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Tomoelastography based on multifrequency 
MR elastography predicts liver function reserve 
in patients with hepatocellular carcinoma: 
a prospective study
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Abstract 

Background:  Estimating liver function reserve is essential for preoperative surgical planning and predicting post-
hepatectomy complications in patients with hepatocellular carcinoma (HCC). We investigated hepatic viscoelasticity 
quantified by tomoelastography, a multifrequency magnetic resonance elastography technique, to predict liver func-
tion reserve.

Methods:  One hundred fifty-six patients with suspected HCC (mean age, 60 ± 1 years; 131 men) underwent pre-
operative tomoelastography examination between July 2020 and August 2021. Sixty-nine were included in the final 
analysis, and their 15-min indocyanine green retention rates (ICG-R15s) were obtained to determine liver function 
reserve. Tomoelastography quantified the shear wave speed (c, m/s), which represents stiffness, and loss angle (φ, rad), 
which represents fluidity. Both were correlated with the ICG-R15. A prediction model based on logistic regression for 
major hepatectomy tolerance (ICG-R15 ≥ 14%) was established.

Results:  Patients were assigned to either the ICG-R15 < 14% (n = 50) or ICG-R15 ≥ 14% (n = 19) group. Liver c 
(r = 0.617) and φ (r = 0.517) were positively correlated with the ICG-R15 (both p < 0.001). At fibrosis stages F1–2, φ 
was positively correlated with the ICG-R15 (r = 0.528; p = 0.017), but c was not (p = 0.104). At stages F3–4, c (r = 0.642; 
p < 0.001) and φ (r = 0.377; p = 0.008) were both positively correlated with the ICG-R15. The optimal cutoffs of c and φ 
for predicting ICG-R15 ≥ 14% were 2.04 m/s and 0.79 rad, respectively. The area under the receiver operating charac-
teristic curve was higher for c (0.892) than for φ (0.779; p = 0.045).

Conclusions:  Liver stiffness and fluidity, quantified by tomoelastography, were correlated with liver function and may 
be used clinically to noninvasively assess liver function reserve and stratify treatments.

Keywords:  Tomoelastography, Magnetic resonance elastography, Hepatocellular carcinoma, Liver function reserve, 
Indocyanine green retention rate
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Key points

1.	 Hepatic biomechanical properties were sensitive to 
liver function reserve.

2.	 Liver stiffness and fluidity quantified by tomoelastog-
raphy could be potential biomarkers for liver func-
tion assessments.
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3.	 Liver fluidity showed unique sensitivity to liver func-
tion reserve at early fibrosis (F1–2) stage.

Background
Hepatocellular carcinoma (HCC) is the most common 
primary malignant liver tumor and ranked as the third 
leading cause of cancer death worldwide [1]. Hepatec-
tomies are the preferred treatment for patients without 
cirrhosis, in whom major resection could be performed 
without life-threatening complications [1, 2]. Cirrhosis 
results in different degrees of liver injury. For patients 
with chronic liver diseases or liver cirrhosis, liver func-
tion should be assessed to determine the disease severity 
and make informed decisions for clinical treatment [3]. 
Preoperative estimation of liver function reserve for sur-
gical planning may help reduce post-hepatectomy mor-
bidity and mortality rates [2].

Child–Pugh classification is the most commonly used 
method in clinical practice to evaluate liver function and 
enables partial evaluation of the surgical risk [4]. Some 
institutions consider Child–Pugh grade A to be a surgi-
cal indication for hepatectomy [2, 5]. Indocyanine green 
(ICG) elimination is an effective dynamic test for describ-
ing liver function before liver surgery [6, 7]. The 15-min 
ICG retention rate (ICG-R15) is the most widely used 
parameter to estimate hepatocyte function, and its val-
ues are approximately < 10% in normal persons [8]. Ele-
vated retention rates may reflect a reduced ability of the 
liver to regenerate after resection and an increased risk 
of postoperative hepatic failure [9]. Various confounding 
factors and the crudeness and subjectivity of the clini-
cal indicators limit the performance of the Child–Pugh 
classification system [10]. Patients at Child–Pugh grade 
A can exhibit ICG-R15s ranging from 5.6 to 32.0% [5, 
11]. Patients with an ICG-R15 of < 14% generally toler-
ate major hepatectomies well, whereas as those with an 
ICG-R15 > 20% should not undergo major liver resection 
[2]. The ICG retention test is considered the most precise 
method for assessing liver function reserve [6].

With the development of imaging technology, sev-
eral recent studies have used ultrasound elastography 
to measure liver function reserve. Liver stiffness enables 
quantifying liver fibrosis of mixed etiologies to vari-
ous degrees [12, 13]. As a common outcome of various 
hepatic diseases, liver cirrhosis, developed from liver 
fibrosis, is characterized by the accumulation of extra-
cellular matrix (ECM) proteins and formation of fibrous 
scarring, leading to replacement and distortion of hepatic 
parenchymal tissue, thus resulting in loss of liver func-
tion [14]. Studies have found that liver stiffness meas-
ured by transient elastography (TE) [15], point shear 
wave elastography (pSWE) [16], and acoustic radiation 

force impulse (ARFI) elastography [17, 18] are well cor-
related with liver function test results, such as Child–
Pugh grades or ICG-R15, but with varying correlation 
coefficients ranging from 0.342 to 0.862. Wei et  al. [18] 
reported that the area under the curve (AUC) of the ARFI 
for diagnosing patients who were at least Child–Pugh 
class B was 0.841 (95% confidence interval [CI] 0.756–
0.905). In a recent study, liver stiffness quantified by 2D 
time-harmonic elastography was also found to be corre-
lated with liver function as measured by the 13C-meth-
acetin Liver MAximum capacity test during fibrogenesis 
[19]. Research in this area suggested that ultrasound-
based liver elasticity may be a supplementary indicator 
for assessing liver functional reserves and could provide 
valuable prognostic information for patients undergoing 
resection.

Magnetic resonance elastography (MRE) is a noninva-
sive imaging technique for quantifying the biomechani-
cal properties of tissue [20, 21]. MRE has been shown to 
be valuable in detecting and staging liver fibrosis [22–25], 
predicting portal hypertension [26–28], and diagnosing 
and characterizing tumor invasiveness [29–32]. Simi-
lar to studies using ultrasound [16, 17], a previous two-
dimensional (2D)-MRE study of 32 patients with HCC 
first reported that liver stiffness of the non-tumor paren-
chyma was significantly and positively correlated with 
the ICG-R15, and MRE parameters may potentially effec-
tively assess the liver function reserves of these patients 
[33]. Compared with ultrasound, MRE has a wider meas-
urement range using 2D or 3D liver tissue maps, which 
could help overcome the sampling error that occurs with 
ultrasound [21]. MRE is also suitable for patients who are 
obese and/or have ascites and has higher repeatability in 
clinical applications. However, research on the efficiency 
of MRE to evaluate liver function remains scarce. To our 
knowledge, there was one MRE study on liver function 
reserve [33]. This study was limited in sample size, and 
only liver stiffness was investigated.

Tomoelastography, an advanced multifrequency MRE 
technique, is an emerging noninvasive imaging modal-
ity used to characterize biomechanical properties of the 
tissue. With multifrequency data acquisition and wave-
number-based inversion method, the parameter maps 
provided by tomoelastography can reveal rich anatomical 
details [34]. Tomoelastography provides two viscoelastic 
parameters for biomechanical characterization of soft 
tissues [35]: shear wave speed (c, m/s) and loss angle of 
the complex shear modulus (φ, rad), which are surrogate 
indicators of stiffness and viscosity (or fluidity), respec-
tively, through postprocessing. Tomoelastography has 
been applied for the biomechanical characterization of a 
variety of diseases in vivo, including pancreatic diseases 
[30, 36], neuro-tumors [37], prostate diseases [35, 38], 
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rectal carcinoma [32], inflammatory bowel disease[39], 
liver tumors [29, 40], and chronic liver disease [41, 42]. 
Because microstructural properties in the ECM and cell 
conditions alter liver fibrosis progression, we hypoth-
esized that stiffness and fluidity, mostly associated with 
the ECM constituents, could indicate hepatic pathologi-
cal processes and may reflect liver function [43].

Thus, in this study, we aimed to (1) investigate corre-
lations between the liver mechanical properties derived 
from tomoelastography and liver function reserve evalu-
ated by the ICG test and (2) develop a tomoelastography 
prediction model of liver function reserve for patients 
with a low tolerance for major liver resection.

Material and methods
Study sample
The Ruijin Hospital institutional review board approved 
this prospective study (No. RJ2018-209), and all par-
ticipants provided written informed consent. From July 
2020 to August 2021, 156 patients with radiologically 
suspected HCC, who underwent preoperative tomoe-
lastography, were enrolled in this prospective study. 
The exclusion criteria were (a) lack of ICG results, 
(b) iron deposition, and (c) suboptimal image qual-
ity on tomoelastography. Eighty-seven patients were 
excluded, and 69 were included in the final analysis 
(mean age, 58 ± 10 years; 56 men, 13 women). Based on 
their ICG-R15 values, the final 69 patients were catego-
rized into either the ICG-R15 < 14% (n = 50; mean age, 
58 ± 10  years; 45 men, 5 women) or ICG-R15 ≥ 14% 

(n = 19; mean age, 59 ± 9 years; 11 men, 8 women) group 
(Fig. 1).

Tomoelastography
Tomoelastography examinations were performed with 
a 1.5T scanner (MAGNETOM Aera, Siemens, Erlan-
gen, Germany). The setup was similar to that described 
in Shahryari et  al. [29]. Briefly, mechanical vibrations 
of 30, 40, 50, and 60 Hz were generated and transferred 
sequentially to the liver, using four pressure pads driven 
by compressed air. Two anterior and two posterior pads, 
operating at 0.4 and 0.6 bar, respectively, were placed near 
the liver region. The 3D wave field was acquired using a 
single-shot, spin-echo echo-planar imaging sequence 
with flow-compensated motion encoding gradients 
(MEG). Fifteen consecutive transverse slices with a field 
of view (FoV) of 384 × 312 mm2 (matrix size 128 × 104) 
and 3 × 3 × 5 mm3 resolution were acquired during free 
breathing. Additional imaging parameters included echo 
time (ET) = 59 ms; repetition time (TR) = 2050 ms; paral-
lel imaging with GRAPPA factor 2; MEG frequencies of 
43.48 Hz for the 30, 40- and 50 Hz vibration frequencies 
and 44.88  Hz for the 60 Hz vibration frequency; and a 
MEG amplitude of 30 mT/m. The total acquisition time 
was approximately 3.5 min.

Multifrequency wave field data were processed using 
the processing pipeline available at https://​bioqic-​apps.​
com. Full FoV high spatial resolution maps of shear wave 
speed (c) and phase angle (φ) were generated. Because c 
is proportional to the square root of the storage modulus 
and φ continuously changes from 0 (solid properties) to 

Fig. 1  Flow diagram of the study participants. HCC: hepatocellular carcinoma, ICG: indocyanine green, ICG-R15: 15-min ICG retention rate

https://bioqic-apps.com
https://bioqic-apps.com
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π/2 (viscous properties), they are considered surrogates 
for stiffness and fluidity, respectively. Throughout the 
text, we use c and φ to provide quantitative information 
and “stiffness” and “viscosity” (or “fluidity”) to discuss 
qualitative changes.

Regions of interest (ROIs) were manually drawn using 
tomoelastography magnitude images to encompass as 
much of the background liver as possible on three con-
secutive sections with the largest liver cross-sectional 
coverage on the central c- and φ-map slices. The meas-
urements were averaged and used as the representative 
parameters. Two radiologists (rater #1 with 8  years of 
experience and rater #2 with 1  year of experience) ana-
lyzed the tomoelastography data independently for all 
patients to test interobserver variability.

Clinical liver function test
The ICG clearance test was performed before surgery and 
within 1 week of tomoelastography scanning. After fast-
ing for 6 h, ICG was injected through a peripheral venous 
access at 0.5  mg/kg body weight, and the injection was 
completed within 10  s. ICG-R15s were registered via a 
digital pulse densitometer, which was connected to a 
DDG-3300  K device (Pulsion Medical Systems, Nihon 
Kohden, TYO, JP) through a near-infrared finger piece 
sensor. ICG-R15 values < 14% were considered safe for 
major resection [2], and we used this value to stratify 
patients. Information on hepatic encephalopathy and 
ascites as well as total bilirubin (TB), albumin (ALB), pro-
thrombin time (PT), increased international normalized 
ratio (INR), prealbumin (PAB), platelet (PLT), aspartate 
aminotransferase (AST), and alanine aminotransferase 
(ALT) values was collected before surgery. Child–Pugh 
grades were assessed using the Child–Pugh scoring sys-
tem [4], and patients were classified as class A: 5–6; class 
B: 7–9; or class C: 10–15.

Histopathological analysis
Liver tissue samples were obtained via surgical resection. 
Liver fibrosis grades were analyzed by a pathologist with 
10  years of experience in hepatic pathology, who was 
blinded to all radiological and clinical results.

Statistical analysis
The chi-square test was used to compare qualitative 
parameters between two groups. Student’s t test or the 
Mann–Whitney U test were used for quantitative data. 
Interobserver agreement was analyzed for biomechani-
cal parameters by using intraclass correlation coefficients 
(ICCs). Pearson rank correlation was performed to ana-
lyze the relationships between normally distributed vari-
ables; Spearman correlation was used for non-normally 
distributed variables. Receiver operating characteristic 

(ROC) curves were used to analyze the diagnostic effi-
cacy of the parameters, and area under the ROC curves 
(AUROCs) was calculated with 95% confidence intervals 
(CIs). All statistical analyses were performed with SPSS 
software (version 26, SPSS for Windows, IBM, Armonk, 
NY, USA), GraphPad Prism software (version 8.0, Graph-
Pad Prism for Windows, La Jolla, CA, USA), and Med-
Calc software (MedCalc Software, Ltd., Solvusoft, LV, 
NV, USA). Two-tailed p values < 0.05 were considered 
statistically significant.

Results
Demographics of the study population
We included 69 patients with HCC in our study. Table 1 
summarizes their demographic characteristics. Com-
pared with the ICG-R15 < 14% group, the ICG-R15 ≥ 14% 
group had a higher proportion of women (p = 0.007), 
lower PAB (p < 0.001) and PLT (p = 0.002) levels, and 
increased PT (p < 0.001) and INR (p < 0.001) levels. Liver 
c (1.81 ± 0.29 vs. 2.39 ± 0.45, respectively, p < 0.001) and 
φ (0.75 ± 0.11 vs. 0.86 ± 0.11, respectively, p = 0.001) val-
ues differed significantly between the ICG-R15 < 14% 
and ICG-R15 ≥ 14% groups. No other demographic or 

Table 1  Demographic and clinical characteristics of the ICG-
R15 < 14% and ICG-R15 ≥ 14% groups

ICG-R15: 15-min indocyanine green retention rate, BMI: body mass index, ALB: 
albumin, PAB: prealbumin, TB: total bilirubin, AST: aspartate aminotransferase, 
ALT: alanine aminotransferase, PLT: platelet, PT: prothrombin time, INR: 
international normalized ratio

*p < 0.05

Characteristic ICG-R15 < 14%
group (n = 50)

ICG-R15 ≥ 14%
group (n = 19)

p value

Patients

 Age, years (range) 58 ± 10 (38–81) 59 ± 9 (38–74) 0.746

 Sex (male/female) 45:5 11:8 *0.007

 BMI (kg/m2) 23.5 ± 2.9 24.2 ± 3.2 0.378

Etiology (%) 0.3923

 Hepatitis B virus 38 (76.0) 17 (89.4)

 Hepatitis C virus 3 (6.0) 1 (5.3)

 Other 9 (18.0) 1 (5.3)

Laboratory results

 ALB (g/L) 40.04 ± 4.18 35.89 ± 9.49 0.080

 PAB (mg/L) 205.88 ± 51.68 117.63 ± 45.19 * < 0.001

 TB (μmol/L) 19.67 ± 12.56 22.26 ± 9.75 0.420

 AST (U/L) 28 (23, 48.5) 38 (28, 61) 0.090

 ALT (U/L) 28 (20, 49.25) 26 (19, 36) 0.282

 PLT (× 109/L) 144.68 ± 55.43 97.00 ± 49.91 *0.002

 PT (s) 12.24 ± 0.92 13.98 ± 1.37 * < 0.001

 INR 1.04 ± 0.08 1.19 ± 0.12 * < 0.001

MRE parameters

 Liver c (m/s) 1.81 ± 0.29 2.39 ± 0.45 * < 0.001

 Liver φ (rad) 0.75 ± 0.11 0.86 ± 0.11 *0.001
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laboratory results differed significantly between the 
groups.

Sixty-eight patients were categorized as Child–Pugh 
class A, of whom 47 had a score of 5 and 21 had a score of 
6. The remaining patient, who had a score of 8, was cat-
egorized as class B owing to their biochemical data and 
clinical symptoms. In the Child–Pugh class A patients, 
the ICG-R15s ranged from 1.3 to 48%; the patient in class 
B had an ICG-R15 of 20.7% (Table 2).

ICG-R15, liver c and φ were significantly higher in par-
ticipants with higher fibrosis grades of F3–4 than in those 
with liver fibrosis grades of F1–2 (Table  3). Addition-
ally, the F3–4 group had lower PAB (p = 0.021) and PLT 
(p < 0.001) values and increased PT (p = 0.042) and INR 
(p = 0.039) values.

ICCs
The ICCs, representing interobserver reliability of the 
mechanical properties for all patients evaluated by two 
raters, were 0.960 (95% CI 0.936–0.975) for c and 0.949 
(95% CI 0.920–0.968) for φ, suggesting good concord-
ance and data consistency (Fig. 2).

Correlation analysis of biomechanical parameters 
and clinical tests
Blood samples were taken from all patients. TB, AST, 
PT, and INR were positively correlated, and PLT, ALB, 
and PAB were negatively correlated with both liver c 
and φ (Table 4). Liver c (r = 0.617) and φ (r = 0.517) were 
positively correlated with the ICG-R15 (both p < 0.001; 
Fig.  3). In liver fibrosis stages F1–2, liver φ (r = 0.528; 
p = 0.017) was positively correlated with the ICG-R15, 
but liver c (p = 0.104) was not. In liver fibrosis stages 
F3–4, liver c (r = 0.642; p < 0.001) and liver φ (r = 0.377; 
p = 0.008) were positively correlated with the ICG-R15. 
Figure 4 shows the axial tomoelastography c and φ maps 
for three patients with their corresponding ICG-R15 data 
and fibrosis stages.

Table 2  ICG-R15 ranges by Child–Pugh grade

ICG-R15: 15-min indocyanine green retention rate

Child–Pugh 
Grade

Score n ICG-R15 
(%) 
(range)

A 5 47 68 1.3–48

6 21

B 8 1 1 20.7

Table 3  ICG-R15 and tomoelastography indexes between 
patients with different liver fibrosis grades

ICG-R15: 15-min indocyanine green retention rate, BMI: body mass index, ALB: 
albumin, PAB: prealbumin, TB: total bilirubin, AST: aspartate aminotransferase, 
ALT: alanine aminotransferase, PLT: platelet, PT: prothrombin time, INR: 
international normalized ratio

*p < 0.05

Liver fibrosis frade F1–2 (n = 21) F3–4 (n = 48) p value

ICG-R15, % (range) 4.9 (1.8–14.0) 9.2 (1.3–48.0) *0.005

Liver

 c (m/s) 1.64 ± 0.14 2.13 ± 0.42 * < 0.001

 φ (rad) 0.70 ± 0.07 0.82 ± 0.12 * < 0.001

Age, years (range) 58 ± 12 (38–81) 58 ± 9 (38–74) 0.937

Sex (male/female) 18:2 31:10 0.325

BMI (kg/m2) 24.1 ± 3.3 23.5 ± 2.9 0.501

Laboratory results

 ALB (g/L) 39.29 ± 4.57 38.73 ± 6.98 0.739

 PAB (mg/L) 208.05 ± 60.8 170.00 ± 61.85 *0.021

 TB (μmol/L) 16.39 ± 4.50 22.13 ± 13.56 0.066

 AST (U/L) 26.0 (23.5, 42.5) 35.5 (24.5, 56.8) 0.196

 ALT (U/L) 30.0 (19.5, 60.0) 25.5 (20.0, 41.3) 0.393

 PLT (×109/L) 172.25 ± 53.32 111.39 ± 49.03 * < 0.001

 PT (s) 12.24 ± 1.09 12.94 ± 1.36 *0.042

 INR 1.04 ± 0.09 1.10 ± 0.12 *0.039

Fig. 2  Bland–Altman plots showing agreement between liver c and φ values evaluated by two independent raters
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Predictive performance of tomoelastography in predicting 
ICG‑R15 ≥ 14%
The optimal liver c and φ cutoff values for predicting the 
ICG-R15 ≥ 14% group were 2.04 m/s and 0.79 rad, respec-
tively. The AUROC was higher for c than for φ (0.892, 95% 
CI 0.793–0.954 vs. 0.779, 95% CI 0.663–0.870; p = 0.045). 
However, combining c and φ did not significantly increase 
the AUROC compared with that of c alone (Table 5, Fig. 5).

Discussion
Preoperatively assessing liver function reserve is critical 
for surgical planning and predicting prognoses. There-
fore, a noninvasive and quantitative biomarker is needed 

to accurately determine liver function. In the current 
study, we investigated the mechanical manifestation of 
liver function reserve using in vivo tomoelastography in 
a group of patients with HCC. We demonstrated the sen-
sitivity of two biomechanical parameters corresponding 
to tissue stiffness and fluidity quantified by tomoelastog-
raphy for predicting insufficient liver function reserve. In 
our patient cohort, diminished liver function was corre-
lated with increased hepatic stiffness and fluidity. Mod-
erate correlations between tomoelastography parameters 
and serum markers revealed that biomechanical param-
eters were indicative of liver function. Associations 
between hepatic stiffness and liver function reserve have 

Fig. 3  Scatterplots showing that liver c (r = 0.618; p < 0.001) (a) and liver φ (r = 0.517; p < 0.001) (b) were positively correlated with the ICG-R15. In 
liver fibrosis stages F1–2, liver φ (r = 0.526; p = 0.014) was positively correlated with ICG-R15 (d), but liver c (p = 0.109) was not (c). In liver fibrosis 
stages F3–4, liver c (r = 0.645; p < 0.001) (e) and liver φ (r = 0.371; p = 0.009) (f) were positively correlated with the ICG-R15. *p < 0.05. ICG-R15: 15-min 
indocyanine green retention rate
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Fig. 4  Axial tomoelastography c and φ maps of the ICG-R15 data and fibrosis stages for three patients. a F = 2; c, 1.487 m/s; φ, 0.631 rad; ICG-R15, 
1.8; b F = 4; c, 2.215 m/s; φ, 0.843 rad; ICG-R15, 12.4; c F = 4; c, 3.255 m/s; φ, 1.062 rad; ICG-R15, 27.9. ICG-R15: 15-min indocyanine green retention 
rate

Table 5  Performances of the models in predicting ICG-R15 > 14%

Data in parentheses are numerators/denominators; data in brackets are the 95% confidence intervals. AUC of the combined c and φ was obtained by using 
probabilities estimated from logistic regression. AUC values were compared using the Delong test with respect to an AUC value of c

ICG-R15: 15-min indocyanine green retention rate, AUROC: area under receiver operating curve

*p < 0.05

Models Cutoff value AUROC p value Sensitivity (%) Specificity (%)

c
(m/s)

2.04 0.892
[0.793–0.954]

… 89.5 (17/19)
[66.9–98.7]

86.0 (43/50)
[73.3–94.2]

φ
(rad)

0.79 0.779
[0.663–0.870]

*0.045 84.2 (16/19)
[60.4–96.6]

72.0 (336/50)
[57.5.9–83.8]

c + φ … 0.895
[0.797–0.956]

0.702 79.0 (15/19)
[54.4–93.9]

94.0 (47/50)
[83.5–98.7]
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been reported previously [15–18, 33, 44] (Additional 
file  1: Table  S1) and were largely explained by excessive 
deposition of ECM elements during fibrogenesis. This 
caused liver lobule structural changes, hepatocellular 
injuries, and altered hepatic vascular structure and resist-
ance, thus disrupting and compromising liver function.

Fluidity, another biomechanical parameter recovered 
from tomoelastography, was introduced for the first time 
in this study to assess liver function reserve. Similar to 
liver stiffness, liver fluidity was positively correlated with 
the ICG-R15, demonstrating that livers with low func-
tion reserves behaved more fluidlike. Reiter et  al. [45] 
reported increased liver fluidity with advanced fibrotic 
stages, which was attributed to elevated mechanical 
friction resulting from dissociations of ECM proteins, 
possible tissue compression, and development of regen-
erative nodules. Interestingly, we found that fluidity was 
uniquely sensitive to liver function reserves in the early 
fibrosis (F1–2) group, whereas stiffness was not. As col-
lagen deposition alone is likely insufficient to cause vas-
cular structure alterations during early fibrosis [46], liver 
stiffness relating to collagen content might be nonrespon-
sive to ICG-R15. However, the progression of inflamma-
tion was more prominent than collagen accumulation in 
the F1–2 group. Inflammation-associated increases in 
vascular permeability and vascular leakage could result 
in excessive fluid permeating the vessel wall and a con-
sequent increase in internal tissue friction [47, 48], which 
explains the elevation in ICG retention and liver fluidity 
as well as the positive correlation between the two.

Our study had limitations. First, this was a single-
center study. A multicenter study is warranted with 
hospitals where tomoelastography is availability. Sec-
ond, our sample size was relatively small, especially 
in the F1–2 group. A large cohort study is planned 

to further validate our preliminary findings. Third, 
the HCC samples in our study were from fibrotic/cir-
rhotic livers of different etiologies. Although most of 
our patients had liver cirrhosis associated with chronic 
hepatitis, a more defined liver background with similar 
pathogeneses would allow more accurately identifying 
liver function predictors. Finally, the scope of our study 
did not cover the postsurgical outcome assessment 
which is of high interest and relevance. This aspect will 
be incorporated in our future studies to further validate 
the performance of tomoelastography in assessing liver 
function.

Conclusions
In conclusion, in vivo tomoelastography enabled quan-
titatively measuring hepatic biomechanical properties 
that were sensitive to liver function reserves. Liver flu-
idity showed unique sensitivity to liver function reserve 
at early fibrosis (F1–2) stage which might be associated 
with inflammation. Liver stiffness and fluidity may be 
potential biomarkers for noninvasively assessing liver 
function to allow making informed treatment deci-
sions. Future studies in large patient cohort with post-
operative follow-ups are warranted.
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