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Abstract 

Background:  Studies on deep learning (DL)-based models in breast ultrasound (US) remain at the early stage due 
to a lack of large datasets for training and independent test sets for verification. We aimed to develop a DL model for 
differentiating benign from malignant breast lesions on US using a large multicenter dataset and explore the model’s 
ability to assist the radiologists.

Methods:  A total of 14,043 US images from 5012 women were prospectively collected from 32 hospitals. To develop 
the DL model, the patients from 30 hospitals were randomly divided into a training cohort (n = 4149) and an internal 
test cohort (n = 466). The remaining 2 hospitals (n = 397) were used as the external test cohorts (ETC). We compared 
the model with the prospective Breast Imaging Reporting and Data System assessment and five radiologists. We also 
explored the model’s ability to assist the radiologists using two different methods.

Results:  The model demonstrated excellent diagnostic performance with the ETC, with a high area under the 
receiver operating characteristic curve (AUC, 0.913), sensitivity (88.84%), specificity (83.77%), and accuracy (86.40%). 
In the comparison set, the AUC was similar to that of the expert ( p = 0.5629) and one experienced radiologist 
(p = 0.2112) and significantly higher than that of three inexperienced radiologists ( p < 0.01). After model assistance, 
the accuracies and specificities of the radiologists were substantially improved without loss in sensitivities.

Conclusions:  The DL model yielded satisfactory predictions in distinguishing benign from malignant breast lesions. 
The model showed the potential value in improving the diagnosis of breast lesions by radiologists.
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Key points

•	 A DL model was developed using a large multicenter 
dataset.

•	 The DL model can discriminate between benign and 
malignant lesions on US effectively.

•	 The model can improve the performance of radiolo-
gists in diagnosing breast cancer.
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Introduction
In China, approximately 303,600 new cases of breast can-
cer and 70,400 breast cancer-related deaths occurred in 
2015, and the incidence and mortality of this disease con-
tinue to increase [1–3]. There is no sign that this trend 
will stop by 2030, particularly in rural areas [3]. The goal 
of early diagnosing breast cancer is to reduce mortal-
ity and provide patients with the most appropriate and 
least aggressive treatment options [4]. As a widely used 
screening modality, breast cancer screening with mam-
mography has been demonstrated to reduce breast can-
cer mortality [5, 6]. However, mammography-based 
breast cancer screening is not very practical in China [7], 
because Chinese women tend to have small and dense 
breasts, and because the peak age of breast cancer onset 
is younger than that in Western women, both of which 
are known to affect the diagnostic accuracy and effective-
ness of mammography [4]. Ultrasound (US) as a powerful 
complement to mammography, had a higher sensitivity 
and diagnostic accuracy [7].

US has become an indispensable tool for the screen-
ing and diagnosis of breast cancer due to its safety, lower 
cost, and ease of accessibility in China [8]. With the 
introduction of the Breast Imaging Reporting and Data 
System (BI-RADS) for US, the terminology and criteria 
for describing and classifying breast lesions have become 
standardized with good diagnostic performance. Radi-
ologists make diagnoses based on certain macroscopic 
features on US images (such as shape, margin, and echo-
genicity), and the breast lesions detected by US can be 
classified according to the possibility of malignancy of 
BI-RADS, from benign to high suspicion of malignancy. 
However, there is a substantial overlap in the sono-
graphic features for benign and malignant lesions [9, 10]. 
And such assessments often rely on the radiologists’ edu-
cation and experience and can thus sometimes be subjec-
tive and time-consuming. Moreover, a major limitation 
of US is its low specificity (high false positive rate) in the 
differentiation of benign from malignant breast lesions 
[11, 12], which might cause many patients with benign 
lesions to undergo excessive treatment such as unnec-
essary biopsy and even aggressive surgery. Therefore, 
although the benign tumors would not have threatened 
the health of the patients, they would suffer adverse reac-
tions as a result of treatment [13].

Recently, deep learning (DL) algorithms have become 
the focus of interest and attention from researchers due 
to their impressive performance in image recognition 
tasks [14]. DL models can automatically and quantita-
tively evaluate complex medical image features with high 
diagnostic accuracy and efficiency; for example, DL with 
convolutional neural networks (CNNs) has been widely 
applied to the pattern recognition and classification of 

medical images [15]. DL techniques have also achieved 
comparable performance to human experts in different 
areas [16, 17] and have the potential to assist doctors 
with limited experience in improving their performance 
in disease diagnosis in clinical practice [17, 18]. In 
the field of breast US, DL has been applied to segment 
images [19], identify and diagnose breast lesions [20–22], 
predict axillary lymph node status [23, 24], assess breast 
cancer molecular subtypes [25, 26], and evaluate the 
pathological complete response in breast cancer [27]. 
The diagnosis of breast lesions based on DL thus remains 
an important and popular research area. Several studies 
have reported the outstanding diagnostic performance 
of CNNs for breast cancer diagnosis. However, most of 
the studies used only training and validation sets from 
one institution without an independent external test set 
[28, 29]. Due to the differences in the disease spectrum in 
different centers, the applicability of trained DL models 
needs to be further investigated. Furthermore, the data-
sets utilized in several studies were small [30–32], the 
patients’ medical information and the pathological type 
of breast lesions were unknown [22, 29], and the ability 
of the model to assist radiologists was not reported [22, 
28, 31]. Therefore, we aimed to develop a DL model using 
a large dataset from multiple centers and evaluate its 
diagnostic performance in the differentiation of benign 
from malignant breast tumors on US images. Moreover, 
the performance of the model was compared with that of 
human radiologists and the ability of the model to assist 
radiologists was explored.

Materials and methods
Patients
A multicenter prospective study was conducted at 
32 separate tertiary-care hospitals in China between 
December 2018 and December 2020. This study was 
approved by the institutional ethics committee of the 
principal investigator’s hospital (Peking Union Medical 
College Hospital) and was registered at ClinicalTrials.gov 
(ChiCTR1900023916). Written informed consent was 
obtained before collecting the sonographic images from 
each patient.

We prospectively recruited patients with pathologically 
confirmed breast lesions who underwent a US exami-
nation. The inclusion criteria were as follows: (1) breast 
lesions visible on the grayscale US; (2) US examination 
performed before biopsy or preoperative treatment; and 
(3) pathological results obtained through needle biopsy 
or surgical excisional biopsy. For patients with multi-
ple lesions, only the largest or most suspicious lesion on 
grayscale US was included. Clinical data and informa-
tion on breast cancer-related risk factors were collected 
via a face-to-face interview or the patient’s electronic 
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medical record, including patient age, body mass  index, 
reproductive history (age at menarche, age at the first live 
birth, if applicable), history of benign breast disease, his-
tory of breast cancer in first-degree relatives, and clini-
cal symptoms (palpable mass, pain, nipple discharge, skin 
changes). The golden standard was the pathology diagno-
sis, which was obtained from pathological reports.

Ultrasound equipment
Ultrasound systems Resona7, Resona7s, Resona7T, 
Resona8, Resona8T, and DC-80 (Shenzhen Mindray 
BioMedical Electronics, Co., Ltd., Shenzhen, China) 
equipped with high-frequency linear transducer probes 
(L14-5, L11-3, L12-3, or L9-3) were used for the US 
examinations.

Image acquisition and interpretation
A unified image acquisition protocol was adopted (Addi-
tional file  1: Figure S1). Lesions were viewed in at least 
two perpendicular planes (longitudinal and transverse) 
with and without caliper measurements. Other sections 
which may show suspicious malignant characteristics of 
the lesion on grayscale US were acquired selectively. The 
maximum diameter of the lesion was recorded. Sono-
graphic features were described according to the BI-
RADS lexicon. Appropriate depth, gain, and focal zone 
settings were optimized for acquiring high-quality US 

images. Color Doppler US and strain elastography were 
available to assist the radiologists in making a better 
diagnosis. At the same time, the status of axillary lymph 
nodes was evaluated. Static images of the lesions were 
saved by the radiologists during real-time scanning and 
then uploaded onto a website (www.​nuqcc.​cn) in JPG 
format. All sonography examinations were performed 
by radiologists with more than 3  years of experience in 
performing and interpreting breast US examinations. 
Prospective BI-RADS US assessment categories were 
assigned by the radiologists according to the BI-RADS 
criteria: category 2, benign; category 3, probably benign; 
category 4 (from 4a to 4c), suspicious for malignancy; 
and category 5, highly suggestive of malignancy.

Dataset
B-mode images without caliper measurements were 
chosen for the DL modeling. Data cleaning was applied 
to those data and incorrect collections of planes such as 
mis-uploaded images were discarded. A total of 14,043 
qualified B-mode US images from 5012 women were used 
in this study (Fig. 1). The data from 30 hospitals included 
12,752 B-mode US images from 4615 patients were used 
for the training, validating, and internal testing. The 
training set contained 4149 patients with 11,478 images 
and the internal test set included 466 patients with 1274 
images. Of the training set, 466 patients (305 benign 

Fig. 1  Study workflow. US Ultrasound; Conv Convolutional Layer; ReLU Rectified Linear Unit; DL deep learning; BI-RADS Breast Imaging Reporting 
and Data System

http://www.nuqcc.cn
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lesions and 161 malignant lesions) with 1303 images were 
used for validation, while the remaining 3683 patients 
(2419 benign lesions and 1264 malignant lesions) with 
10,175 images were used to train the model. Two exter-
nal test sets included 1291 B-mode US images from 397 
patients from the remaining 2 hospitals (external test A 
hospital: 197 patients—97 benign lesions and 100 malig-
nant lesions; external test B hospital: 200 patients—94 
benign lesions and 106 malignant lesions) were used to 
examine the robustness of the model. All the available 
lesions were used for training and testing the DL model. 
The internal and external test sets were used to assess the 
generalizability and robustness of the model. The study 
workflow is shown in Fig. 1. In addition, we also evalu-
ated our DL model on a publicly available dataset (see 
Additional file 1: ‘Breast Ultrasound Images Dataset’).

Deep learning
The assessment of breast lesions in B-mode images, 
especially for suspicious malignant masses, can be com-
plicated as the morphology of the mass is various and 
the features of benign and malignant breast lesions can 
overlap [9, 10]. To acquire a decent performance, we 
chose the visual geometry group (VGG) deep CNN [33] 
since we observed that it does not include a global aver-
age pooling layer after the last feature extraction layer 
but directly flattens the feature maps and connects them 
with three fully connected layers sequentially, which may 
lead to better diagnostic performance as all extracted 
significant features are weighted. Indeed, VGG has dem-
onstrated convincing classification accuracy in various 
medical image analysis tasks [17, 34–37], including breast 
mass classification [32, 38, 39]. The VGG-19 architecture 
was adopted as the backbone for breast cancer diagnosis 
modeling in this study. The detailed architecture is pre-
sented in Fig. 1. Dropout layers with a rate of 0.75 were 
introduced after each dense layer to avoid overfitting, 
and the last dense layer was changed to have two output 
neurons with a softmax activation layer to translate the 
output values into the probabilities of two categories of 
breast lesions. The category with the highest probability 
was considered as the result of dichotomies. Pretrained 
weights on ImageNet were employed for initiating the 
training in the initial epoch instead of the common He-
norm and Xavier initiation to accelerate the convergence.

All B-mode US images were converted to grayscale 
before preprocessing to eliminate redundant image chan-
nels. The masses were labeled using bounding boxes 
and the annotations were confirmed by an experienced 
radiologist with 11 years of experience in US. Then, the 
images were cropped to in which only the lesion area was 
retained and used as the input to the DL model to reduce 
the effect of less significant background information. 

A 50-pixel border to the lesion region was contained 
to not only capture some surrounding area adjacent to 
the lesion, which could provide some effective, relevant 
information, but also avoid incomplete mass extraction. 
The cropped mass images were resized and padded to 
224 × 224 while maintaining their initial aspect ratios. In 
clinic, radiologists normally read multiple images before 
giving a diagnosis. However, weighting the prediction of 
each section is tricky as the order and number of input 
images are ambiguous, and the majority voting does not 
embrace the advantage of the DL. To mimic this scenario 
with minimum increase of time consumption, we stacked 
three planes according to their patient serial number into 
one three-channel image for the model. This method not 
only enables the multi-plane analysis but also reduces 
the time cost, and can avoid weighting the indeterminate 
number of diagnostic predictions. The planes of each 
patient were randomly sampled in the modeling pro-
cess. The trained model was tested for 10 times to ver-
ify its stability. The results are listed in Additional file 1: 
Table S7 with the mean value and the standard deviation. 
In comparison study, the planes were sampled in a fixed 
sequence according to our data acquisition protocol to 
simulate a real clinical scenario, corresponding results 
are reported as the final performance of the model in this 
paper to keep a consistency. The detail of implementa-
tions can be found in Additional file 1: ‘Deep learning’.

Comparison of the diagnostic performance 
between the model and radiologists
In total, 201 patients with 656 images were randomly 
selected as a comparison group for the reader study from 
the internal and external test sets, including 88 malig-
nant breast lesions and 113 benign breast lesions, to 
compare the diagnostic performance of the model with 
that of radiologists. Detailed information can be found in 
Additional file  1: ‘Comparison of the diagnostic perfor-
mance between the model and radiologists’. Five radiolo-
gists with varying experience levels in diagnosing breast 
lesions independently reviewed and evaluated the images 
of breast lesions. The multiple B-mode images acquired 
for a given lesion were shown together for the radiolo-
gists’ reading to simulate clinical settings. Radiologist 
1 is an expert in breast US imaging and has more than 
18  years of experience in the US diagnosis of breast. 
Radiologist 2 has more than 8 years of experience in the 
US diagnosis of breast. Radiologists 3, 4, and 5 have less 
than 3  years of experience with breast US. The radiolo-
gists were divided into experienced (radiologists 1, 2) and 
inexperienced (radiologists 3, 4, 5) groups in terms of 
their experience in US. They were blinded to information 
regarding the patients’ pathological results, assessment 
of other readers, or previous classification results. The 
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assessed BI-RADS categories were reported as 2, 3, 4a, 
4b, 4c, or 5 by the radiologists. We compared the diag-
nostic performance of the model with that of the pro-
spective BI-RADS assessment and then with that of these 
five radiologists.

To explore the auxiliary ability of the model, two meth-
ods were used to compare the performance of the radi-
ologists with and without model assistance. In method 
one, the BI-RADS classification was upgraded or down-
graded by one level when the model classified the breast 
lesion as malignant or benign (an artificial combination 
of the radiologist’s first assessment with the DL predicted 
result). In other words, BI-RADS 3 category lesions were 
upgraded to category 4a when the model classified the 
breast lesion as malignant, and BI-RADS 4a category 
lesions were downgraded to category 3 when the model 
classified the breast lesions as benign. In method two, 
the BI-RADS classification was flexibly adjusted by the 
radiologists after obtaining the results of the model. Two 
weeks after the first evaluation of the images, all radiolo-
gists reclassified the same images of breast lesions with 
the knowledge of the predicted probability generated by 
the model but not with the feedback on the performance 
of the model and the first evaluation. In brief, the model’s 
result was shown to the radiologists after the radiologists 
recorded their own BI-RADS assessment, and then, the 
adjustment was recorded.

Data and statistical analysis
Continuous variables are described by the mean ± stand-
ard deviation (SD), and categorical variables are pre-
sented as numbers and percentages. The Student’s t-test 
and the Chi-square test were applied to compare con-
tinuous and categorical variables, respectively. Analysis 
was made at lesion level. A malignant lesion classified as 
BI-RADS 4a or higher was considered a true positive, and 
a benign lesion classified as BI-RADS 2 or 3 was consid-
ered a true negative. The trained DL model output the 
predicted probability scores (continuous 0 to 1) of the 
malignant and benign lesions based on US images and 
we selected the class with the highest probability as the 
binary prediction result (benign or malignant). For exam-
ple, if the probability value of malignancy was greater 
than the probability value of benign lesion, we classi-
fied the prediction as malignant. That’s how we convert 
the predicted probability value to a binary decision in 
the upgrade or downgrade calculation (DL model assis-
tance method one) and for the confusion matrix. The 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy of the 
model and the radiologists were calculated according to 
the binary prediction result and the BI-RADS classifica-
tion, respectively. McNemar’s test was used to compare 

the sensitivity, specificity, and accuracy, and the Chi-
square test was used to compare the PPV and NPV of 
the model with those of the radiologists. Receiver oper-
ating characteristic (ROC) curves were drawn based on 
the prediction probability derived from the DL model 
for breast cancer and the BI-RADS category assessment 
given by radiologists, and the area under the ROC curve 
(AUC) was obtained. Comparisons between AUCs were 
performed by using the DeLong test [40]. The F1 score 
and Matthews correlation coefficient (MCC) were also 
reported for the test sets. The F1 score represents both 
the precision and recall of the classification model. The 
value of the MCC ranges from -1 to 1, and a larger value 
represents better performance; a value of 1 indicates that 
the prediction is completely consistent with the actual 
result. The number of true positive, false positive, false 
negative, and true negative findings from the model 
with the test sets were described in a 2 × 2 contingency 
table representing the confusion matrix. Other statistical 
methods used can be found in Additional file 1: ‘Data and 
statistical analysis’.

Results
Patients
We included a total of 14,043 US images from 5012 
women with breast lesions who were classified pro-
spectively by well-trained radiologists according to 
BI-RADS. US images from 4615 patients from 30 hos-
pitals were collected and divided into a training set 
(n = 4149; age: 43.67 ± 13.14  years) and an internal test 
set (n = 466; age: 43.21 ± 13.65  years). The 397 patients 
(age: 44.91 ± 12.06  years) from the other two hospitals 
were utilized as two independent multicenter test sets. 
The mean lesion size was 1.84 ± 0.99  cm for the train-
ing dataset, 1.76 ± 0.94  cm for the internal test set, and 
2.05 ± 1.08 cm for the external test sets. Detailed patient 
demographics and breast lesion characteristics in the 
training and test sets are provided in Table 1. The main 
pathological types of the breast lesions are given in Addi-
tional file 1: Table S1.

Performance of the deep learning model
The DL model achieved a high performance 
(AUC = 0.908, 95% confidence interval (CI): 0.879–
0.933) in distinguishing benign from malignant breast 
lesions when applied to the breast US images of the 
internal test set (Fig. 2). The model achieved a lesion-
level accuracy of 83.48%, a sensitivity of 83.23%, a 
specificity of 83.61%, a PPV of 72.83%, and an NPV 
of 90.43% (Table  2). The effectiveness of the model 
was evaluated by external test sets with US images 
obtained from the other two hospitals, with an AUC 
of 0.913 (95% CI 0.881–0.939), an accuracy of 86.40%, 
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a sensitivity of 88.84%, a specificity of 83.77%, a PPV 
of 85.51%, and an NPV of 87.43%. For external test set 
A and B, the AUCs were 0.908 (95% CI 0.859–0.945) 
and 0.918 (95% CI 0.871–0.952), respectively (Fig.  2 
and Table 2). The confusion matrices of the model for 
predicting breast cancer with the internal test set and 
external test sets are shown in Fig. 2. Additional file 1: 
Table  S2 shows the performance metrics for the DL 

model versus the prospective BI-RADS assessment in 
the test sets.

Comparison between deep learning and radiologists
For the comparison analysis, in the comparison set from 
the internal and external test sets, the results showed that 
the AUC of the model was lower than that of the pro-
spective BI-RADS assessment (0.969, p = 0.0058), and 

Table 1  Patient demographics and breast lesion characteristics

Data in parentheses are percentages

BMI body mass index

Characteristic Training set Internal test set External test sets

Benign, n (%) Malignant, 
n (%)

p value Benign, n (%) Malignant, 
n (%)

p value Benign, n (%) Malignant, 
n (%)

p value

Mean age (range) 
(y)

43.67 ± 13.14 (10–90) 43.21 ± 13.65 (16–85) 44.91 ± 12.06 (17–80)

Mean size (range) 
(cm)

1.84 ± 0.99 (0.30–7.46) 1.76 ± 0.94 (0.40–6.80) 2.05 ± 1.08 (0.35–7.00)

Patients (n) 2724 1425 305 161 191 206

Images (n) 6574 4904 728 546 489 802

Age (y) 38.99 ± 11.31 52.62 ± 11.70 0.000 38.78 ± 11.94 51.60 ± 12.75 0.000 39.07 ± 10.45 50.32 ± 10.89 0.000

 < 30 609 (22.36) 24 (1.68) 77 (25.24) 3 (1.86) 38 (19.90) 1 (0.49)

 30–39 824 (30.25) 162 (11.37) 95 (31.15) 25 (15.53) 63 (32.98) 28 (13.59)

 ≥ 40 1291 (47.39) 1239 (86.95) 133 (43.61) 133 (82.61) 90 (47.12) 177 (85.92)

Age at menarche 
(y)

13.52 ± 1.50 14.32 ± 1.71 0.000 13.33 ± 1.67 14.32 ± 1.84 0.000 13.85 ± 1.61 14.21 ± 1.78 0.036

Age at first live 
childbirth (y)

25.21 ± 3.16 25.03 ± 3.51 0.044 25.38 ± 3.50 24.70 ± 3.39 0.056 26.27 ± 3.56 26.00 ± 3.00 0.457

BMI (kg/m2) 22.01 ± 3.05 23.64 ± 3.19 0.000 21.73 ± 2.95 23.21 ± 2.92 0.000 22.76 ± 3.32 24.81 ± 3.50 0.000

Maximum diam-
eter (cm)

1.58 ± 0.87 2.34 ± 1.03 0.000 1.53 ± 0.79 2.19 ± 1.05 0.000 1.81 ± 1.03 2.26 ± 1.07 0.000

 ≤ 2 cm 2107 (77.35) 624 (43.79) 241 (79.02) 82 (50.93) 132 (69.11) 97 (47.09)

 > 2 cm, ≤ 5 cm 597 (21.92) 775 (54.39) 62 (20.33) 76 (47.21) 58 (30.37) 105 (50.97)

 > 5 cm 20 (0.73) 26 (1.82) 2 (0.65) 3 (1.86) 1 (0.52) 4 (1.94)

Distance from 
nipple (cm)

2.48 ± 1.49 2.67 ± 1.57 0.000 2.44 ± 1.42 2.56 ± 1.52 0.364 2.63 ± 1.70 3.10 ± 1.69 0.006

Family history 
(first-degree rela-
tives)

0.943 0.514 0.345

 No 2660 (97.65) 1385 (97.19) 294 (96.39) 157 (97.52) 186 (94.41) 197 (94.98)

 Yes 64 (2.35) 40 (2.81) 11 (3.61) 4 (2.48) 5 (5.59) 9 (5.02)

History of benign 
breast disease

0.000 0.045 0.005

 No 2552 (93.69) 1373 (96.35) 284 (93.11) 157 (97.52) 171 (89.53) 199 (96.60)

 Yes 172 (6.31) 52 (3.65) 21 (6.89) 4 (2.48) 20 (10.47) 7 (3.40)

Clinical 
symptom(s)

0.000 0.008 0.004

 No 675 (24.78) 136 (9.54) 76 (24.92) 23 (14.29) 78 (40.84) 56 (27.18)

 Yes 2049 (75.22) 1289 (90.46) 229 (75.08) 138 (85.71) 113 (59.16) 150 (72.82)

Position 0.130 0.486 0.513

 Left 1390 (50.03) 760 (53.33) 160 (52.46) 79 (49.07) 92 (48.17) 106 (51.46)

 Right 1334 (48.97) 665 (46.67) 145 (47.54) 82 (50.93) 99 (51.83) 100 (48.54)
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was similar to that of the expert (0.935, p = 0.5629) and 
one experienced radiologist (0.901, p = 0.2112) and sig-
nificantly higher than that of three inexperienced radiolo-
gists (p < 0.01). The diagnostic accuracy of the model was 
similar to that of the expert (83.58%, p = 0.5966) and was 
significantly higher than that of the prospective BI-RADS 
assessment (73.13%), one experienced (72.14%) and three 
inexperienced radiologists (p < 0.01). The specificity of the 
model was higher than the expert without statistical dif-
ference (p = 0.0784) and was remarkably higher than that 
of the prospective BI-RADS assessment and the remain-
ing radiologists (p < 0.01). However, the sensitivity of the 

model was lower than that of the radiologists (Table  3). 
The AUCs of the model with respect to the prospective 
BI-RADS assessment and the radiologists are shown in 
Fig.  3. The performance metrics for the DL model ver-
sus the prospective BI-RADS assessment and the five 
radiologists in the comparison set are shown in Table 3. 
Additional file 1: Table S3 and S4 demonstrate the perfor-
mance metrics for the DL model versus the prospective 
BI-RADS assessment and the radiologists in the compari-
son set from the internal and external test sets, respec-
tively. Additional file 1: Figure S3 shows the AUCs of the 
model versus the prospective BI-RADS assessment and 

Fig. 2  Areas under the receiver operating characteristic curves (AUCs) of the model with the internal test set (a), the external test sets (b), the 
external test set A (c), and the external test set B (d). The confusion matrices of the model in distinguishing benign and malignant breast lesions 
with the internal test set (e), the external test sets (f), the external test set A (g), and the external test set B (h). Actual class, the pathology diagnosis; 
Predicted class, the binary prediction result of the deep learning model

Table 2  Performance metrics for the DL model in the test sets

DL deep learning, AUC​ area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value, ACC​ accuracy, MCC 
Matthews correlation coefficient, CI confidence interval

AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) ACC​ F1 MCC

Internal test set 0.908 (0.879–0.933) 83.23 (76.55–88.65) 83.61 (78.97–87.58) 72.83 (67.33–77.71) 90.43 (86.96–93.04) 83.48 (79.79–86.73) 0.777 0.650

External test sets 0.913 (0.881–0.939) 88.84 (83.72–92.79) 83.77 (77.76–88.70) 85.51 (81.00–89.10) 87.43 (82.48–91.13) 86.40 (82.63–89.61) 0.871 0.728

External test set A 0.908 (0.859–0.945) 88.00 (79.98–93.64) 85.57 (76.97–91.88) 86.28 (79.39–91.12) 87.37 (80.17–92.21) 86.80 (81.26–91.19) 0.871 0.736

External test set B 0.918 (0.871–0.952) 89.62 (82.19–94.71) 81.92 (72.63–89.10) 84.82 (78.34–89.62) 87.50 (79.87–92.51) 86.00 (80.41–90.49) 0.872 0.719
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the five radiologists in the comparison set from the inter-
nal test and the external test sets, respectively.

Comparison of radiologist performance with and without 
model assistance
With the assistance of the model, the average AUC for 
the diagnostic performance of the experienced radiolo-
gists increased but not to a significant degree, while in 
the inexperienced radiologist group, the average AUC 
improved significantly. Combined with the prediction of 
the model, the average accuracies, specificities and PPVs 
of the experienced and inexperienced radiologists in dis-
criminating benign from malignant lesions on breast US 
were substantially improved without decrease in sensi-
tivities and NPVs (Table 4). For the experienced radiolo-
gists, the average accuracy was considerably improved 
from 77.86 to 87.31% for method one and 85.07% for 
method two, and the specificity was markedly improved 
from 63.27 to 80.09% for method one and 75.66% for 
method two. For the inexperienced radiologists, the 
average accuracy was distinctively improved from 58.54 
to 72.97% for method one and 77.28% for method two, 
and the specificity was significantly improved from 28.61 
to 53.69% for method one and 61.06% for method two. 
The diagnostic performance of the model and the radi-
ologists with and without the assistance of the model in 
discriminating malignant from benign breast lesions are 
shown in Table 4 and Fig. 4. Detailed information about 
the diagnostic performance of the five radiologists with 

the assistance of the model is summarized in Additional 
file  1: Table  S5. The comparison of the diagnostic per-
formance between radiologists with the assistance of 
method one and method two is summarized in Addi-
tional file 1: Table S6. Examples of the DL model in assist-
ing radiologists are shown in Additional file 1: Figure S5.

Discussion
In this multicenter study, we successfully developed a 
model for the diagnosis of breast cancer based on sono-
graphic images. The model yielded satisfactory predic-
tions on the test sets, with an AUC of 0.908, a sensitivity 
of 83.23%, a specificity of 83.61%, and an accuracy of 
83.48% for the internal test set and an AUC of 0.913, a 
sensitivity of 88.84%, a specificity of 83.77%, and an accu-
racy of 86.40% for the external test sets. With the model 
assistance, the accuracies and specificities of the radiolo-
gists in discriminating benign from malignant lesions on 
breast US were improved without loss in sensitivities. 
Our model has potential applicability in the preopera-
tive prediction of breast cancer and shows the potential 
in helping provide personalized management informa-
tion for making surgical plans or facilitating pretreatment 
decisions.

With the continued aging of the population and accelera-
tion in industrialization, urbanization and lifestyle changes 
in China, the burden of female breast cancer is increasing 
[1, 41]. As a suitable, convenient and popular examination 

Fig. 3  Areas under the receiver operating characteristic curves (AUCs) of the model versus the prospective BI-RADS assessment and the five 
radiologists in the comparison set (a). Performance metrics for the DL model versus the prospective BI-RADS assessment and the five radiologists 
in the comparison set (b). AUC​ area under the receiver operating characteristic curve; DL deep learning model; Pro the prospective Breast 
Imaging Reporting and Data System (BI-RADS) assessment; R radiologist. *Comparison diagnostic performance with DL model and shows 
statistical difference
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tool, US has been widely used in breast cancer screening 
and diagnosis in China. The diagnosis of breast lesions 
by US mainly relies on the radiologist’s unaided obser-
vations to provide an assessment based on the BI-RADS 
guidelines with high sensitivity at the expense of specific-
ity [11, 42]. In recent years, many new techniques have 
been developed to compensate for the deficiencies of con-
ventional US [43–45]. In particular, artificial intelligence 
(AI)- or DL-based computer-aided diagnosis can provide 
the analyzed results to radiologists as a second opinion 
or supportive decision and significantly improve the effi-
ciency and effectiveness of the radiologists’ diagnosis [46]. 
In our study, the diagnostic performance (AUC) of the 
model was comparable to that of the experienced radi-
ologists and better than that of the inexperienced radi-
ologists in the comparison set. In addition, two methods 
were used to explore the ability of the model to assist the 
radiologists, which improved their diagnostic performance 
to varying degrees. Although the sensitivity of the model 
was lower than that of the radiologists in the diagnosis of 
breast cancer, the accuracies and specificities of the radi-
ologists were improved without loss in sensitivities after 
combining with the prediction of the model. In brief, even 
the designed three-plane analysis put our model at an infe-
rior position in comparison with radiologists to whom all 
the planes were shown, it was still capable of recognizing 
malignant lesions and achieved performance comparable 

to the assessments of experienced radiologists. It showed 
the potential value in improving the performance of radi-
ologists in diagnosing breast lesions.

The diagnostic performance of our model was simi-
lar to those reported in previous papers on AI methods 
for breast US analysis [31, 38]. The weaknesses of these 
studies have been mentioned previously. Two studies 
using a large dataset of US breast images showed excel-
lent diagnostic performance in the diagnosis of breast 
cancer. Han et  al. [22]developed a GoogLeNet-based 
model using a large sample of 5151 patients with 7408 US 
breast images to differentiate between benign and malig-
nant breast lesions, with an AUC over 0.9, an accuracy 
of approximately 0.90, a sensitivity of 0.86 and a speci-
ficity of 0.96. Qi et  al. [29] constructed a large dataset 
containing 8145 breast US images from 2047 patients 
and developed an automated method for differentiating 
nonmalignant from malignant breast lesions. Their pro-
posed Mt-Net (BASIC) achieved an accuracy of 93.52%, 
a specificity of 96.66% and a sensitivity of 87.39% on 
the test set. However, independent datasets for further 
assessing the generalizability of the models were lack-
ing. AI computer vision technologies rely on high-quality 
and large amounts of image data. The quality, quantity 
and diversity of image data are key factors affecting the 
accuracy of AI image analysis. Studies on DL in breast 
US remain at an early stage due to a lack of large datasets 

Fig. 4  Performance metrics for the radiologists with and without model assistance in the comparison set. a All the five radiologists; b experienced 
radiologists; c inexperienced radiologists. PPV, positive predictive value; NPV, negative predictive value; DL, deep learning
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for training the models. Multicenter collaborative efforts 
to obtain data on more types of diseases are conducive 
to developing a robust, predictive DL model [46]. Stud-
ies with independent testing sets are more valuable than 
studies that depend on internal tests or use only the data 
from a single center for validation [47]. The assessment 
of generalizability using an independent dataset is impor-
tant. In this study, a large-scale dataset containing 14,043 
US breast lesion images from 5012 women was prospec-
tively obtained using standardized image acquisition 
protocols in 32 institutions. Pathological ground truths 
were obtained for the breast lesions, covering a variety of 
breast pathology types. Multicenter datasets were used to 
develop and validate the model, and two external test sets 
from 2 different institutions were used to demonstrate 
its robustness and generalizability. The model achieved 
high diagnostic performance in the differentiation of 
benign from malignant breast lesions in test sets, which 
efficiently and reliably confirmed the adaptability of the 
model.

There are several limitations in our study. First, the DL 
model was trained based only on B-mode US images, and 
the diagnostic performance could be improved by includ-
ing clinical and patient information (such as patient age, 
size of the lesion, and BI-RADS category assessment) 
[48], elastography [49], molecular information [23], or 
other information compared with B-mode US images 
alone [50]. Second, the performance of the five radi-
ologists who retrospectively reviewed and assessed the 
images does not necessarily reflect their performance 
in practice, despite  our efforts to simulate real clinical 
readings. Therefore, the prospective BI-RADS assess-
ment, which was made by radiologists in real time dur-
ing face-to-face examinations, where they received more 
information about the patients, was used to compare the 
diagnostic performance with the model to compensate 
for this limitation in this study. Additionally, although we 
strived to acquire a rich and well-generalized dataset in 
this study, using images collected from systems of a sin-
gle company could still be a limitation. The radiologists 
of each hospital participated in the data collection oper-
ated with six different devices from one company. The DL 
model could work better with various data collected from 
different devices of multiple vendors, and it is a valuable 
future work to be carried out. In future work, we will 
develop CNN models at the patient level integrated with 
more clinical information or elastography and molecu-
lar information to build more robust models with better 
generalizability. It is expected that a real-time AI-based 
decision support software to be developed and integrated 
into US machines to help radiologists, especially those 
with less experience in primary hospitals, to make bet-
ter diagnoses in clinical practice. Prospective multicenter 

studies are also required to evaluate the practical applica-
tion of AI in a real clinical environment.

In summary, we developed a deep learning model using 
a large dataset that could diagnose breast lesions on US 
images. The model can provide more objective diag-
nostic results and improve the performance in diagnos-
ing breast lesions for radiologists. Our study holds great 
promise for application in the real world to assist radiolo-
gists in solving clinical questions.
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