review may ben-
efit from the increasing study reporting guidelines for 
clinical studies using AI in healthcare, because they pay 
extra attention to additional factors which do not neatly 
conform to traditional reporting guidelines, especially 
details relating to technical algorithm development [69]. 

Q =  5.18, df = 3.00, p =  0.16

I2 = 42.04 [0.00 - 100.00]
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Fig. 5  Forest plots of diagnostic odds ratios. The performance of radiomics in prediction of NAC response in osteosarcoma patients based on 
testing datasets. TP pathological good responders predicted as good responders, FP pathological poor responders predicted as good responders, 
FN pathological good responders predicted as poor responders, TN pathological poor responders predicted as poor responders
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The Image Biomarkers Standardization Initiative (IBSI) 
guideline is another potential eligible checklist for quality 
elevation [70]. However, we did not apply it as previous 
reviews [14, 24], since this radiomics-specific checklist 
may not suitable for deep learning studies. Finally, due 
to the heterogeneity and limited numbers of studies, we 
only rated the evidence level of radiomics in prediction 
of NAC response. Further investigation is needed to lay a 
more robust scientific basis for translating the radiomics 
approach to a clinical useful tool [23, 24].

In conclusion, the quality of radiomics studies in oste-
osarcoma has improved in recent years, but is still sub-
optimal. MRI-driven radiomics for prediction of NAC 
response in osteosarcoma is rated as weak evidence 
according to meta-analysis of testing datasets, call-
ing for more high-quality studies to promote radiomics 
application in osteosarcoma. CLAIM can better identify 
disadvantages in radiomics studies and therefore is rec-
ommended for future evaluation of AI studies including 
radiomics.
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