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Abstract 

Objectives:  MRI negative epilepsy has evolved through increased usage of 3 T and insights from surgically correlated 
studies. The goal of this study is to describe dedicated 3 T epilepsy MRI findings in medically refractory epilepsy (MRE) 
patients at a tertiary epilepsy center to familiarize radiologists with an updated spectrum and frequency of potential 
imaging findings in the adult MRE population.

Methods:  Included were all patients with MRE admitted to the epilepsy monitoring unit who were discussed at 
weekly interdisciplinary imaging conferences at Toronto Western Hospital with MRI studies (3 T with dedicated epi-
lepsy protocol) performed between January 2008 and January 2021. Lesion characterization was performed by two 
readers based on most likely imaging diagnosis in consensus. Lobes involved per case were recorded.

Results:  A total of 738 patients (386 female; mean age 35 years, range 15–77) were included. A total of 262 patients 
(35.5%) were MRI negative. The most common imaging finding was mesial temporal sclerosis, seen in 132 patients 
(17.9%), followed by encephalomalacia and gliosis, either posttraumatic, postoperative, postischemic, or postin-
fectious in nature, in 79 patients (10.7%). The most common lobar involvement (either partially or uniquely) was 
temporal (341 cases, 58.6%). MRE patients not candidates for surgical resection were included in the study, as were 
newly described pathologies from surgically correlated studies revealing findings seen retrospectively on reported 
MRI negative exams (isolated enlargement of the amygdala, temporal pole white matter abnormality, temporal 
encephalocele).

Conclusion:  This study provides an updated description of the spectrum of 3 T MRI findings in adult MRE patients 
from a tertiary epilepsy center.
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Key points

•	 Through increased usage of 3 T MRI and insights 
from surgically correlated MRI negative studies, the 
definition of MRI negative epilepsy has evolved.

•	 All patients with medically refractory epilepsy and 
3  T MRI studies were included to assess the fre-
quency of imaging findings encountered.
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•	 This study provides a comprehensive description of 
3  T MRI findings in adult medically refractory epi-
lepsy patients from a tertiary epilepsy center.

Introduction
Epilepsy affects 70 million people worldwide, with a 
median incidence of 50 new cases per 100,000 persons 
per year [1]. Of these, an estimated 22.5% [2] to 37% [3] 
go on to develop medically refractory epilepsy (MRE), 
meaning they have failed adequate trials of at least two 
antiepileptic drugs to attain seizure freedom. Neuro-
surgery is potentially curative in selected MRE patients; 
those with epileptogenic lesions demonstrated on MRI 
are more likely to become candidates for surgical resec-
tion and have better outcomes as compared to “MRI neg-
ative” MRE patients [4]. On MRI, epileptogenic lesions 
are often subtle, with sensitivity decreased through usage 
of lower field (1.5 T) MRI [5], non-epilepsy tailored MRI 
protocols, and assessment by non-expert readers [6, 7], 
yet only a fraction of MRE patients are referred to spe-
cialized, tertiary care epilepsy centers with epilepsy mon-
itoring units and dedicated multidisciplinary evaluation 
for further assessment [8].

The rate of MRI negative epilepsy cases reported by 
prior studies varies greatly, depending on clinical sce-
nario and type of epilepsy. Prior MRE studies report MRI 
negative rates ranging from 17 to 43% [9, 10]; notably, 
these studies were performed using 1.5  T MRI systems 
and one excluded all non-surgical MRE patients for pur-
poses of histopathological correlation [10]. With respect 
to other epilepsy patient cohorts, a prospective study of 
patients presenting with new-onset seizures reported a 
lesion detection rate of 47%, also using 1.5  T MRI [11]. 
More recently, a meta-analysis of epilepsy MRI studies 
based on field strengths ranging from 1.5 T to 7 T found 
an 83% overall detection rate for temporal lobe epilepsy 
patients [7]. The goal of our study was to describe dedi-
cated 3  T epilepsy protocol MRI findings in all MRE 
patients at an adult tertiary epilepsy center, regardless if 
neurosurgery was performed, to familiarize radiologists 
with the spectrum and frequency of potential imaging 
findings in the adult MRE population.

Materials and methods
Study cohort
This study was exempt from Research Ethics Board (REB) 
review as determined by the University Health Network 
(UHN) Quality Improvement Review Committee (QIRC) 
(QI ID 21–0211). The study cohort comprised consecu-
tive patients with MRE admitted to the epilepsy monitor-
ing unit who were discussed at weekly interdisciplinary 
imaging conferences at Toronto Western Hospital with 

MRI studies between January 2008 and January 2021. 
Excluded from the study were patients without MRI 
studies available for review, patients scanned at 1.5  T, 
patients scanned at 3 T without a dedicated epilepsy MRI 
protocol, and patients with quality degraded MRI studies.

MR imaging
Our dedicated epilepsy MRI protocol incorporates 3D 
sequences with millimetric, isotropic resolutions and 
2D T2-weighted, coronal oblique sequences with sub-
millimetric in-plane resolutions, in keeping with rec-
ommendations put forth by the International League 
Against Epilepsy [12]. All studies were performed with 
our dedicated protocol on 3  T scanners, either a Signa 
HDxt (GE Healthcare, Chicago, Illinois) or a Skyra (Sie-
mens Healthineers AG, Erlangen, Germany). Imaging 
parameters were as follows: For GE: axial FLAIR TR/
TE 9102.00/141.17  ms, FOV 22.0 × 22.0  cm, matrix 
384 × 224, slice thickness 4.0  mm; coronal oblique T2 
perpendicular to the hippocampus TR/TE 6500/40  ms, 
FOV 22.0 × 22.0  cm, matrix 512 × 512, slice thickness 
3.0 mm; coronal oblique FLAIR perpendicular to the hip-
pocampus TR/TE 8802/143.34 ms, FOV 22.0 × 22.0 cm, 
matrix 252 × 224, slice thickness 4.0 mm; sagittal 3D T1 
TR/TE 7.13/2.94 ms, FOV 22.0 × 22.0, matrix 256 × 256, 
slice thickness 1.0  mm; DWI TR/TE 8000.00/81.90  ms, 
FOV 22.0 × 22.0  cm, matrix 256 × 256, slice thickness 
4.0  mm, GRE TR/TE 2000/25  ms, FOV 22.0 × 22.0  cm, 
matrix 264 × 256, slice thickness 4.0  mm. For Siemens: 
axial and coronal oblique FLAIR perpendicular to the 
hippocampus TR/TE 9000/94  ms, FOV 19.9 × 22.0  cm, 
matrix 256 × 232, slice thickness 4.0  mm; coronal 
oblique T2 perpendicular to the hippocampus TR/TE 
6900/28 ms, FOV 22.0 × 18.6 cm, matrix 432 × 512, slice 
thickness 3.0  mm; sagittal 3D T1 TR/TE 2300/2.27  ms, 
FOV 25.0 × 25.0, slice thickness 1.0  mm, matrix 
256 × 256; DWI TR/TE 6900/94 ms, FOV 22.0 × 22.0 cm, 
matrix 160 × 160, slice thickness 4.0  mm, SWI TR/TE 
28/20  ms, FOV 18.0 × 23.0  cm, matrix 320 × 230, slice 
thickness 2.6 mm.

Imaging findings
All MRI scans were evaluated by two neuroradiolo-
gists (T.K. and N.H.) in consensus, with 21 and 8  years 
of experience, respectively. Lesion characterization was 
based on most likely imaging diagnosis. Lobes involved 
per case were listed, and concomitant mesial temporal 
sclerosis (MTS) was assessed for in all cases.

Results
Study cohort
A total of 819 patients were identified. Of these, 46 had 
no MRI available for review. A further 9 patients were 
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scanned at 1.5 T, 16 had no dedicated epilepsy protocol at 
3 T, and 9 had severe motion artifacts precluding assess-
ment. Thus, 738 patients (386 female, mean age 35 years, 
range 15–77) with MRI studies ranging from January 
2008 to January 2021 were included (Fig. 1).

Imaging findings
A total of 262 patients (35.5%) had no abnormalities 
determined on MRI (MRI negative). The most common 
imaging finding was MTS, seen in 132 patients (17.9%), 
20 of which contained bilateral cases of MTS. In the 112 
cases of unilateral MTS, the combination of volume loss, 
T2/FLAIR hyperintensity, and internal architectural dis-
tortion was seen in 98 cases (87.5%), followed by vol-
ume loss and T2/FLAIR hyperintensity without internal 
architectural distortion (8 cases, 7.1%), isolated volume 
loss relative to the opposite side (4 cases, 3.6%), and iso-
lated T2/FLAIR hyperintensity (2 cases, 1.8%). A further 
64 patients harbored “dual pathology,” i.e., a separate 
imaging finding combined with MTS (8.7%). In 53 cases 
(82.8%), the affected hippocampus was ipsilateral to the 
concomitant finding, with 5 contralateral MTS cases 
(7.8%) and 6 bilateral MTS cases (9.4%) in addition to the 
concomitant finding. The full list of imaging diagnoses 
can be found in Table 1.

Encephalomalacia and gliosis, either posttraumatic, 
postoperative, postischemic, or postinfectious, were 

the second most common finding, found in 79 patients 
(10.7%). Third most common was focal cortical dyspla-
sia (FCD), found in 47 patients (6.4%), 10 of which had 
a transmantle band suggestive of Type IIb FCD. Isolated 
enlargement of the amygdala was found in 40 patients 
(5.4%) with an additional 8 demonstrating involvement 
of adjacent structures (7 hippocampus, 1 uncus). 35 
patients (4.7%) had tumors (18 dysembryoplastic neu-
roepithelial tumor (DNET), 11 low grade glioma (LGG), 
3 ganglioglioma, 2 pleomorphic xanthoastrocytoma 
(PXA), 1 choroid plexus papilloma within the choroid 
fissure). Cavernomas were found in 22 patients (3%). 
The most common malformation of cortical develop-
ment apart from FCD was polymicrogyria (14 patients, 
1.9%) followed by periventricular nodular gray matter 
heterotopia (PVNH, 13 patients, 1.8%), band heteroto-
pia (6 patients, 0.8%), subcortical nodular heterotopia 
(2 patients, 0.3%), and pachygyria (1 subject, 0.1%).

Of the 476 patients with findings on MRI, a total of 
582 brain lobes/regions were involved by the patho-
logical entity (Fig.  2). The temporal lobe was involved 
(partially or uniquely) in 341 cases (58.6%) followed by 
the frontal lobe (106, 18.2%), parietal lobe (91, 15.6%), 
occipital lobe (21, 3.6%), and insula (21, 3.6%). The pos-
terior fossa was involved in 2 cases, namely one case of 
PVNH of the 4th ventricle and one case of osmotic pon-
tine myelinolysis.

Fig. 1  Patients included in study including number of mesial temporal sclerosis (MTS) diagnoses
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Discussion
In our series of 738 patients with MRE imaged at 3 T, MRI 
was negative in 35.5% of cases, a finding at the higher 
end of the previously reported MRE cohort spectrum 

ranging from 17 to 43% [9, 10]. Differences between our 
study and other prior epilepsy cohort studies are mani-
fold. First, our study focused on patients with MRE, a 
cohort that has different imaging-finding frequencies 
when compared with new-onset seizure cohorts [11, 13]. 
Second, we included only patients imaged at 3 T, which is 
known to have higher sensitivities for subtle lesions when 
compared with 1.5 T [14] through higher resolution, bet-
ter signal-to-noise ratio, and improved tissue contrast [5, 
15, 16]. Finally, all cases of MRE were included, regard-
less of surgical candidacy, in an attempt to replicate the 
clinical scenario faced by radiologists in routine practice.

A total of  262 patients (35.5%) had no abnormalities 
determined on MRI (MRI negative), representing the 
most common imaging diagnosis in our study. In pre-
vious studies, FCD was the most common pathology 
found among surgically treated MRI negative patients 
[17–19]. In a large-scale study by Wang et  al. spanning 
10 years, FCD type I represented the majority of all FCD 
cases (37/43) in 95 surgical MRI negative patients [17]. 

Table 1  Complete list of all imaging diagnoses encountered in the cohort

Imaging diagnosis Number of patients % of cohort

MRI negative 262 35.50

Mesiotemporal sclerosis 132 (20 bilateral cases) 17.89

Concomitant mesiotemporal sclerosis (dual pathology) 64 8.67

Encephalomalacia and gliosis 79 10.70

Focal cortical dysplasia 47 6.37

Isolated enlargement of the amygdala 40 5.42

Enlarged amygdala with involvement of surrounding structures 8 1.08

Tumor (18 DNET, 11 LGG, 3 Ganglioglioma, 2 PXA, 1 choroid plexus papilloma within the choroid fissure) 35 4.74

Cavernoma 22 2.98

Polymicrogyria 14 1.90

Periventricular nodular heterotopic gray matter 13 1.76

Subcortical nodular heterotopic gray matter 2 0.27

Band heterotopia 6 0.81

Ulegyria 12 1.63

Perinatal hypoxic gliosis/encephalomalacia without ulegyria 7 0.95

Encephalocele 10 1.36

Hippocampal malrotation 9 1.22

White matter abnormalities in the anterior temporal lobe 8 1.08

Cortical siderosis 3 0.41

Mass effect onto hippocampus 3 0.41

Tuberous sclerosis 4 0.54

Rasmussen’s encephalitis 3 0.41

Neurocysticercosis 2 0.27

Closed lip schizencephaly 2 0.27

Pachygyria, Hypothalamic hamartoma, Dandy-Walker variant, Dyke-Davidoff-Masson, Diffuse axonal injury 
with cortical hemorrhage, Hemimegalencephaly, Limbic encephalitis, Neurofibromatosis type I, Diffuse cor-
tical diffusion restriction, Dysmyelination with anteroposterior gradient, Diffuse cortical thinning, Arterio-
venous malformation with postradiation gliosis, Pontine osmotic myelinolysis, Remote anterior callosotomy, 
Meningeoangiomatosis

1 each 0.14

Fig. 2  Pie chart of brain lobes/regions involved by the imaging 
diagnosis
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FCD type I is known to be illusive on MRI when com-
pared with the more conspicuous FCD type II [20]. While 
increased cortical thickness, abnormal gyral/sulcal pat-
terns, blurring of the gray-white matter junction and the 
transmantle sign are all imaging features of FCD type II, 
they are rarely seen with FCD type I [20]; in some cases, 
blurring of the gray-white matter junction and cortical 
thickening has been described in FCD type I [21]. FCD 
type I is known to be a diffuse, often multilobar pathol-
ogy [22], and is associated with lobar hypoplasia/atrophy, 
which may help with identification and localization of 
these often invisible lesions [20]. Newer pulse sequences 
[23] and voxel-based morphometry [24] have shown 
promising results in the detection FCD type I through 
increased visual conspicuity and quantification. Thus, 
while FCD was the third most common finding in our 
study, seen in 47 patients (6.4%), the true number is likely 
higher based on the studies mentioned above on MRI 
negative patients.

MTS was the most common pathological finding in 
our study, seen in 132 patients (17.9%) with an additional 
64 patients (9%) harboring dual pathology, i.e., a sepa-
rate imaging finding and MTS. A study by Urbach et al. 
reported MTS in 26.2% of their prospective MRI cohort 
of MRE patients (101/385 patients) while failing to detect 
MTS in 3 additional cases after histopathological corre-
lation [9]. Notably, entities we included, such as gliosis 
and encephalomalacia (our second largest entity) were 
not described in their study, and their cohort included 
only patients who were considered for surgery, which 
may explain the discrepancy in the reported frequency of 
MTS imaging findings. A further study on MRE patients 
who underwent surgical resection reported 2/64 cases of 

MTS based on imaging, and further 2/64 cases after his-
topathology not identified on MRI pre-surgically [10].

Dual pathology has been described in the literature 
to range between 8 and 22% [25], and MTS has been 
described to have a high prevalence among MRI negative 
studies, with normal appearing hippocampi reported in 
up to 29% of proven MTS surgical cases [17, 26]. Clini-
cally, MRI negative patients with MTS had better chances 
at a seizure-free outcome when compared with MRI 
negative FCD patients and pathology negative patients 
[17]. MRI findings of MTS range from subtle T2/FLAIR 
hyperintensity of the hippocampus or flattening of the 
interdigitations at the superior aspect of the hippocampal 
head to frank hippocampal volume loss combined with 
T2/FLAIR hyperintensity [27] and internal architectural 
distortion [28] (Fig. 3). MTS is commonly due to febrile 
seizures in childhood and can progress to medically 
refractory epilepsy in up to 90% of cases, upon which sur-
gical resection is offered [29]. In the case of dual pathol-
ogy, simultaneous surgical removal of the lesion and the 
affected hippocampus resulted in best outcome in a study 
by Li et al. when compared to surgical resection of only 
one lesion alone [30].

Encephalomalacia and gliosis comprised the second 
largest entity in our cohort (79 patients, 10.7%), with eti-
ologies including cerebrovascular disease, trauma, infec-
tion, inflammatory disease, and prior surgical resection 
(Fig.  4). A study by Li et  al. reported 8.3% encephalo-
malacia and gliosis due to infarct and contusion in their 
cohort of 341 patients using a 1.5  T MRI system [31] 
and postischemic encephalomalacia and gliosis has been 
described to be the most common cause of seizures in 
the elderly [32]. A common pathophysiology amongst 

Fig. 3  Temporal lobe findings. a Subtle sign of left sided MTS with loss of the interdigitations of the pes hippocampi (arrow). b Right sided isolated 
enlargement of the amygdala (arrow). c White matter abnormality in the anterior left temporal lobe (arrow). d Suprasellar arachnoid cyst with 
compression of the left hippocampus (arrow). e Right temporopolar encephalocele with herniation of brain parenchyma (arrow) through a bony 
defect in the sphenoid (f, arrow, same patient as e). g Left sided MCA aneurysm with lamellated onion skin appearance (arrow) resulting in inferior 
displacement and compression of the left hippocampus (h, arrow, same patient as g)
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the above listed etiologies appears to be cortical glio-
sis, neuronal loss, changes in neuronal connectivity, and 
deposition of hemosiderin within the cortex [32, 33]. A 
subgroup (19 patients, 2.6%) of cerebrovascular disease 
patients had patterns suggestive of gestational or perina-
tal ischemia, i.e., periventricular leukomalacia for early 
gestational insults and biparietal thinning of the white 
and gray matter with associated gliosis in term neonates. 
In this subgroup, 12 patients demonstrated ulegyria, or 
mushroom shaped gyri, formed due to the increased sus-
ceptibility to hypoxemia at the depth of the sulci in term 
neonates. Ulegyria is highly epileptogenic, likely through 
hyperexcitability of the damaged cortex and through net-
work rearrangements in the surrounding cortex [34], and 
can be treated surgically [35].

Recently, awareness has increased for other poten-
tially resectable epileptogenic lesions in the temporal 
lobe. One such MRI finding includes isolated amygdala 
enlargement, the fourth most common imaging diagno-
sis in our study, seen in 40 patients (5.4%). Bower et  al. 
[36] found 7/11 MRI negative cases to have unilateral 
amygdala enlargement retrospectively, concordant with 
seizure lateralization. Histopathological correlation in 
one case revealed a glioneuronal hamartoma [36]. Van 
Paesschen et  al. described isolated T2 hyperintensity of 
the amygdala in 15/31 patients with normal appearing 

hippocampi, correlating their findings histopathologi-
cally to microdysgenesis and gliosis [37].

A total of 35 patients (4.7%) in our cohort presented 
with tumors including ganglioglioma, DNET, PXA, and 
LGG. These tumors each have characteristic imaging fea-
tures; however, overlap has been described. For example, 
ganglioglioma presents as a cyst with a nodule of contrast 
enhancement, although it can also appear predominantly 
solid [38]. DNETs are typically cortically based, intrinsi-
cally T2 hyperintense multicystic lesions but can also 
have variable elements of contrast enhancement [39]. 
PXAs generally present as cysts with an enhancing nod-
ule plus contrast enhancement of the adjacent meninges 
[40]. Finally, LGGs are characterized by foci of cortical 
and subcortical FLAIR hyperintensity that can be located 
anywhere in the brain and are often difficult to differen-
tiate from FCD [41]. While these tumors are frequently 
located in the temporal lobe, they are not exclusively 
temporal entities. In our study, the temporal lobe was 
involved in 79% of tumor cases. We realize that defini-
tive diagnosis of entities such as tumors is not possible by 
MRI, and this may have skewed tumor diagnosis or dif-
ferentiation from FCD in our study.

The temporal lobe was by far the most affected lobe 
in our study, being either uniquely or partially involved 
in 58.6% of cases, with MTS being the most common 

Fig. 4  Extratemporal findings: a Chronic left MCA infarct with concomitant left MTS (arrow, dual pathology). b Adult patient with birth-related 
findings of biparietal thinning of the white and gray matter with associated gliosis and ulegyria (arrow). c Cortically based, right parietal cavernoma 
with associated hemosiderin staining of the white matter. d and e (same patient) Focal cortical dysplasia with cortical thickening, blurring and FLAIR 
Hyperintensity of the gray-white matter junction (arrows)
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finding as described above. Hippocampal malrotation (or 
incomplete hippocampal inversion) was found in 9 (1.2%) 
of our study patients and while appearing to involve the 
hippocampus itself, through an abnormal triangular or 
rounded hippocampal shape and vertical collateral sul-
cus, it is thought to represent a surrogate marker for a 
developmental lesion elsewhere in the brain. EEG does 
not necessarily correlate to the side of hippocampal 
malrotation and the finding can be seen in up to 19% of 
healthy volunteers [42]. Lesions demonstrating mass 
effect onto the hippocampus with hippocampal com-
pression were seen in 3 cases in our study cohort (crani-
opharyngioma, middle cerebral artery aneurysm, and 
arachnoid cyst). Published case reports describe similar 
findings, postulating ischemic change in the compressed 
hippocampus as the nature of the seizure activity [43].

White matter abnormalities in the anterior temporal 
lobe (WAATL) is another entity gaining interest amongst 
clinicians in the setting of temporal lobe epilepsy and 
was found in 8 (1.1%) of our patients. Characterized by 
increased T2/FLAIR hyperintensity of the temporopo-
lar white matter and loss of gray-white matter differen-
tiation, this entity can present as a dual pathology (with 
MTS for example) or appear as an isolated finding [44, 
45]. In a study with 54 WAATL patients, all 54 lateralized 
to the same side as the seizure foci in preoperative intrac-
ranial EEG and intraoperative electrocorticography [44]. 
Associated gray and white matter volume loss has also 
been described in a quantitative study by Coste et al. [46]. 
Histologically, microdysgenesis and gliosis have been 
described as a correlate [44]; however, it is debatable 
whether these changes can account for the increased T2/
FLAIR signal. Furthermore, the entity does not appear to 
demarcate the epileptogenic focus itself as no difference 
was found in seizure-free outcome whether or not it was 
resected [47] and it is considered by many to represent a 
result, rather than a cause, of temporal lobe epilepsy [44, 
47].

While encephaloceles are not isolated to the tem-
poral lobe, all of our cases of encephalocele (10) were 
temporal. Encephaloceles are congenital or acquired 
in nature, and are usually associated with intracranial 
hypertension or trauma in adults; spontaneous (idi-
opathic) encephaloceles have also been described [48]. 
Operative resection of the encephalocele and the epi-
leptogenic brain tissue can result in total seizure remis-
sion [49]. The proposed mechanism of epileptogenicity 
relates to traction effects onto the herniated brain [50], 
i.e., pressure inducing ischemia and gliosis. Cases of 
brain herniating into arachnoid granulations within the 
transverse sinus have also been described [51]. Enceph-
alocele represents a further entity gaining awareness in 
previously reported MRI negative cases discovered at 

surgery [52], with increased detection rates reported 
through re-evaluation of the MRI upon guidance by 
seizure semiology [53] and usage of high-resolution T2 
weighted sequences (e.g. CISS, SPACE) [54, 55].

Finally, apart from FCD described earlier, a small 
number of other malformations of cortical develop-
ment were encountered in our study, including pol-
ymicrogyria, periventricular and subcortical nodular 
heterotopia, band heterotopia, schizencephaly, and 
hemimegalencephaly. Malformations of cortical devel-
opment (including FCD) account for up to 40% of pedi-
atric epilepsy cases and while less frequent in the adult 
population, they still play a significant role in adult 
MRE [56].

Ultimately, imaging abnormalities must be correlated 
with a variety of tests including electroencephalography 
(EEG), positron emission tomography (PET), magne-
toencephalography (MEG), video-EEG, neuropsychol-
ogy testing and other clinical findings. The precise 
location of seizure origin cannot be determined by MRI 
alone and can be distant from the lesion identified [57]. 
In MRI negative surgical candidates, EEG, predomi-
nantly in the form of invasive EEG with subdural grid 
or depth electrodes, can help pinpoint the location of 
seizure origin and guide resection. While MRI is a pil-
lar in the setting of MRE, it is neither highly sensitive 
for certain entities nor definitive in the planning of sur-
gical resection and patient care requires a truly inter-
disciplinary approach at a dedicated tertiary center.

While the lack of histological correlation is a limi-
tation of this study, we felt it necessary to include all 
patients with MRE to simulate the clinical setting faced 
by radiologists in routine practice. Excluding patients 
based on lack of histological correlation would have 
resulted in exclusion of the greater part of the cohort, 
and the primary goal of the study was to describe the 
spectrum of potential imaging findings in this patient 
population. Second, we did not correlate imaging find-
ings with other modalities such as EEG, MEG or PET, 
as this often represents a downstream, interdiscipli-
nary step if surgery is being considered for the patient. 
Thus, the imaging findings reported in this study may 
not represent the epileptogenic focus on a case-by-case 
basis, in line with the scenario faced in clinical routine. 
Furthermore, results from EEG, MEG or PET may not 
always be available for consultation by the radiologist at 
the time of reporting.

This study provides an updated description of 3  T 
MRI findings in adult MRE patients at a tertiary epilepsy 
center with the goal to familiarize all brain MRI readers 
with the spectrum and frequency of potential imaging 
findings in this patient population.
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