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Abstract 

Background:  Preoperative differentiation between benign and borderline epithelial ovarian tumors (EOTs) is chal-
lenging and can significantly impact clinical decision making. The purpose was to investigate whether radiomics 
based on T2-weighted MRI can discriminate between benign and borderline EOTs preoperatively.

Methods:  A total of 417 patients (309, 78, and 30 samples in the training and internal and external validation sets) 
with pathologically proven benign and borderline EOTs were included in this multicenter study. In total, 1130 radi-
omics features were extracted from manually delineated tumor volumes of interest on images. The following three 
different models were constructed and evaluated: radiomics features only (radiomics model); clinical and radiologi-
cal characteristics only (clinic-radiological model); and a combination of them all (combined model). The diagnostic 
performances of models were assessed using receiver operating characteristic (ROC) analysis, and area under the ROC 
curves (AUCs) were compared using the DeLong test.

Results:  The best machine learning algorithm to distinguish borderline from benign EOTs was the logistic regression. 
The combined model achieved the best performance in discriminating between benign and borderline EOTs, with an 
AUC of 0.86 ± 0.07. The radiomics model showed a moderate AUC of 0.82 ± 0.07, outperforming the clinic-radiological 
model (AUC of 0.79 ± 0.06). In the external validation set, the combined model performed significantly better than the 
clinic-radiological model (AUCs of 0.86 vs. 0.63, p = 0.021 [DeLong test]).

Conclusions:  Radiomics, based on T2-weighted MRI, can provide critical diagnostic information for discriminating 
between benign and borderline EOTs, thus having the potential to aid personalized treatment options.
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Key points

•	 T2-weighted MRI-based radiomics could preopera-
tively discriminate benign and borderline EOTs.

•	 Radiomics combined with clinical/radiological char-
acteristics help differentiate benign and borderline 
EOTs.

•	 Different machine learning algorithms had different 
diagnostic performances.
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Background
Borderline epithelial ovarian tumors (EOTs) have been 
classified as a separate category and account for approxi-
mately 10% to 20% of all EOTs [1, 2]. The peak inci-
dence of borderline EOTs was at the age of 55–59 years, 
with a rate of approximately 4.5–7.3/10,0000 [3, 4]. The 
median age at diagnosis for borderline EOTs was around 
50  years, and more than a third of cases occurred in 
women younger than 40  years of age [3–5]. One study 
showed that patients with borderline EOTs were mostly 
asymptomatic or had only abdominal pain or menstrual 
abnormalities, and borderline EOTs are closer to benign 
ones than to malignant ones [6]. Pathologically, border-
line EOTs have no destructive stromal invasion [7]. How-
ever, borderline EOTs are considered as precursor lesions 
to ovarian cancer of the corresponding histologic type 
[8]. Misdiagnosing borderline EOTs as benign lesions 
may result in some patients choosing nonsurgical treat-
ment, such as ultrasound follow-up, which carries a risk 
of resulting in borderline EOTs malignant transforma-
tion or spread [9]. Although conservative fertility surgery 
is recommended for both benign and borderline EOTs, 
gynecologists require a more objective and reliable pre-
operative evaluation for the latter to weigh the stakes 
between tumor recurrence and fertility preservation [10, 
11]. Hence, there is a need for accurate preoperative dif-
ferentiation between borderline and benign EOTs.

Ultrasound is the first-line choice for ovarian tumor 
diagnosis, but its sensitivity for the diagnosis of bor-
derline EOTs was only 0.660 [12]. Magnetic resonance 
imaging (MRI) has been demonstrated to be superior to 
ultrasound for assessing complex ovarian lesions [13]. 
The advent of the ovarian-adnexal reporting data sys-
tem (O-RADS) MRI score has improved the diagnostic 
accuracy of ovarian neoplasms [14]. Nevertheless, studies 
have shown that differentiating borderline from benign 
EOTs on conventional MRI remains a nontrivial chal-
lenge for radiologists due to the complexity of the tumor 
morphology and the similarity of the MRI signs [15, 16]. 
For example, Park et al. reported that there is no signifi-
cant difference between borderline and benign EOTs in 
the number and size of separations on conventional MRI 
[17]. Upon considering the limitations of conventional 
MRI in differentiating borderline EOTs from benign 
EOTs, there is a clear need for new methods to aid the 
diagnosis.

Radiomics has emerged as a powerful tool in oncol-
ogy research. This method can convert routine medical 
images into quantitative features, thus reflecting valu-
able information that cannot be identified by the naked 
eye [18, 19]. To date, MRI-based radiomics methods 
have been shown to assist radiologists in differentiating 

between type Ι and type ΙΙ epithelial ovarian cancers 
[20] and classifying benign and malignant ovarian 
tumors [21, 22]. A phantom study demonstrated that 
T2-weighted (T2W) images have advantages in radiom-
ics because interobserver reproducibility was better for 
radiomics features derived from T1-weighted images 
(intraclass correlation coefficient [ICC] ≥ 0.75) than 
from T1-weighted images (ICC = 0.60–0.71) [23]. Previ-
ous studies have focused on the differentiation between 
malignant and borderline EOTs [24, 25]. However, to our 
knowledge, the potential role of T2W MRI-based radi-
omics in differentiating between benign and borderline 
EOTs has not been established.

Therefore, the primary aim of this retrospective mul-
ticenter study was to evaluate T2W MRI-based radiom-
ics in preoperatively distinguishing between benign and 
borderline EOTs.

Methods
Patients
This retrospective multicenter study was approved 
by the institutional review boards, and the written 
informed consent was waived for this study. A review 
of clinical databases and the picture archiving and com-
munication system was performed to retrospectively 
enroll consecutive patients from July 2013 to July 2021 
at Center I, from January 2016 to June 2021 at Center 
II, and from January 2017 to January 2018 at Center III. 
The center information is shown in the Additional file 1 
(Section  1). The inclusion criteria were as follows: (1) 
pathologically confirmed benign or borderline EOTs; 
(2) MRI scanning performed within at least 2  weeks 
before surgery. Patients were excluded based on the 
following criteria: (1) receiving any treatment before 
MRI examination and biopsy, including chemotherapy 
or radiotherapy; (2) lack of T2W sequences; (3) poor-
quality MR images due to artifacts; (4) the tumor could 
not be fully displayed because of insufficient volume or 
too large of a tumor volume. In total, 417 patients (154 
from Center I, 233 from Center II, and 30 from Center 
III) were enrolled in the study. Patients from Center I 
and Center II were stratified into the training and inter-
nal validation sets at a ratio of 8:2. Data from Center 
III were reserved for external validation set to evalu-
ate the generalizability of the created models to data 
from separate institutions. The clinical characteristics 
of all patients, including age, menopausal status, par-
ity, abdominal symptoms, carbohydrate antigen 125 
(CA125), and human epididymis protein 4 (HE4), were 
obtained from patients’ electronic medical records. The 
details of the recruitment process are shown in Fig. 1.
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Image acquisition and tumor segmentation
Patients scanned on various 1.5  T or 3.0  T units with 
phased-array coils were all included in this study. Fat-
suppressed (FS) T2W images were used in this study. The 
scanners and imaging parameters of FS T2W are summa-
rized in the Supplementary Materials (Additional file  1: 
Table S1).

Tumor volumes of interest (VOIs) containing both the 
cystic and solid components were manually delineated 
slice-by-slice on FS T2W images by using ITK-SNAP 
software (v. 3.8.0, http://​www.​itksn​ap.​org) [26]. Only the 
one with the largest maximum diameter on axial images 
was selected for segmentation if the tumor was multifo-
cal in nature. Two examples of VOIs segmentation are 
shown in Fig. 2. Radiologist A, who had 10 years of expe-
rience in pelvic MRI diagnosis, first segmented the VOIs 
for all subjects. To evaluate the interobserver reproduc-
ibility, the VOIs of 30 patients randomly chosen from the 
training set were segmented by another radiologist (Radi-
ologist B) who had 5  years of experience in pelvic MRI 
diagnosis. To assess the intraobserver reproducibility, 

Radiologist A repeated the segmentation procedure for 
all patients after one month. The interobserver and intra-
observer reproducibility of VOIs was evaluated by ICCs, 
and ICCs > 0.80 are considered  robust and reproducible 
[27]. The first segmentation of Radiologist A was used to 
create models. Referring to one previous study [28], the 
two radiologists who performed VOIs delineation also 
independently assessed the following conventional MRI 
characteristics: (1) ascites, which was classified as none, 
mild (limited to the Douglas pouch), moderate (limited 
to the pelvic cavity), or massive (beyond the pelvic cav-
ity); (2) margin, which was classified as well-defined or 
ill-defined; (3) the number of loculi, which was classified 
as mild (< 3) or multilocular ( ≥ 3); (4) signal intensity (SI) 
of the solid component on FS T2W images (compared 
with adjacent external myometrium), which was clas-
sified as none, low, high, or mixed; (5) SI of the cystic 
component on FS T2W images (compared with urinary 
bladder), which was classified as low, moderate, or high; 
and (6) the maximum diameter. Disagreements between 
the two radiologists were rereviewed in consensus. Some 

Fig. 1  Patient recruitment and workflow of radiomics analysis

http://www.itksnap.org
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examples referred to the evaluation of signal intensity 
are shown in Supplementary Materials (Additional file 1: 
Figs. S1 and S2). The two radiologists were blinded to the 
histopathologic results and clinical information of the 
tumors when reviewing MRI images.

Feature extraction
Before radiomics processing, normalization was used to 
transform arbitrary gray intensity values into a stand-
ardized intensity range; all T2W images and masks were 
then isotopically resampled to 3 × 3 × 3  mm3 by using 
B-spline interpolation. A total of 1130 radiomics fea-
tures were extracted from VOIs by using the PyRadiom-
ics package (http://​www.​radio​mics.​io/​pyrad​iomics.​html) 
[29] in Python. Most radiomics features follow the image 
biomarker standardization initiative (IBSI) [30]. The cus-
tom settings and detailed information on radiomics fea-
tures are included in Additional file 1 (Section 2).

Feature postprocessing
ComBat harmonization was performed on the radiom-
ics features, which is desirable before building models, 
as it reduces the bias caused by different scanners (Addi-
tional file 1 [Section 3]) [31–33]. Radiomics features after 
ComBat harmonization were standardized by Z-score 
normalization (removing the mean and scaling to unit 
variance). Furthermore, we applied the synthetic minor-
ity oversampling technique (SMOTE) in the training set 
to reduce the bias of the sample imbalance [34]. Finally, 
features with ICCs < 0.8 were excluded.

Feature selection
Radiomics features had high dimensionality; thus, several 
feature selection steps were used. The Mann–Whitney 
U test was first performed to select statistically signifi-
cant features between benign and borderline EOTs in 
the training set. Second, the importance weight of each 
feature was calculated by using Random Forest (RF) 
algorithm, and the correlation coefficient between every 
two features was calculated by Spearman correlation 
analysis. For any pair of features with correlation coeffi-
cients > 0.90, the one with the lowest importance weight 
was removed from the training data. Finally, the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
algorithm was used to solve the multicollinearity prob-
lem, by selecting diagnosis-related features with only 
nonzero coefficients. More information on feature selec-
tion is shown in Additional file  1 (Section  4 and Addi-
tional file 1: Fig. S3).

Models building and evaluation
We used four different machine learning algorithms to 
construct radiomics models, including logistic regression 
(LR), support vector machine (SVM), RF, and Naive Bayes 
(NB). The best machine learning algorithm was selected 
by analyzing the fitting and generalization performance. 
We applied the learning curve to assess the trend of the 
training and cross-validation scores with the increase 
in sample size. If both the validation and training scores 
converge to a stable value, the model is considered not to 
benefit from additional training data. Furthermore, the 

Fig. 2  Two representative examples of volumes of interest (VOIs) segmentation of benign and borderline EOTs in axial fat-suppressed T2-weighted 
images. a–c A 50-year-old woman with a right benign mucinous cystadenoma; d–f a 60-year-old woman with a left borderline mucinous 
cystadenoma; a, d the original images; b, e the VOIs of ovarian masses showing in red; c, f 3D renderings of the VOIs

http://www.radiomics.io/pyradiomics.html
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learning curve can be used for comparison among mul-
tiple models. The higher the training and cross-validation 
scores, the better the fitting performance; the smaller the 
gap between the training and cross-validation score, the 
better the generalizability.

Next, we incorporated the clinical and conventional 
MRI characteristics that were statistically significant after 
univariate analysis into the radiomics model (combined 
model) to explore whether this can further improve 
the performance. These clinical and conventional MRI 
characteristics were also fed into a separate model 
(clinic-radiological model). Multiclass variables in this 
study were one-hot encoded before model building. To 
increase the comparability of the models, we selected the 
same machine learning algorithm as the one used in the 
best radiomics model. The outcomes of these three mod-
els were comprehensively compared to explore the opti-
mal model with the best diagnostic efficiency.

The area under the ROC curve (AUC) was used as 
the main indicator for model evaluation and compari-
son. The sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and accuracy 
were also calculated. Overfitting means that the model 
cannot fit well on datasets other than the training data, 
which is an indication of the model’s poor generalizabil-
ity. To reduce overfitting, all models were constructed 
with tenfold cross-validation. The diagnostic perfor-
mance of the models was evaluated by using these indica-
tors averaged over the tenfold cross-validation iterations. 
The generalizability was assessed by analyzing the AUC 
of each model in the internal and external validation sets.

Statistical analysis
All statistical analyses and graphic production were per-
formed using SPSS (v. 25; IBM), R (v. 4.11), and Python 
(v. 3.8.5). Normally distributed continuous variables are 
summarized as the means (± standard deviation), and 
non-normally distributed continuous variables are sum-
marized as the medians (interquartile ranges). Continu-
ous variables were analyzed by the Mann–Whitney U 
tests or independent sample t tests, and categorical vari-
ables were assessed by the Chi-square test or the Fisher’s 
exact tests. The DeLong test was used to compare the 
AUCs. A two-tailed p value of < 0.05 was considered sig-
nificantly different.

Results
Patients
A total of 417 patients (mean age, 45.70  years; range, 
11–95  years) with benign or borderline EOTs were 
recruited in this study. There were 309, 78, and 30 sam-
ples in the training set, internal validation set, and exter-
nal validation set, respectively. No significant differences 

were seen in terms of age (p = 0.740), menopausal sta-
tus (p = 0.581), parity (p = 0.219), abdominal symptoms 
(p = 0.362), CA125 (p = 0.118), HE4 (p = 1.000), and 
final diagnosis (p = 0.549) among these three datasets 
(Table  1). Comparing the benign and borderline lesion 
groups, two clinical characteristics (CA125 and HE4) and 
five radiological characteristics (ascites, maximum tumor 
diameter, tumor margins, SI of cystic component on FS 
T2W, and SI of solid component on FS T2W) were sig-
nificantly different (p < 0.05) in the training set (Table 2). 
Other detailed information on the clinical and radiologi-
cal characteristics of the enrolled patients is summarized 
in Tables  1 and 2, and Supplementary Materials (Addi-
tional file 1: Table S2).

Models building and evaluation
According to the learning curves, the training scores of 
logistic regression and SVM models were around 0.8 and 
cross-validation scores were greater than 0.75 (Fig. 3a, b), 
which was superior to the Naive Bayes model (the train-
ing and cross-validation scores were all < 0.7, Fig.  3d). 
The gap between the training and cross-validation scores 
was lower in the logistic regression and SVM models 
(< 0.05) than that in the Random Forest model (> 0.10, 
Fig. 3c). According to the ROC curves, the LR model and 
SVM model had similar AUCs in the training set (AUC 
of 0.82 ± 0.07 and 0.82 ± 0.08, respectively). However, 
the LR model outperformed the SVM model in both 
the internal validation set (AUC of 0.73 vs. 0.71) and the 
external validation set (AUC of 0.79 vs. 0.74) (Fig. 3e, f ). 
The RF model had an AUC of 0.83 ± 0.06 in the training 
set, but its AUC was only 0.44 in the external validation 
(Fig. 3g). The NB model had lowest AUCs in the training 
set (0.75 ± 0.08), internal validation set (0.59), and exter-
nal validation set (0.44) (Fig. 3h). Therefore, the radiom-
ics model constructed by the LR algorithm was optimal.

After tenfold cross-validation, the combined model 
exhibited best diagnostic efficiency, with the AUC 
of 0.86 ± 0.07, specificity of 0.76 ± 0.11,sensitivity of 
0.82 ± 0.13, PPV of 0.82 ± 0.11, and NPV of 0.78 ± 0.08 
(Fig. 4a, Table 3). The radiomics model achieved a mod-
erate AUC of 0.82 ± 0.07, which was still better than the 
performance of the clinical model (AUC of 0.79 ± 0.06). 
The ROC curves of the tenfold cross-validation and con-
fusion matrix results of each model are presented in the 
Supplementary Materials (Additional file  1: Fig. S4–S6). 
There was no significant difference in AUCs among the 
three models in the internal validation set (Table  4). 
However, in the external validation set, the AUC value 
of the combined model was significantly better than 
that of the clinic-radiological model (0.86 vs. 0.63, 
p = 0.021 [DeLong test]). The comparison of diagnostic 
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performance of the models in the validation sets is shown 
in Fig. 4b, c, and Table 4.

Discussion
In this multicenter study, we investigated the feasibility 
of T2W MRI-based radiomics in differentiating between 
borderline and benign EOTs. After incorporating radi-
omics features, clinical, and conventional radiological 
characteristics, the combined model constructed by the 
LR algorithm had the best diagnostic performance in 
distinguishing borderline EOTs from benign EOTs. Gen-
eralizability was effectively demonstrated by showing 
consistently encouraging performance of the model when 
evaluated on the internal and external validation set.

Previous studies have shown that MRI-based radiom-
ics can classify benign and malignant ovarian tumors 
with high AUCs of around 0.90 [16, 21]. However, one 
limitation shared in these mentioned studies is the inclu-
sion of borderline EOTs in the category of ovarian malig-
nancies. Within the clinical scenario, borderline EOTs 
should be regarded as a separate category since their 
treatment differs from both benign and malignant EOTs 

[10, 11, 35]. Additionally, since the number of patients 
with borderline EOTs recruited in studies is often small, 
the diagnostic performance of the radiomics model may 
not obviously change, even if many borderline EOTs are 
misdiagnosed as benign. For comparison, we not only 
focused on borderline EOTs but also applied the SMOTE 
algorithm to oversample the minority class (borderline 
EOTs) to reduce the adverse effect caused by sample 
imbalance [34].

Compared with one prior study, where a radiomics 
model based on the dynamic contrast-enhanced (DCE)-
MRI can achieve good performance in diagnosing ovar-
ian tumors, with the AUC of more than 0.86 [22], we 
used T2W MRI to construct models and obtained simi-
lar encouraging diagnostic performance in differentiating 
between benign and borderline EOTs. Although radiom-
ics using non-contrast MRI has been less well studied 
in ovarian tumors, this approach has shown promising 
results in the diagnosis of liver and breast tumors [36, 
37]. Recently, one study showed that radiomics based 
on the FS T2W images could help clinicians differenti-
ate borderline EOTs from malignancies (accuracy of 

Table 1  Clinical characteristics of training and validation sets

Data are presented as mean ± standard deviation for normally distributed continuous variables, median (interquartile range, IQR) for non-normally distributed 
continuous variables, or number (%) for categorical variables. HE4, human epididymis protein 4; CA125, carbohydrate antigen 125
a Normal value of HE4: postmenopausal woman < 121 pmol/L or premenopausal woman < 92.1 pmol/L

Cohort Training set (n = 309) Internal validation set 
(n = 78)

External validation set 
(n = 30)

p value

Age (years) 45.49 ± 16.06 46.94 ± 17.46 44.70 ± 19.17 0.740

Menopausal status 0.581

 Postmenopausal 154 (49.8) 39 (50.0) 12 (40.0)

 Premenopausal 155 (50.2) 39 (50.0) 18 (60.0)

Parity 0.219

 Multipara 256 (82.8) 64 (82.1) 21 (70.0)

 Nullipara 53 (17.2) 14 (17.9) 9 (30.0)

Abdominal symptoms 0.362

 Pain and distention 135 (43.7) 37 (47.4) 17 (56.7)

 None 174 (56.3) 41 (52.6) 13 (43.3)

CA125 (U/mL) 0.118

 > 35 78 (25.2) 14 (17.9) 11 (36.7)

 ≥ 35 231 (74.8) 64 (82.1) 19 (63.3)

HE4a (pmol/L) 1.000

 Abnormal 20 (6.5) 5 (6.4) 2 (6.7)

 Normal 289 (93.5) 73 (93.6) 28 (93.3)

Final diagnosis 0.549

 Benign 224 (72.5) 57 (73.1) 19 (63.3)

 Borderline 85 (27.5) 21 (26.9) 11 (36.7)

Histopathology 0.080

 Serous 148 (47.9) 40 (51.3) 21 (70.0)

 Mucinous 141 (45.6) 33 (42.3) 6 (20.0)

 Others 20 (6.5) 5 (6.4) 3 (10.0)
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0.99 from the three-dimensional model) [38]. Similar to 
the mentioned study, we only applied FS T2W images 
for modeling, thus providing additional evidence for the 
application of T2W MRI-based radiomics in borderline 
EOTs.

Early diagnosis of borderline EOTs is crucial for clini-
cal decision making because patients with borderline 
EOTs required stricter preoperative evaluation and 
postoperative follow-up. If a precise preoperative diag-
nosis is achievable, restaging surgery can be avoided. 

Table 2  Clinical and radiological characteristics for benign and borderline EOTs in training set

Data are presented as mean ± standard deviation for normally distributed continuous variables, median (interquartile range, IQR) for non-normally distributed 
continuous variables, or number (%) for categorical variables. HE4, human epididymis protein 4; CA125, carbohydrate antigen 125; SI, signal intensity; FS: fat-
suppressed; T2W: T2 weighted

*p < 0.05
a Normal value of HE4: postmenopausal woman < 121 pmol/L or premenopausal < 92.1 pmol/L

Cohort Benign (n = 224) Borderline (n = 85) p

Age (years) 45.76 ± 16.10 44.78 ± 16.01 0.634

Menopausal status 0.266

 Postmenopausal 116 (51.8) 38 (44.7)

 Premenopausal 108 (48.2) 47 (55.3)

Parity 0.887

 Multipara 186 (83.0) 70 (84.2)

 Nullipara 38 (17.0) 15 (17.6)

Abdominal symptoms 0.321

 Pain or distention 94 (42.0) 41 (48.2)

 None 130 (58.0) 44 (51.8)

CA125 (U/mL) 0.000*

 ≥ 35 35 (15.6) 43 (50.6)

 < 35 189 (84.4) 42 (49.4)

HE4a (pmol/L) 0.001*

 Abnormal 8 (3.6) 12 (14.1)

 Normal 216 (96.4) 73 (85.9)

Ascites 0.000*

 None 110 (49.1) 40 (47.1)

 Mild 98 (43.8) 29 (34.9)

 Moderate 15 (6.7) 7 (8.2)

 Massive 1 (0.4) 9 (10.6)

 Maximum tumor diameter (cm) 8.65 (6.22, 11.60) 10.40 (8.05, 13.65) 0.001*

Tumor margins 0.021*

 Well-defined 223 (99.6) 81 (95.3)

 Ill-defined 1 (0.4) 4 (4.7)

Number of loculi 0.107

 Mild 136 (60.7) 43 (50.6)

 Multilocular 88 (39.3) 42 (49.4)

SI of cystic on FS T2W 0.000*

 Moderate 182 (81.3) 48 (56.5)

 Low 10 (4.5) 17 (20.0)

 High 5 (2.2) 6 (7.1)

 Mixed 27 (12.1) 14 (16.5)

SI of solid on FS T2W 0.000*

 Low 41 (18.3) 42 (49.4)

 High 0 (0.0) 1 (1.2)

 Mixed 12 (5.4) 10 (11.8)

 None 171 (76.3) 32 (37.6)
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Fig. 3  a–d The learning curves for four different radiomics models. The red and green curves represent the trend of the score with the increase 
in sample size in training and cross-validation data, respectively. The training and cross-validation scores of the logistic regression (LR) and SVM 
models were higher than those of the Naive Bayes (NB) model. The gap between the training and cross-validation scores of the LR or SVM models 
was smaller than that of the Random Forest (RF) model. e–h The receiver operating characteristic curves for four different radiomics models. Each 
light-colored curve represents each of the tenfold cross-validations (fold 0 to 9), and the dark blue curve represents their mean; the red and green 
curves represent internal and external validation sets, respectively. The LR model and SVM model had similar AUCs in the training set, but the LR 
model outperformed the SVM model in both the internal validation set and the external validation set. The RF model had the highest AUC in the 
training set but had low AUC in the external validation. The NB model had the lowest AUCs in all sets

Fig. 4  a Mean receiver operating characteristic (ROC) curves for the radiomics model, clinic-radiological model, and combined model over the 
tenfold cross-validation iterations. b ROC curves in the internal validation set. c ROC curves in the external validation set

Table 3  Diagnostic performances of different models after tenfold cross-validation iterations

Values are mean (± standard deviation) over the cross-validation iterations

PPV positive predictive value, NPV negative predictive value, AUC​ area under the curve

Models Specificity Sensitivity PPV NPV Accuracy AUC​

Radiomics 0.71 ± 0.12 0.80 ± 0.09 0.79 ± 0.08 0.75 ± 0.08 0.76 ± 0.08 0.82 ± 0.07

Clinic-radiological 0.74 ± 0.08 0.71 ± 0.10 0.72 ± 0.06 0.74 ± 0.06 0.72 ± 0.05 0.79 ± 0.06

Combined 0.76 ± 0.11 0.82 ± 0.13 0.82 ± 0.11 0.78 ± 0.08 0.79 ± 0.08 0.86 ± 0.07
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However, there is currently no easy and reliable means of 
screening. O-RADS MRI recommended morphological 
sequences (T2, T1 with and without fat suppression, and 
T1 after gadolinium injection) and functional sequences 
(perfusion and diffusion‐weighted sequences) for every 
patient [14]. However, high costs, motion artifacts, and 
too long scanning time restrict its widespread applica-
tion in screening. Our results showed that the model 
constructed by the T2W sequence alone could effectively 
differentiate between benign and borderline EOTs preop-
eratively, thus providing a new idea for screening high-
risk women with ovarian tumors.

In this study, we also compared the performance of 
the combined model with that of the clinic-radiological 
model. The diagnostic performance in the combined 
model was superior to that in the clinic-radiological 
model, especially when evaluated on the external valida-
tion set. Therefore, the combination of radiomics features 
and clinical and conventional radiological characteristics 
may have the potential to improve the diagnostic per-
formance and generalizability of the model. The com-
bined model in our study achieved better performance 
than that of the model combining ultrasound and clini-
cal features in a recent study (AUC of 0.86 vs. 0.825) 
[39]. Additionally, in clinical application, misdiagnosis of 
borderline ovarian tumors should be avoided because it 
will lead to the risk of recurrence and deterioration, thus 
requiring the model to have high sensitivity. Compared 
with the model with a sensitivity of < 0.75 [39], the com-
bined model in our study had an increased sensitivity of 
0.82, indicating that it may have the potential to address 
this need for the detection of borderline EOTs.

There are several novelties and strengths in the meth-
ods of this study. First, as suggested in the Radiomics 
Quality Score (RQS) [19], we recruited patients from 
multiple centers and performed internal and external 
validation, which contributes to the robustness of our 
results. Second, one of the main limitations of most 
radiomics studies is the homogeneity of the data, which 
adversely impacts the generalization of results. To over-
come this deficiency, our study included data from seven 
MRI scanners regardless of manufacturer, protocol, and 

field strength, and the ComBat harmonization algorithm 
minimized the bias caused by different MRI scanners. 
This algorithm has been confirmed not only to reduce the 
batch effects caused by different imaging protocols [32, 
33] but also to partially improve the predictive perfor-
mance of the radiomics model [40]. Furthermore, differ-
ent machine learning algorithms may perform differently 
on the same data since they have disparate mathemati-
cal principles. Therefore, we used four different machine 
learning algorithms for modeling and compared the dif-
ferences in the algorithms’ fitting effect and generaliza-
tion performance. This increased the reliability of our 
results by reducing the bias caused by choosing a single 
machine learning algorithm.

Nevertheless, there are several limitations of this 
study. First, the amount of data in the external valida-
tion set used in this study was small. This is due to the 
difficulty of medical image acquisition and our desire to 
approximate the actual data distribution with as large a 
training sample as possible. Second, potential selection 
bias may exist in this study because of the retrospective 
study design. Thus, prospective multicenter validation of 
a large sample size is needed in our further study. Third, 
this study did not compare the performance between 
T2W and other sequences. Therefore, further study is 
required to evaluate the performance of radiomics based 
on multiparametric MRI.

Conclusion
In conclusion, the radiomics based on T2W MRI had the 
potential to differentiate between benign and borderline 
EOTs effectively. Our findings could offer potential guid-
ance for preoperative clinical decision making and merit 
further evaluations and development for future clinical 
applications.
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