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CRITICAL REVIEW

Radiomic assessment of oesophageal 
adenocarcinoma: a critical review of 18F‑FDG 
PET/CT, PET/MRI and CT
Robert J. O’Shea1*   , Chris Rookyard1, Sam Withey2, Gary J. R. Cook1,3, Sophia Tsoka4 and Vicky Goh1,5 

Abstract 

Objectives:  Radiomic models present an avenue to improve oesophageal adenocarcinoma assessment through 
quantitative medical image analysis. However, model selection is complicated by the abundance of available pre-
dictors and the uncertainty of their relevance and reproducibility. This analysis reviews recent research to facilitate 
precedent-based model selection for prospective validation studies.

Methods:  This analysis reviews research on 18F-FDG PET/CT, PET/MRI and CT radiomics in oesophageal adenocar-
cinoma between 2016 and 2021. Model design, testing and reporting are evaluated according to the Transparent 
Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) score and Radiomics 
Quality Score (RQS). Key results and limitations are analysed to identify opportunities for future research in the area.

Results:  Radiomic models of stage and therapeutic response demonstrated discriminative capacity, though clinical 
applications require greater sensitivity. Although radiomic models predict survival within institutions, generalisability 
is limited. Few radiomic features have been recommended independently by multiple studies.

Conclusions:  Future research must prioritise prospective validation of previously proposed models to further clinical 
translation.
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Key points

•	 Radiomic predictor recommendations vary consider-
ably between studies.

•	 Although radiomic models have demonstrated dis-
criminative predictions in oesophageal cancer tasks, 
adequate sensitivity has yet to be demonstrated.

•	 Future radiomic research in oesophageal adenocarci-
noma should prioritise validation of previously pro-
posed predictors over further feature selection.

Background
Oesophageal adenocarcinoma presents a major disease 
burden worldwide, with age-standardised incidence 
of 0.9 per 100,000 and 1-year survival of 47–55% [1, 2]. 
Although therapeutic developments have improved 
survival [2, 3], scope remains to optimise management 
through improved staging, therapeutic response predic-
tion and prognostication [4–6]. Radiomics—the analysis 
of quantitative medical imaging features describing mor-
phology, texture and intensity distribution—is a non-
invasive method to assess oesophageal adenocarcinomas 
through quantification of tumour characteristics.

The search for optimal radiomic models is compli-
cated by the breadth of candidate radiomic features and 
learning algorithms, which present an enormous param-
eter space to screen. Sample sizes are limited in clinical 
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imaging studies, creating a scenario in which data-driven 
feature selection can be unreliable [7–9]. The variation of 
radiomic feature distributions with imaging equipment, 
acquisition parameters and annotation methodology pre-
sents an additional obstacle for model generalisation [5, 
9–11]. Methodological rigour is essential to control false 
detection rates in such conditions [9], and several reviews 
have raised concerns regarding design and reporting of 
imaging models [11–14]. Unsurprisingly, 76% of pro-
posed radiomic predictors are estimated to be false posi-
tives [14].

To alleviate biases associated with model selection in 
individual data sets, studies may validate previously pro-
posed features and models. This approach is a necessary 
development in the transition from exploration to testing, 
carrying an appropriate weight in the Radiomics Quality 
Score (RQS) [15]. However, the complexity of radiomic 
feature definitions and nomenclature complicate aggre-
gation of results from different studies, hampering vali-
dation reproducibility. Accordingly, recent initiatives are 
now being made in an attempt to standardise radiomic 
features [15]. This review inspects and evaluates radiomic 
analyses focussing on the oesophageal adenocarcinoma 
subtype from a methodological standpoint, extracting 
features under a unified nomenclature to facilitate future 
validation studies. The exploratory phase of oesophageal 
cancer radiomics was well characterised in Van Ros-
sum’s 2016 review [16], and here we review subsequent 
research and developments.

Materials and methods
A literature search was performed to identify original 
research articles applying radiomics or artificial intelli-
gence to predict stage, therapeutic response or progno-
sis in human oesophageal adenocarcinoma using PET/
CT, PET/MRI or CT images. Searches were conducted 
on Embase and MEDLINE databases for full-text articles 
published in peer-reviewed journals in the English lan-
guage between 1 January 2016 and 4 January 2022. Search 
queries are provided in Additional file  1. References of 
included studies were also screened. Studies with fewer 
than 10 adenocarcinoma cases, those with squamous 
cell carcinoma only, and those which omitted histologi-
cal information were excluded. This threshold reflected 
the recommended minimum sample size for univariate 
cox model training [17, 18], whilst avoiding the exclusion 
of studies with low sample sizes but high quality, such as 
prospective validation analyses. Where histology-specific 
results were unavailable, aggregate results were extracted. 
Studies which modelled both oesophageal and gastroe-
sophageal junction adenocarcinomas were included in 
this analysis. Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 

(TRIPOD) score [19] and RQS [15] were annotated where 
applicable. Model validation was classified as “internal”, 
“temporal” or “external” according to whether the data 
partition represented (1) a random split, (2) a split after 
a specific time point or (3) a different institution. Radi-
omic features were extracted and annotated according to 
Image Biomarker Standardization Initiative nomencla-
ture [20] in the format “Family_Feature”. A maximum of 
five features were extracted from each study, according to 
the most significant associations or model contributions. 
Radiomic feature selection frequency was estimated for 
studies analysing primary tumoural radiomics. Visualisa-
tion was performed with R, RStudio and ggplot [21–23]. 
Discrimination performance (e.g. how appropriately a 
predictor ranks patients with respect to 1-year survival) 
was quantified by area under the receiver operating char-
acteristic curve (AUC). Categorical associations (e.g. sur-
vival time differences between participant groups) were 
described with χ2 metrics. Continuous associations (e.g. 
association of a radiomic feature with volume change) 
were described with Pearson’s correlation ( ρ) . Cox 
regression model coefficients (which quantify predictors’ 
contributions a prognostic model) were described by the 
hazard ratio (HR). Clinical tumour, node and metastasis 
stages were abbreviated as cT, cN, cM and cTNM; and 
corresponding post-neoadjuvant pathological stages as 
ypT, ypN, ypM and ypTNM.

Results
Articles (n = 72) were screened and 17 were included in 
this analysis. A flow diagram of the screening process is 
provided in Fig.  1 [24]. Article information is summa-
rised in Fig.  2. Results and predictive features from the 
five studies with the highest RQS are provided in Table 1. 
Article screening is detailed in Additional file 1: Data S1. 
TRIPOD annotations are provided in Additional file  1: 
Data S2. RQS annotations are provided in Additional 
file 1: Data S3.

Staging
18F‑FDG PET
Two 18F-FDG PET studies modelled stage. Zhang mod-
elled ypN on retrospective 18F-FDG PET/CT data from 
patients receiving chemoradiotherapy (CRT) in two insti-
tutions (TRIPOD: 29, RQS: 17) [25]. All 190 patients had 
adenocarcinoma and underwent neoadjuvant chemora-
diotherapy prior to surgery. Supervised feature elimina-
tion and L1-penalisation selected four clinical features 
(age, clinical t-stage (cT), treatment, tumour regression 
grade (TRG)) and nine radiomic features. PET radiomics 
added minimal information to clinical features in inter-
nal validation (AUC: 0.82 vs. 0.79, p = NR), and the mod-
els were equivalent in external validation (AUC: 0.69 vs. 
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0.65, p > 0.05). In external validation, cN demonstrated 
similar discrimination but greater sensitivity, compared 
with clinical (AUC: 0.66 vs. 0.69, sensitivity: 0.89 vs. 0.52) 
and clinicoradiomic models (AUC: 0.66 vs. 0.65, sensitiv-
ity: 0.89 vs. 0.63).

Baiocco modelled baseline metastatic status retrospec-
tively on prospectively collected serial 18F-FDG PET/
MRI data from a single institution (TRIPOD: 24, RQS: 
4) [26]. Seventeen out of 20 participants had adenocarci-
noma. In training data, a bivariate model of gross tumour 

volume radiomics (SUV grey-level co-occurrence matrix 
(GLCM) GLCM_JointEntropy, ADC GLCM_JointEn-
tropy) demonstrated moderate discrimination (accuracy 
0.8, p < 0.001). Adjustments for multiple hypothesis test-
ing were not performed in this exploratory study.

Fig. 1  Flow chart of article screening and inclusion. ESCC oesophageal squamous cell carcinoma, EAC oesophageal adenocarcinoma
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Therapeutic response
Summary of studies
18F‑FDG PET
Seven studies modelled therapeutic response. Beukinga 
modelled CRT response on retrospective serial 18F-FDG 
PET data from patients with locally advanced disease 
at a single institution (TRIPOD: 27, RQS: 16) [6]. Sixty-
three out of 73 patients had adenocarcinoma. Baseline 
and neoadjuvant radiomic features were evaluated for 
robustness to segmentation by different annotators. 
Twelve models were developed with various combina-
tions of clinical and radiomic features. In internal vali-
dation, a clinicoradiomic model (cT, post-therapeutic 
GLCM_AngularSecondMoment) discriminated com-
plete response (TRG = 1) better than clinical features (cT, 
histology) alone (AUC: 0.81 vs. 0.75, p = NR).

In a separate cohort, Beukinga modelled neoadju-
vant CRT response on retrospective 18F-FDG PET and 
genomic data from patients with locally advanced dis-
ease at a single institution (TRIPOD: 26, RQS: 14) [27]. 
Eighty-eight out of 96 patients had adenocarcinoma. 
Hierarchical clustering was employed to select clini-
cal (cT, histology) and radiomic features (Shape_Geary-
sCMeasure, grey-level run length matrix (GLRLM) 
GLRLM_LongRunLowGreyLevelEmphasis). In internal 

validation, incorporation of gene amplification data (clus-
ter of differentiation 44 and human epidermal growth 
factor receptor 2 genes) improved clinicoradiomic dis-
crimination of complete response (TRG = 1) (AUC: 0.82 
vs. 0.69, p = NR). Weaker performance was achieved with 
clinical features alone (AUC: 0.82 vs. 0.66, p = NR).

Van Rossum modelled CRT response retrospectively 
on serial 18F-FDG PET data from oesophageal cancer 
patients at a single institution (TRIPOD: 31, RQS: 12) [4]. 
Forty-four out of 45 patients had adenocarcinoma. Radi-
omic feature stability was quantified in a subcohort of 7 
patients who had baseline imaging repeated in two insti-
tutions. Logistic regression models were generated from 
clinical (tumour length, cT, therapy, tumour, residual dis-
ease on post-CRT biopsy, regression grade) and radiomic 
features (baseline GLCM_ClusterShade, post-therapeutic 
metabolic_TumourLesionGlycolysis, post-therapeutic 
Shape_Sphericity, delta GLRLM_RunPercentage, delta 
GLCM_JointEntropy). In internal validation, radiomic 
features improved discrimination of complete (TRG = 1) 
response (AUC: 0.77 vs. 0.72, p = NR). Radiomics were 
not found to add value at a sensitivity threshold (90%) 
which could select patients to forego surgery. As the vali-
dation set was employed for model optimisation, perfor-
mance may have been overestimated.

Fig. 2  Histograms of information on included articles. Upper left: study sample size. Upper middle: number of institutions from which data were 
collected. Upper right: number of scanner vendors with which images were acquired. Lower left: image modality. Lower middle: Radiomics Quality 
Score (RQS). Lower right: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) score
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Yip modelled CRT response on retrospective serial 
18F-FDG PET data from oesophageal cancer patients at 
a single institution (TRIPOD: 23, RQS: 3) [28]. Fifty out 
of 54 patients had adenocarcinoma. Six radiomic features 
(GLCM_Homogeneity, GLCM_JointEntropy, GLRLM_
HighGreyLevelRunEmphasis, GLRLM_ShortRunHighG-
rayRunEmphasis, grey-level size zone matrix (GLSZM) 
GLSZM_HighGrayLevelZoneEmphasis, GLSZM_Small-
ZoneHighGreyLevelEmphasis) were preselected based 
on previous studies, and deltas were evaluated. In train-
ing data, delta GLCM_JointEntropy discriminated partial 
response (ypTNM < cTNM) from non-response (AUC: 
0.71, p = 0.01). However, complete response (ypT = 0) 
was not distinguished. Partitioned model validation was 
omitted.

Simoni modelled CRT response retrospectively on 
a prospective 18F-FDG PET data from patients with 
locally advanced disease at a single institution (TRIPOD: 
23, RQS: 3) [29]. Thirty-five out of 53 patients had ade-
nocarcinoma. Radiomic dimensionality reduction was 

performed with unsupervised clustering, and five repre-
sentative features were considered. In training data, two 
radiomic features (baseline GLCM_JointEntropy and 
baseline GLCM_InverseDifferenceNormalised) demon-
strated univariate associations with response (TRG ≤ 2).

CT
Zhang modelled CRT response retrospectively using PET 
segmentation to support CT radiomic extraction from 
serial 18F-FDG PET/CT data from a single institution 
(TRIPOD: 30, RQS: 5) [30]. Although data were sourced 
from a multicentre trial, patients with images recorded in 
other institutions were excluded. One hundred fifty-four  
out of 181 patients (84%) were excluded in total. Nine-
teen out of 29 included patients had adenocarcinoma. 
Five radiomic features were preselected based on previ-
ous studies. Although adjustment for multiple hypoth-
esis testing was not reported, deltas in three radiomic 
features (GLCM_InverseDifferenceMoment, GLCM_
Contrast, GLCM_Correlation) would have remained 

Table 1  Results and predictive features in the seven studies with the highest RQS and TRIPOD score

AUC​ area under receiver operator characteristic, RQS Radiomics Quality Score, TRIPOD Transparent Reporting of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis, TRG​ tumour regression grade, OS overall survival, ypN post-neoadjuvant nodal status, GLCM grey-level co-occurrence matrix, GLRLM grey-level 
run length matrix, NGTDM neighbouring grey tone difference matrix, NGLDM neighbouring grey-level dependence matrix

Study Scores Modality N Task Performance Radiomic features

[6] RQS: 16
TRIPOD: 27

18F-FDG PET 73 Response (TRG = 1) Internal: AUC: 0.81 1. GLCM_AngularSecondMoment

[27] RQS: 14
TRIPOD: 26

18F-FDG PET 96 Response (TRG = 1) Internal: AUC: 0.82 1. Shape_GearysCMeasure
2. GLRLM_LongRunLowGrey
LevelEmphasis

[10] RQS: 13
TRIPOD: 31

18F-FDG PET 403 OS Internal: χ2
3
 : 143.14

p < 0.001
1. IntensityHistogram_Energy
2. IntensityHistogram_Kurtosis

[43] RQS: 25
TRIPOD: 31

18F-FDG PET 46 OS External: χ2
3
 : 1.27

p = 0.74
1. IntensityHistogram_Energy
2. IntensityHistogram_Kurtosis

[25] RQS: 17
TRIPOD: 29

18F-FDG PET 190 ypN stage Internal:
AUC: 0.82
95% CI [0.74–0.89]
External:
AUC: 0.69
95% CI [0.54–0.8]

1. NGTDM_DependenceEntropy
2. Shape_VolumeDensity
3. NGTDM_Coarseness
4. IntensityHistogram_Minimum
HistogramGradient
5. GLCM_InverseDifference
MomentNormalised

[25] ,, ,, ,, OS External:
χ2
3
 : 6.08

p = 0.01

,,

[41] RQS: 12
TRIPOD: 24

CT 239 OS (3 yr) Internal:
AUC: 0.69
95% CI [0.61–0.77]
External:
AUC: 0.61
95% CI [0.47–0.75]

1. GLCM_InverseVariance
2. GLDZM_LowGreyLevelZone
Emphasis
3. GLRLM_RunLengthNon
Uniformity
4. GLCM_InformationMeasure
OfCorrelation1
5. NGLDM_DependenceCount
Nonuniformity

[4] RQS: 12
TRIPOD: 31

18F-FDG PET 217 Response (TRG = 1) Internal:
AUC: 0.77
95% CI [0.70–0.83]

1. GLCM_ClusterShade
2. GLRLM_RunPercentage
3. GLCM_JointEntropy
4. Shape_Sphericity
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significantly associated with response (ypT ≤ 2 ) under 
Bonferroni correction. Survival associations (OS ≥ 1 yr) 
were not identified.

Klaasen modelled chemotherapy response on retro-
spective serial CT data from stage IVb patients from 
multiple institutions, extracting radiomic features from 
hepatic metastases (TRIPOD: 31, RQS: 10) [31]. One 
hundred ninety-six lesions were included in the analysis. 
Sixteen out of 18 patients had adenocarcinoma. Patients 
were restricted to those with visible liver metastases on 
baseline and post-therapeutic scans. The random forest 
algorithm was applied to model 370 radiomic features, 
extracting feature importance according to Gini index. 
In patient disjoint internal validation, a radiomic model 
discriminated complete (no residual tumour on second 
scan) response (AUC: 0.79 [0.74–0.88]). Partial response 
(> 65% volume reduction) was not discriminated as eas-
ily (AUC: 0.64 [0.55–0.73]). It is noted that radiomic 
distributions may differ between primary and meta-
static lesions, as was observed by Wagner in a cohort of 
patients with metastatic colorectal cancer [32].

Outcome discretisation
Where studies discretised continuous variables, valu-
able information may have been lost [33]. Although TRG 
is predictive of OS [34], Zhang found no correlation 
between dichotomised survival (OS > 1  yr) and predic-
tors of dichotomised response (ypT ≤ 2 ) [30]. Klaassen 
dichotomised partial response at 65% volume reduc-
tion, according to a computational measurement [31]. 
Consequently, trivial clinical differences between 64 and 
66% tumour volume reduction may have been overrep-
resented, whilst significant differences between 0 and 
64% underrepresented. Indeed, this model learned highly 
nonlinear decision surfaces—the second most important 
feature (GLCM_ClusterShade) was perfectly uncorre-
lated with actual volume decrease (Gini Index: 1.44, Pear-
son r: 0.0). Furthermore, less important features such as 
GLCM_InformationMeasureOfCorrelation1, which cor-
related strongly with volume decrease (Gini Index: 0.81, 
Pearson r: 0.55) would have yielded informative linear 
predictors.

Selection bias in therapeutic response studies
Selection biases were apparent in several studies. For 
example, Beukinga, Zhang and Van Rossum excluded 
participants with images recorded in other institutions, 
potentially reducing model generalisability [4, 6, 30]. 
Klaasen restricted their cohort to patients with visible 
hepatic metastases on both baseline and post-therapeutic 
scans [31]. Consequently, the model only observed com-
plete lesion regression in the presence of other visible 

disease. The generalisability of these findings to the clini-
cally preferable outcome in which all lesions regress can-
not be guaranteed.

Feature preselection
Feature preselection avoids severe adjustments for mul-
tiple hypothesis testing, thereby optimising statistical 
power to detect relevant features within the preselected 
set. Accordingly, Yip and Foley considered a limited 
number of radiomic features suggested by previously 
published results [10, 35–39]. Piazzese and Van Rossum 
quantified feature stability in subcohorts with images 
recorded in separate institutions, preselecting features 
with stable distributions a priori [5, 10]. Although Klaas-
sen preselected feature families based on a previous 
analysis [40], 370 variables were included in the analysis 
[31]. Beukinga and Baiocco performed unsupervised fea-
ture selection by clustering, conserving power to test a 
small number of selected variables against the response 
[26, 27]. Larue and Zhang employed supervised feature 
selection [25, 41]—this approach retains overfitting risks 
as the response is observed. Both analyses provided unbi-
ased estimates of model performance through external 
validation—out-of-sample performance decreases dem-
onstrated overfitting in each case.

Clinical applicability
To inform surgical management decisions, therapeutic 
response models must demonstrate sensitivity to residual 
disease, i.e. if watch-and-wait is to be considered follow-
ing neoadjuvant therapy, models must provide high cer-
tainty of complete response. Metrics such as AUC and 
accuracy may misrepresent performance in this regard. 
Van Rossum and Yip both identified poor sensitivity to 
residual disease, highlighting the importance of clini-
cally focussed modelling objectives [4, 28]. Most radi-
omic models will provide imperfect information—i.e. 
they improve risk predictions somewhat, but retain rela-
tively high error rates. Such models may be applied more 
securely in scenarios where the risk–benefit ratios are 
uncertain, such as in the selection between two therapeu-
tic approaches with similar efficacies. Other potentially 
valuable applications include therapeutic dose optimi-
sation, as was demonstrated by Her in the optimisation 
of intensity-modulated radiotherapy for prostate cancer 
[42].

Survival
Summary of studies
18F‑FDG PET
Six studies modelled overall survival (OS). Foley mod-
elled OS on retrospective 18F-FDG PET data from a sin-
gle institution (TRIPOD: 31, RQS: 13) [10]. Out of 403 
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participants, 316 had adenocarcinoma. Backwards con-
ditioning was employed to select three clinical features 
(age, cTNM and treatment intent) and three radiomic 
features (metabolic_TumourLesionGlycolysis, Intensi-
tyHistogram_Energy and IntensityHistogram_Kurtosis) 
from 19 preselected features. In temporally partitioned 
validation, clinicoradiomic model quartiles contained 
more survival information than clinical model quartiles 
( χ2

3
 : 143.1 vs. 20.6, p = NR).

In a separate study, Foley validated their proposed 
model on prospective 18F-FDG PET data from three 
institutions (TRIPOD: 31, RQS: 25) [43]. Thirty-nine out 
of 46 participants had adenocarcinoma. Neither clini-
coradiomic model quartiles nor clinical model quartiles 
were found to associate with overall survival ( χ2

3
 : 1.4 vs. 

1.2, p = NR). However, calibration slopes did not dif-
fer from unity, supporting preservation of discrimina-
tive capacity. Feature harmonisation was also performed 
with the “combat” algorithm [44], though performance 
remained similar.

Karahan modelled OS on retrospective 18F-FDG PET 
data from a single institution (TRIPOD: 23, RQS: 7) [45]. 
Thirteen out of 62 patients had adenocarcinoma histol-
ogy. Forty-seven radiomic features were considered. 
Although several univariate associations were identi-
fied between radiomic features and survival outcomes, 
adjustments for multiple hypothesis testing were not 
reported—consequently, significance may have been 
overestimated. Nonetheless, in internal validation, logis-
tic regression models demonstrated good discrimina-
tion of 1-year OS (AUC: 0.635) and 5-year OS (AUC: 
0.82). Model features were not reported. Analysis was 
restricted to patients who were known to be alive or 
deceased at each time interval, resulting in the exclusion 
of 5/75 patients (7%) lost to follow-up in the first year and 
15/75 (20%) lost in 5 years.

Zhang modelled OS in an external cohort using their 
18F-FDG PET staging models (TRIPOD: 29, RQS: 17) 
[25]. The clinicoradiomic model predicted overall sur-
vival in the external data ( χ2

1
: 6.08,P = 0.01).

CT
Piazzese modelled OS retrospectively on CT data from 
a multicentre randomised controlled trial (TRIPOD: 
27, RQS: 4) [5]. Fifty-three out of 213 participants had 
adenocarcinoma, while the majority had squamous cell 
carcinoma. Radiomic stability was estimated by com-
paring feature distributions in 2D and 3D images. In a 
Cox regression model with five clinical features (age, 
sex, cTNM, WHO performance status, and IV con-
trast administration) and four stable radiomic features 
(GLCM_InverseVariance, grey-level distance zone 
matrix (GLDZM) GLDZM_LargeDistanceEmphasis, 

GLDZM_ZoneDistanceNonUniformityNormalised and 
GLDZM_ZoneDistanceVariance), GLDZM_ZoneDis-
tanceVariance demonstrated significant association with 
survival (hazard ratio 1.25, p = 0.03). Omission of model 
validation was justified by prioritisation of false positive 
and negative rates in predictor selection—all observa-
tions were used for model fitting.

Larue modelled 3-year OS on retrospective CT data 
from two institutions (TRIPOD: 24, RQS: 12) [41]. Out 
of 239 participants, 193 had adenocarcinoma. Recursive 
feature elimination was employed to select 40 predictors 
from a set of 1049 radiomic features. The random forest 
algorithm was employed to model radiomic features (not 
reported) and clinical features (age, gender, histology, 
cTNM). Although radiomics outperformed clinical fea-
tures in internal validation (AUC: 0.69 vs. 0.63, p = NR), 
similar performance was demonstrated in external vali-
dation (AUC: 0.61 vs. 0.62). Supervised feature selection 
and modelling were performed in separate runs of cross 
validation, rather than within cross-validation splits. This 
procedural error is common in radiomic analyses and 
consequent data leakage results in a bias towards overly 
complex models [13]. Indeed, decreased external valida-
tion performance indicated overfitting.

Selection bias in survival studies
The retrospective time frame of survival analyses may 
result in various selection biases. Karahan performed two 
separate exclusions, removing those lost to follow-up at 
1  year and 5 years, respectively. Consequently, partici-
pants lost to follow-up due to death were excluded from 
survival outcomes, inducing bias [46]. Larue excluded 
cases which did not undergo surgery, although this infor-
mation would not be available for the immediate appli-
cation of a pre-treatment imaging model [41]. Piazzese 
utilised trial data, and exclusions were not reported [5]. 
Foley’s exclusions were most suited to clinical applica-
tion, as they were clearly described and based on contem-
poraneous variables with research precedent (SUVmax < 3, 
MTV < 5  ml, histology other than adenocarcinoma or 
squamous cell carcinoma, synchronous malignancies and 
oesophageal stenting) [10, 43]. Foley’s validation study 
provided the most unbiased estimates of model perfor-
mance, as the model and exclusions were fixed prior to 
application in a prospective data set [43].

Clinical applicability
As the clinical consequences of false positives and false 
negatives rarely equate, traditional model metrics may 
have limited relevance at patient level and further deci-
sion curve analysis may be required [4]. Larue found 
that their model demonstrated a 24% false negative rate 
for 3-year mortality, concluding that the model cannot 
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support treatment decisions [41]. Beyond use for man-
agement decisions, radiomic survival models may find an 
important application in patient information. Oncology 
patients rank life expectancy as their highest information 
priority [47]. Consequently, an additional objective risk 
measure may improve patient-centred care if used appro-
priately. However, radiomic models’ complexity and reli-
ability may prove difficult to communicate in practice.

Evaluation of technical aspects
Stability of radiomic features
18F‑FDG PET
Whybra [48] assessed radiomic feature robustness to 
resampling on retrospective 18F-FDG PET data from 
patients at a single institution (RQS: 3). Nineteen out of 
131 patients had adenocarcinoma. Radiomic distribu-
tions were found to vary with interpolation method.

Van Rossum et  al. [4] evaluated feature stability in a 
subset of their cohort with baseline 18F-FDG PET images 
recorded in both the institutions. Both segmentations 
were performed by a single clinician. Shape and meta-
bolic features demonstrated high stability; first-order, 
GLCM and GLRLM features demonstrated moderate 
stability; and neighbouring grey tone distance matrix 
(NGTDM) features demonstrated poor stability.

CT
Larue [40] evaluated stability of radiomic features with 
respect to respiratory phase in 4D-CT data from patients 
at a single institution. Twenty out of 40 had adenocarci-
noma. Wavelet filtered image features were found to be 
less robust than features computed on the original image. 
Shape features and GLDZM features were the most sta-
ble feature families overall.

Impact of segmentation methods
Parkinson [49] evaluated the impact of segmentation 
methodology on survival models developed in Foley’s 
cohort [10] (TRIPOD: 27, RQS: 11). Six segmentation 
algorithms were applied. Radiomic features varied to the 
extent that some survival associations reversed.

Yip [35] modelled therapeutic response in retrospective 
serial 18F-FDG PET data from a single centre, evaluating 
the impact of contour propagation methodology (RQS: 
3). Forty-four out of 45 patients had adenocarcinoma 
histology. Three preselected features’ deltas (GLCM_
JointEntropy, GLRLM_ShortRunHighGreyRunEmpha-
sis, GLZSM_ShortZoneHighGreyLevelEmphasis) were 
found to be robust to registration algorithm variation.

Radiomic features’ volume dependence
Several studies identified associations between observed 
radiomic features and tumour volume [35, 49]. Following 

Hatt’s recommendations [50], Van Rossum and Foley 
excluded small tumours from their analyses [4, 25]. Vol-
ume confounding may be evaluated by inclusion of vol-
ume as a predictor [50]. Several studies also noted the 
limitation that radiomic features may vary according to 
segmentation method [10, 28, 31, 45].

Radiomic feature selection frequency
The feature space of radiomic models varied consider-
ably between studies. Disregarding image transforma-
tions, 21/25 identified features were recommended by 
one study each. The most frequently selected feature was 
GLCM_JointEntropy, appearing in five PET studies [4, 
28–30, 35] and one CT study [30]. A histogram of radi-
omic feature selection frequency is provided in Fig.  3. 
Significant radiomic features extracted from each article 
are provided in Additional file 1: Data S4.

Discussion
Summary of findings
Although staging models demonstrated discriminative 
capacity [25, 26], sensitivity afforded by radiologists was 
unmatched. Radiomic models of therapeutic response 
demonstrated marginally higher discrimination than 
clinical models in three studies [4, 6, 27]. However, radi-
omic features did not improve clinical models’ sensitiv-
ity to residual disease where evaluated [4, 28]. Survival 
models were informative; however, generalisability was 
limited [5, 10, 41, 43, 45].

Design and reporting standards
Many studies followed design and reporting recommen-
dations—Foley followed Moons’ biomarker development 
recommendations [10, 43, 51] and Klaasen, Larue, Van 
Rossum, Piazzese and Zhang cited TRIPOD guidance [4, 
5, 25, 41]. TRIPOD scores ranged from 23/31 to 31/31, 
indicating comprehensive reporting. TRIPOD compli-
ance enhanced transparency and reproducibility. How-
ever, RQS ranged from 3/36 to 25/36 with a median score 
of 11/36, highlighting many opportunities for design 
improvement from a radiomics perspective. In particular, 
only one prospective validation study was identified [43]. 
These findings concur with previous analyses [11, 12, 52, 
53].

Modelling algorithms
Minimally complex models such as logistic regres-
sion, linear discriminant analysis and cox regression 
were employed in most studies [4–6, 10, 25, 27, 30, 45, 
49]. The small parameter spaces of these algorithms 
suited the limited sample sizes available, particularly 
where full sets of radiomic predictors were considered. 
Regression-based models are also amenable to biological 
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interpretation as coefficients describe the direction and 
magnitude of the estimated effects. Klaasen and Larue 
[31, 41] developed random forest models. The instability 
of importance measures in the high-dimensional setting 
[54] complicates application of random forest model-
ling to radiomic feature selection—this approach is best 
applied to data sets where observations outnumber vari-
ables [9]. Indeed, Larue’s model demonstrated decreased 
performance in external validation [41]. Furthermore, 
random forest decision functions require complex 
descriptions, impending reproduction.

External validation and generalisability
Radiomic feature distributions may differ between cen-
tres, due to variability in scanner model, acquisition 
parameters and population characteristics [6, 10, 25, 
27, 31, 45], prompting calls for standardisation of these 
parameters [27, 41, 45]. Accordingly, Piazzese, Beukinga 
and Karahan preselected features on the basis of sta-
bility [5, 6, 45]. Both studies testing inter-institutional 

generalisability demonstrated performance decreases 
[25, 41], indicating that some degree of overfitting 
occurred. Lack of external validation was frequently 
cited as a limitation [6, 25, 27, 29–31, 41]. Of five studies 
which performed internal validation, only Foley reported 
the performance of a single finalised model on test data 
which was unobserved during training or model selec-
tion [10]. Although Foley did not find their model per-
formance significant in external validation, it should be 
noted that the small sample size of the external data set 
limited the power to detect significant results [43].

Study limitations
Recognising the distinct clinical prognostic profiles of 
oesophageal adenocarcinoma and squamous cell car-
cinoma [2], the studies analysed in this review were 
selected to provide a large predominance of adenocarci-
nomas. However, the inability to completely separate the 
small amount of squamous cell carcinoma data in some 
included studies may reduce specificity of the feature 

Fig. 3  Histogram of radiomic feature recommendations by modality, excluding image transforms. Up to five features were extracted from each 
study, according to significance or model contribution. GLCM grey-level co-occurrence matrix, GLDZM grey-level distance-zone matrix, GLRLM 
grey-level run length matrix, GLSZM grey-level size zone matrix, NGTDM neighbouring grey tone difference matrix, NGLDM neighbouring grey-level 
dependence matrix
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recommendations for a pure adenocarcinoma cohort. 
Comparison of individual study findings was also com-
plicated by variability in the considered features, selec-
tion methods and modelling algorithms. Furthermore, 
statistical measures of association varied, precluding 
conventional meta-analysis. Comparative evaluation of 
image modalities was further precluded due to the pau-
city of studies evaluating CT and MRI. Our study reports 
frequency of feature selection, ignoring significance and 
direction of effect in individual studies. Inclusion of small 
studies allowed for faithful representation of the diverse 
conditions across different studies—however, greater fea-
ture selection variability and lower feature significance 
may be expected in smaller studies. Finally, this analysis 
was limited to studies published in the English language.

Conclusions
Radiomic models for 18F-FDG PET, MRI and CT have 
been proposed for staging, therapeutic response assess-
ment and prognostication. Many studies have reported 
significant results. An urgent clinical need exists for a 
generalisable, rigorously tested prognostic model for 
oesophageal adenocarcinoma. Thus, future studies 
must prioritise unbiased model validation over further 
exploratory research. This review consolidates study find-
ings and proposes features to facilitate precedent-based 
design of prospective radiomic studies.
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