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Brain pathological changes 
during neurodegenerative diseases and their 
identification methods: How does QSM perform 
in detecting this process?
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Abstract 

The presence of iron is essential for many biological processes in the body. But sometimes, for various reasons, the 
amount of iron deposition in different areas of the brain increases, which leads to problems related to the nervous 
system. Quantitative susceptibility mapping (QSM) is one of the newest magnetic resonance imaging (MRI)-based 
methods for assessing iron accumulation in target areas. This Narrative Review article aims to evaluate the perfor-
mance of QSM compared to other methods of assessing iron deposition in the clinical field. Based on the results, we 
introduced related basic definitions, some neurodegenerative diseases, methods of examining iron deposition in 
these diseases, and their advantages and disadvantages. This article states that the QSM method can be introduced as 
a new, reliable, and non-invasive technique for clinical evaluations.
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Key points

•	 Identify the mechanism of the most significant path-
ological changes in the brain during neurodegenera-
tive diseases.

•	 Diagnostic imaging methods to identify these patho-
logical changes and the advantages and disadvantages 
of each.

•	 The clinical role of QSM and its function in the early 
detection of neurodegenerative diseases.

Introduction
Iron plays a fundamental role in many biological pro-
cesses such as cell growth, cell differentiation, protein 
expression, etc.

Despite the need for iron in the brain, its increase leads 
to toxic free radicals, oxidative stress, and nerve cell dam-
age [1].

Iron deposition happens in various brain areas in some 
diseases of the nervous system and the aging process.

There are different imaging methods based on MRI 
for examining and measuring iron deposition in the 

brain, like T2*-weighted imaging (T2*WI), T2-weighted 
imaging(T2WI), relaxation rate (R2*), field-dependent 
relaxation rate increase (FDRI), and susceptibility-
weighted imaging (SWI) [2].

Recently, techniques based on deep learning, machine 
vision, and medical image processing to diagnose neuro-
degenerative diseases have expanded; and today, quanti-
tative susceptibility mapping (QSM) is one of the newest 
medical image post-processing techniques [3–8]. Iron 
Sediments cause changes in the magnetic susceptibility 
properties of brain tissue; QSM is a new and non-inva-
sive method that works based on these changes to evalu-
ate the values of iron accumulations.

It is a processing technique that can measure tissue sus-
ceptibility from various sequences such as Gradient echo 
sequences (GRE) and does not have many limitations [9].

This observational-descriptive article explains the 
main pathological factors in neurodegenerative diseases 
and how they work and move step by step to diagnostic 
imaging methods for these pathological factors and their 
advantages/disadvantages by summarizing the results of 
different articles.

Graphical abstract
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Finally, a comparison between these methods and the 
QSM method was performed. This article aims to obtain 
sufficient information about the first brain changes in 
the early stages of cognitive disorders and their imag-
ing methods and understand the QSM technique and its 
clinical applications.

Materials and methods
The Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines were the head-
line for selecting suitable articles [10] (Fig. 1).

Databases of PubMed and Google Scholar were 
searched to obtain the relevant articles for this paper.

The keywords used included Quantitative susceptibility 
mapping, amyloid-Beta PET, Tau PET, Alzheimer’s dis-
ease, Iron, Magnetic susceptibility, and basal ganglia (BG) 
from 2013 to 2021.

From the final cases, articles were selected that pro-
vided more relevant and complete explanations about 
the relationship between iron and neurodegenerative dis-
eases and its imaging methods.

Results
Background
Iron
Iron is the most abundant non-diamagnetic element in 
the human brain, mainly stored as hemosiderin-6 or fer-
ritin in the brain.

It can be transmitted between different brain parts 
along sections of nerve cells by non-transferrin-bound 
and transferrin-bound iron forms [11, 12].

Iron plays a crucial role in many biological functions of 
the body, such as cell growth and differentiation, protein 

Fig. 1  Follow-up search method based on PRISMA guideline
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expression, cyclin accumulation, and the production of 
reactive oxygen species [1].

Iron acts as a Co-factor for various enzymes involved in 
functions, such as oxygen transfer, electron transfer, neu-
rotransmitter, and myelin production [13, 14].

Despite all the benefits of having iron in the body, 
excessive iron levels in the brain are seen in different 
roles in destroying the nervous system, leading to the 
production of toxic free radicals, resulting in oxidative 
damage (Fig. 2).

Toxic free radicals lead to membrane lipid peroxidation 
and lipofuscin accumulation in nerve cells [1].

Oxidative stress is associated with reducing the func-
tion of nerve cells [15] and selective cognitive decline in 
patients with or without dementia [16].

The presence of iron as one of the main components 
of senile plaques and neurofibrillary tangles has been 
proven [17].

In other words, iron concentration is an ideal condition 
for amyloid-beta (Aβ) aggregation and neurotoxicity [18].

According to a recent study by Ayton et al. [19], there is 
an association between iron accumulation in the inferior 
temporal gyrus (ITG) and the slope of cognitive decline 
in individuals with significant Aβ plaques and neurofi-
brillary tau tangles.

Excess iron leads to inflammation, which causes a 
decrease in myelin in the brain [20].

Previous studies have shown that excess iron deposi-
tion is closely associated with various neurodegenerative 
diseases like Alzheimer’s and Parkinson’s [21].

Iron gradually accumulates in structures such as the 
BG, hippocampus, cerebellar nucleus, and subcortical 
areas of the brain [22]; Still, its highest concentration is in 
deep gray matter (DGM) [23].

Measuring iron deposition in the brain can help explain 
the pathophysiological process of the disease, be used as 
a feature in the diagnosis of neurodegenerative disease 
[24], and basis for targeted treatment [25].

We are not yet sure whether iron deposition is the 
result or cause of neurodegenerative diseases. Still, today 
we know that monitoring the spatial distribution and 
temporal dynamics of iron deposition leads to a better 
understanding of the pathogenesis of the disease [26].

Therefore, quantification of iron deposits is critical; 
measuring the iron level in different brain parts over spe-
cific periods allows us to examine the sequences of dis-
ease events.

Myelin
According to the findings, iron is necessary for myelin 
production, and iron deficiency leads to hypomyelination 
[11, 20].

Recent studies have reported a negative relationship 
between iron levels and myelin content in the ventral 
striatum [27]. However, this relationship needs to be re-
examined in the thalamus, BG, and white matter (WM) 
areas [28].

Myelin degeneration happens in some neurological dis-
eases, such as Alzheimer’s disease (AD) and Parkinson’s 
disease (PD), which disrupts iron homeostasis in the 
brain [29].

However, understanding the relationship between iron 
concentration and myelin levels in different brain areas, 
like BG and internal capsule (IC),  is necessary to inves-
tigate the physiological mechanisms of normal aging and 
some neurodegenerative diseases.

Amyloid‑beta plaque
As mentioned earlier, Aβ deposits are a significant fea-
ture of AD.

Proteins generally have high concentrations of paired 
electrons and are classified diamagnetic materials.

So, the accumulation of Aβ leads to an increase in elec-
tron density, changes in local susceptibility, and produces 
contrast to surrounding natural tissues.

On the other hand, brain iron is a group of paramag-
netic substances.

Therefore, Aβ plaques and iron present in the sub-
stance have opposite effects on the magnetic susceptibil-
ity of the tissue [9].

Magnetic susceptibility
Magnetic susceptibility is an intrinsic and physical prop-
erty of tissue representing the response of the body’s 
magnetic material to an applied external magnetic field 
that reflects the composition of the tissue and is used to 
chemically identify and quantify substances such as iron 
and calcium and contrast agents [30].

Magnetic susceptibility of the tissue mainly depends 
on the properties of its content. It is greatly affected by Fig. 2  Consequences of the presence of iron with inappropriate 

amounts in the brain
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substances such as iron, lipids, calcium, or myelin in the 
tissue.

Any change in the concentration and accumulation of 
these tissue compounds will have consequences.

Iron is the most crucial cause of Magnetic susceptibil-
ity changes in subcortical gray matter structures, so it is 
vital to measure the magnetic susceptibility of these areas 
of the brain as an indicator of iron deposition in neurode-
generative diseases [31].

Most biological substances, such as calcium or white 
matter myelin, cause negative susceptibility changes and 
are diamagnetic.

But iron stored in ferritin, hemosiderin, and neu-
romelanin in brain tissue, and iron embedded in deoxy-
hemoglobin in venous blood cause positive susceptibility 
changes and a strong magnetic field and are classified in 
the group of paramagnetic materials [32].

Based on the results of previous studies, the amount of 
iron in the DGM nuclei is well correlated with the mag-
netic susceptibility of the tissue [33].

Assessing changes in the magnetic susceptibility of 
brain tissue that occur for various reasons, such as the 
demyelination process, can give us a good insight into 
the pathological course of neurodegenerative diseases 
[34, 35].

The importance of using non-invasive techniques for 
this assessment is very significant.

Methods for evaluating substances deposited in the brain 
and their advantages/disadvantages
Over time, different methods for this evaluation have 
been introduced, each of which has advantages and 
disadvantages.

There are some imaging techniques; Proton density, 
T1-weighted, T2-weighted, and T2*-weighted imaging 
are the routine sequences considered to quantify mag-
netic susceptibility and indicate the pathological course 
of the disease [36].

Todays, paramagnetic-deoxyhemoglobin-based fMRI 
[37], susceptibility weighted imaging [23], phase imaging 
[16], quantitative susceptibility mapping, and calculation 
of susceptibility through multiple orientation sampling 
(COSMOS) technique are used (Figs. 3, 4).

In addition to the methods mentioned, indirect detec-
tion of Aβ plaques is possible using MRI methods by 
injecting a contrast agent such as gadolinium (Gd) or 
monocrystalline-iron-oxide nanoparticles [38].

T2*‑weighted imaging
T2*WI is a new technique based on multi-echo gra-
dient recalled echo (GRE) sequences principles that 
acquires a gradient echo signal.

This contrast shows changes in tissue susceptibility 
and thereby creates an assessment of transformations 
in tissue content.

Fig. 3  Methods for evaluating substances deposited in the brain
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However, this imaging contrast depends on scanning 
parameters and object orientation.

Also, its magnitude and phase images contain bloom-
ing artifacts [39].

Susceptibility weighted imaging
SWI was introduced by Haacke et al. in 1991.

It is a post-processing strategy that produces suscep-
tibility images obtained only from a single GRE pulse-
echo sequence [40] and is the precursor of QSM [41].

This method has many clinical applications, such as 
cerebral microbleeds examination, hemorrhage, tumor 
detection, thrombosis, and stroke [42].

Nevertheless, this technique is weak in terms of quan-
titative validity because the resulting phase is mainly 
non-local and orientation-dependent. The amount of 
magnetic susceptibility of the surrounding tissue, the 
position of the individual’s head, and high-pass filtra-
tion are some of the factors involved in creating these 
disadvantages [43, 44].

In addition, SWI images have the blooming artifact, 
and its quantification is not accurate [45].

Transverse proton relaxation rate
Transverse proton relaxation rate is a non-invasive 
method used to detect Aβ plaques and is linearly pro-
portional to the amount of iron content [46].

This method can measure the interaction of T2*, 
which leads to the parameter R2*.

R2 ∗ method suffers from blooming artifacts and can-
not measure tissue susceptibility correctly; in addition, 
results depend on tissue water content, tissue iron con-
tent, and scanner field strength [39].

Field‑dependent transverse relaxation rate increase
FDRI  is one of the first methods for assessing magnetic 
susceptibility changes of tissue and examining iron depo-
sition in tissues [47].

In this method, R2 imaging performs with two differ-
ent magnetic field strengths; the increase in relaxation in 
the higher field is attributed to iron and is a new way to 
measure iron stores in tissue [48].

This method has limited clinical application because it 
requires scanning the specified volume with two different 
magnetic field strengths [49].

Calculation of susceptibility through multiple orientation 
sampling
Today, a strategy based on a single field strength called 
the calculation of susceptibility through multiple orienta-
tion sampling (COSMOS) has been introduced [50].

COSMOS magnetic susceptibility reconstruction is 
reliable, but the head needs to be scanned in different 
orientations [50].

Positron emission tomography
Today, positron emission tomography (PET) scans and 
radio tracers such as Fluorine-18 based compounds(18F) 
and carbon-11-labeled Pittsburgh compound B (11C-PIB) 
are used for in  vivo amyloid-beta imaging at preclinical 
stages [51].

However, drawbacks of PET, including low resolution, 
high ionizing radiation, and high cost, make it reluctant 
to use for early screening and early detection of disease 
[52].

Quantitative susceptibility mapping
QSM is a newfound non-invasive developed MRI tech-
nique that can measure the magnetic susceptibility of 
human tissues [36].

Fig. 4  Presentation of images obtained from some imaging techniques to assess pathological changes in the brain
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It has the highest specificity and sensitivity for detect-
ing and quantifying iron levels accumulated in the brain 
compared to other methods; it is possible to study the 
local tissue magnetic susceptibility property quantita-
tively [48].

QSM is preferable to the R2∗ or FDRI methods for eval-
uating the amount of iron deposition in the brain.

This technique fixes the blooming artifacts, does not 
depend on echo-time, water content, or field strength, 
and does not have many limitations mentioned in the 
previous methods [53, 54].

3D multi-echo gradient echo (mGRE) imaging method 
is a good sequence for QSM reconstruction [55].

Both phase and magnitude images of the mGRE 
sequence are used in this technique [48].

Different algorithms of QSM reconstruction steps use 
phase images to evaluate magnetic susceptibility differ-
ences between tissues, detect local variations in iron con-
tent, minimize magnetic field orientation dependence, 
and eliminate non-local effects compared to phase imag-
ing [56].

The four main steps of QSM reconstruction include 
generating tissue mask, phase unwrapping, background 
field removal, and field-to-susceptibility inversion; 
each of which can be performed by different algorithms 
(Fig. 5).

Quantitative susceptibility mapping disadvantages  The 
execution time of the multi-echo sequences is relatively 
long; it typically takes 5–10 min for the entire brain scan-
ning, so it is a slow imaging technique.

Keeping the patient’s head steady during this time is 
not an easy task, especially if the patient has a disease 
such as PD.

Therefore, depending on the patient physical and men-
tal condition, this time is not appropriate for clinical 
exams [57].

Clinical uses of QSM
The QSM technique to identify pathological changes in 
the brain has a wide range of applications.

The changes that lead to variances in the magnetic 
susceptibility of the tissue can be assessed using this 
technique.

For example, identifying the first brain changes in dis-
eases such as Alzheimer’s or Parkinson’s, evaluating the 
process of brain changes during aging, or using this tech-
nique to place the relevant electrodes in deep-brain stim-
ulation (DBS) surgery in the correct position, and so on 
(Fig. 6).

Also, in this section, the routine imaging techniques 
used in identifying these cases are discussed first. Then 
the advantages or disadvantages of the QSM technique in 
the same area are evaluated.

Finally, the proposed differentiation method between 
the studied groups based on the obtained QSM values ​​is 
introduced.

After reviewing recent studies, we have listed some 
critical parameters related to the execution of the MRI 
imaging sequence required to reconstruct the QSM tech-
nique in Table 1.

Deep‑brain stimulation
DBS is a reversible stereotactic neurosurgery technique 
used for PD and other treatment-resistant neurological 
and psychiatric disorders [58].

Medial globus pallidus (GPm), centromedian nucleus 
(CM), and the centromedian-parafascicular nucleus 
complex are the most important goals for DBS [59, 60].

Globus pallidus (GP) separates into the medial globus 
pallidus (GPm) and the lateral globus pallidus (GPl) by 
a thin layer called medial medullary lamina (MML) [60, 
61].

During the DBS process, electrodes must be located 
in specific target structures in the brain, then implanted 
brain pacemaker performs electrical stimulation [62, 63].

Fig. 5  The four main steps of QSM reconstruction include generating tissue mask, phase unwrapping, background field removal, and 
field-to-susceptibility inversion
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The effectiveness of DBS is related to the ability to 
accurately target determination because this target is dif-
ferent for each person anatomically [64].

MRI sequences such as T2-weighted fast-spin-echo 
[65] or proton density-weighted [66] are used to deter-
mine the target in DBS and static imaging and obtaining 
stereotactic imaging data [67].

Some factors cause difficulty to determine the CM 
coordinates from T1W or T2W images, such as low CM 
volume [59], lack of sufficient contrast between the CM 
and the surrounding tissues, so these sequences cannot 
visualize MML conclusively.

Todays, a normalized atlas is registered to the patient’s 
MRI data to determine the CM coordinates for target 
localization [68].

The method of indirect targeting uses a normalized 
atlas which includes limitations because there are differ-
ences between the brain structures of different patients, 
which may lead to registration errors and increase surgi-
cal complications [69].

Due to these limitations, the lack of an imaging tech-
nique for accurate and direct visualization of CM and 
GPm makes it hard to target them for DBS surgery.

If the desired anatomical locations are visible with 
appropriate and specific contrast [70], we can improve 
the accuracy of the work by direct targeting.

Therefore, it is necessary to have a suitable imaging 
method to determine and image goals structures [71].

Routine imaging methods used to  determine the  target 
structure in  DBS  High-resolution T1W images with 
about 14 h of scan time are used to show these substruc-
tures of the thalamus, but this method is not suitable for 
clinical use due to the long scan time [72].

Kanowski et  al. showed that using two-dimensional 
high-resolution proton density-weighted images at 3 
Tesla MRI scanners, CM can be identified in 13–26 min. 
Still, only a few slices covered the target area [73].

Bender et  al. showed that by optimized 3D MPRAGE 
protocol, Relevant doctors could identify CM in 20 min, 
but thalamic substructures are not well distinguishable 
[74].

The role of  quantitative susceptibility mapping in  deter-
mining the  target structure in  this surgery  QSM is a 
reconstructed map of MRI phase images of a three-dimen-
sional multi-echo gradient-echo sequence (3D mGRE).

This magnetic susceptibility map efficiently character-
izes brain structures such as the CM region and GPm.

This technique uses magnetic field variations to calcu-
late quantitative maps of magnetic susceptibility changes 
[71].

Fig. 6  Clinical applications of QSM
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Table 1  Demographic information and MRI scans parameters related to research examined research in this study

Study Sample size Strength of 
MRI system

Sequence used TR TE

Au et al. [125] 13 Patients with early stage 
AD, 10 patients with late 
stage AD, and 30 healthy 
subjects

3 T 3D fast-field echo 45 ms 8echoes/ΔTE:5.2 ms/
TE1:4.0 ms

Syam et al. [136] 26 Patients with PD, 27 
patients with PSP, and 26 
healthy subjects

3 T 3D multi-echo gradient-
echo

62.2 ms 5 echoes/range 5.7–29.5 ms

Li et al. [132] 114 Healthy subjects 3 T Gradient echo imaging 53 ms 40 ms

336 Healthy subjects 3 T 25 ms 17.5 ms

173 Healthy subjects 1.5 T 25 ms 17.5 ms

Cogswell et al. [126] 296 Healthy subjects, 69 
patients with MCI, and 56 
patients with amnestic 
dementia

3 T 3D-MEGRE 28 ms 6.7, 10.6, 14.5,18.4, and 
22.4 ms

Fedeli et al. [127] 26 Patients with primary 
atypical parkinsonisms, and 
49 patients with PD

3 T 3D spoiled multi-echo GRE 
sequences

36 ms 5, 12, 19, 26, and 33 ms

Shahmaei et al. [124] 30 Patients with PD and 15 
healthy subjects

3 T GRE T2* 38 ms 4 and 41.8 ms

Li et al. [122] 22 Patients with AD, 22 
Patients with MCI, 25 
Patients with SCD, and 25 
healthy subjects

3 T 3D multi-echo gradient-
echo

41.8 ms 16 echoes/ΔTE: 2.3 ms/TE1: 
3.3 ms

Pu et al. [134] 16 Healthy adult macaques 3 T 3D multi-echo gradient-
echo

60 ms 32 echoes/ΔTE = 1.42 ms/
TE1: 2.4 ms

Spotorno et al. [135] 236 Amyloid-b-positive 
subjects, 78 cognitively 
unimpaired, and 158 cogni-
tively impaired patients

3 T 3D multi-echo gradient-
echo

24 ms 5.00, 8.80, 12.60, 16.40, and 
20.20 ms

Spincemaille [139] 10 Healthy subjects 3 T 3D multi-echo gradient-
echo

24.48 ms 5 echoes:
3.85, 7.97, 12.09, 16.21, and 
20.33 ms

45.08 ms 10 echoes:
3.85, 7.97, 12.09, 16.21, 20.33, 
24.45, 28.57, 32.69, 36.81, and 
40.93 ms

7 T 3D multi-echo gradient-
echo

24.55 ms 5 echoes:
3.81, 7.91, 12.00, 16.10, and 
20.20 ms

45.03 ms 10 echoes:
3.81, 7.91, 12.00, 16.10, 20.20, 
24.29, 28.39, 32.48, 36.58, and 
40.68 ms

Li et al. [131] 10 Healthy subjects 3 T 3D multi-echo gradient-
echo

40 ms 6 echoes/ΔTE: 6 ms/TE1: 6 ms

Gong et al. [92] 4 Pairs of transgenic 
mice with abnormal beta 
amyloid-aggregation (Tg-
SwDI)

7 T 3D multi-echo gradient-
echo

250 ms TE1: 3.72 ms /ΔTE: 5.52 ms/
TE10: 53.36 ms

Du et al. [2] 30 Patients with AD 3 T 3D gradient-echo (GRE) 22.9 ms 3.2 ms

Li [129] 31 Non-demented PD 
patients, 10 patients 
with PDD and 27 healthy 
subjects

3 T SWI with velocity-compen-
sated 3D fast-field echo

TR/TE: 28/23 ms

Kim et al. [121] 19 Patients with aMCI, 
19 patients with mild 
and probable AD, and 19 
healthy subjects,

3 T 3D fast field-echo (FFE) 43 ms TE1: 3.4 ms/ΔTE: 6.0 ms/ TE7: 
39 ms
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DBS goal structures such as the subthalamic nucleus 
and internal Globus pallidus are rich in iron (paramag-
netic), and there is white matter (diamagnetic) around 
them [75–77].

QSM uses the susceptibility differences between con-
tents and has been introduced as a suitable imaging 
method for CM detection.

Compared to R2* mapping, T2WI, T2*WI, phase imag-
ing, and SWI, QSM images have superior contrast in the 
visualization of the GPm [78].

Mild cognitive impairment and Alzheimer’s disease
Mild cognitive impairment (MCI) is a temporary high-
risk stage before the onset of most neurodegenerative 
diseases [79].

Diagnosis at the MCI stage helps prevent the onset and 
progression of Alzheimer’s disease [80].

AD is part of a large group of neurodegenerative dis-
eases that seriously affect the quality of life of the elderly 
and impose a heavy economic burden on society.

In recent years, the incidence of AD has been increas-
ing; the two most important clinical features of this dis-
ease are cognitive decline [81] and memory loss [82].

Early pathological changes occur in the early stages of 
the disease. As the disease progresses, symptoms such as 
learning disabilities and memory impairment develop, 
and we use clinical criteria to diagnose AD [52].

Today we have concluded that microscopic changes 
occur long before morphological changes and the onset 
of clinical signs [83]; introducing a reliable and sensi-
tive biomarker at the microscopic and pathological 
level is required for early diagnosis and monitoring of 
disease progression [84].

Due to the lack of a reliable biomarker sensitive to 
these changes, the probable diagnosis of the disease 
occurs only in the advanced stages.

In the advanced stages of the disease, we also see 
morphological changes such as hippocampal atrophy, 
which can be identified using various MRI techniques 
[85].

Histochemical, histopathological, and imaging stud-
ies proved altered iron metabolism is associated with 
AD [86].

Senile plaques and tau neurofibrillary tangles are 
essential factors for developing AD. Aβ40 and Aβ42 are 
Aβ peptides that are most components of senile plaques 
commonly present in AD [87].

Today, the relationship between iron accumulation in 
AD and its association with Aβ aggregates and neurofi-
brillary tangles has been proven [86].

Based on evidence and studies, high iron levels lead 
to the overproduction of these Aβ peptides [88]; these 
peptides accumulate rapidly and form toxic oligomers 
and fibrils [89].

Consequently, plaque accumulation with accelerated 
oxidative stress leads to the loss of nerve cells [83].

Iron deposition and demyelination of WM increase 
magnetic susceptibility in a specific area of the brain [90].

Routine imaging methods used to  diagnose Alzheimer’s 
disease  Initial identification of brain plaques in Alz-
heimer’s disease is possible with amyloid-beta and tau 
PET imaging.

Studies on the association between the QSM and 
the amyloid-beta PET results have shown that hyper-
susceptibility occurs with age in areas of the cortex and 
deep gray nuclei [91].

Table 1  (continued)

Study Sample size Strength of 
MRI system

Sequence used TR TE

Wei et al. [140] 7 Healthy subjects 3 T Standard flow-compen-
sated 3D fast spoiled-gradi-
ent-recalled (SPGR)

TR/TE: 50/40 ms

Ide et al. [128] 19 Patients with PD and 41 
healthy subjects

3 T 3D multi-echo spoiled 
gradient echo (GRE)

58.4 ms 11 echoes/ΔTE: 5 ms/TE1: 
4.5 ms

Moon et al. [133] 12 Patients with VaD, 27 
patients with AD, and 18 
healthy subjects

3 T Susceptibility-weighted 
angiography sequence 
[SWAN]

37 ms 8echoes/ΔTE: 4.09 ms/
TE1:3.5 ms

Sun et al. [57] 6 Healthy subjects 1.5 T Standard gradient recalled 
echo (GRE)
3D-radiofrequency spoiled 
GRE

TR/TE: 49/40 ms

Acosta-Cabronero et al. [21] 8 Patients with early-stage 
probable AD

3 T Susceptibility-weighted-
imaging

35 ms 20 ms
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Research projects have also shown differences in QSM 
values between people with AD and people with cogni-
tive impairment or other conditions that damage the 
nervous system [25, 92].

Studies based on the simultaneous use of QSM and 
amyloid-beta PET to determine the association between 
iron deposition and Aβ accumulation have also been per-
formed in ex-vivo brain samples and in-vivo mouse mod-
els and; the results have been acceptable [25, 34, 92].

The role of quantitative susceptibility mapping in the diag-
nosis of  Alzheimer’s disease  A wide range of neurode-
generative diseases related to demyelination, inflamma-
tion, microbleeds, and high iron deposition in the brain 
can be evaluated using the QSM technique [54].

Recent studies have also linked QSM-measured iron 
accumulation to cognitive decline and Aβ accumulation 
[93].

In addition, good linear correlations were observed 
in the BG iron content and QSM through post-mortem 
validation by mass spectrometry [94], X-ray emission and 
fluorescence[33], and Perls iron staining [95].

Parkinson’s disease dementia
After AD, Parkinson’s disease is the most common pro-
gressive neurodegenerative disease [96].

According to previous studies, the BG regulate the 
onset of motor activity.

A deficiency in the natural inhibition of the BG leads to 
the symptoms observed in PD [97].

Dopamine  is a neurotransmitter [98] and acts in path-
ways such as the dopaminergic pathway from the sub-
stantia nigra (SN) to the caudate (Cd) and putamen (Pt) 
nuclei.

Abnormal deposition of iron in the deep gray nuclei 
of PD patients is the cause of dopaminergic neuron cell 
degeneration in the SN; after that, the production of 
dopamine stops, and the body’s movements become 
irregular [99].

In the nervous system, α-synuclein is a presynaptic 
neuronal protein in various brain parts, such as the hip-
pocampus, SN, neocortex, cerebellum, and thalamus.

Its abnormal accumulation in patients with PD leads to 
the formation of Lewy bodies.

Due to this feature, PD can be considered as a type of 
synucleinopathies [54].

On the other hand, according to a previous study 
by Langkammer et  al. strong linear relationship was 
observed between the concentration of iron and the mag-
netic susceptibility value in the structure of gray matter 
(GM) [23].

One of the most common early non-motor manifes-
tations of PD  is dementia; as the disease progresses, 

symptoms associated with neurological disorders develop 
[96].

Dementia in PD may be associated with atrophy 
because MRI studies have shown structural changes in 
the amygdala and hippocampus in parkinson’s disease 
dementia (PDD) patients [100].

PDD patients experience significant cognitive decline, 
including impaired executive function, visual function, 
attention, structural function, and memory.

Compared to AD, lesser deficits in language functions 
and more significant deficits in executive functions are 
observed in PDD [101].

According to the evidence, there is a link between lim-
bic anomalies and symptoms of dementia.

Routine imaging sequences used to  diagnose Parkinson’s 
disease dementia  Researchers can use various MRI 
sequences to evaluate the mineralization of DGM and dif-
ferentiate various neurodegenerative Parkinsonian disor-
ders.

These sequences include R2, R2*, SWI, T2WI, and T2 
* WI [93].

In this case, R2* imaging is more sensitive than T2 and 
T2 * weighted imaging [102].

The quality of the R2* imaging technique depends on 
the strength of the magnetic field; It has no authentic 
connection with iron accumulations.

Also, blooming artifact in this method increases with 
increasing time of echo (TE) [103].

Primary atypical parkinsonisms
Parkinsonism is a nervous system syndrome and has dif-
ferent symptoms such as tremors and instability, slow-
ness of activity, and rigidity of muscles.

Primary Atypical Parkinsonisms (APPs) are conditions 
that have different categories such as Progressive Supra-
nuclear Palsy (PSP), Corticobasal degeneration (CBD), 
and Multiple System Atrophy(MSA) [104].

PSP is the most typical fatal atypical Parkinsonian dis-
order with a median survival of around seven years [105].

There is currently no specific treatment for PSP other 
than symptomatic and supportive therapies, and tau-
focused methods may be used in the future [106].

PSP has clinical features similar to diseases such as PD, 
Frontotemporal Dementia (FTD), and CBD [105, 106].

Today differentiating between PD and APPs is the issue 
of a challenge due to the similarity of symptoms in the 
early stages of these diseases [107].

The diagnostic method currently used is made on 
clinical grounds, and the need for a valid biomarker is 
required for rapid diagnosis of the disease [104].
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Routine imaging sequences used to diagnose primary atyp-
ical parkinsonisms  The SWI sequence is used to diag-
nose APPs, but it does not accurately distinguish between 
PD and APPs.

Dorsolateral nigral is known as Nigrosome-1, which 
is considered a sensitive marker of degenerative parkin-
sonism; The Nigrosome-1 hyperintensity is lost using the 
SWI sequence.

Therefore, a reliable biomarker in imaging is essential 
to differentiate between PD,PDD, APPs, and other move-
ment disorders [108].

The role of quantitative susceptibility mapping in the diag-
nosis of Parkinson’s disease dementia and primary atypi-
cal parkinsonisms  In Parkinson’s disease spectrum, 
there are different patterns of magnetic susceptibility in 
deep gray nuclei.

APPs patients can be distinguished from PD patients 
due to different patterns of iron deposition.

QSM is a non-invasive technique that uses magnetic 
resonance imaging to detect changes in magnetic suscep-
tibility and quantify the amount of iron deposition in the 
brain [109].

QSM has higher accuracy than other methods[110]. 
Strong correlations between QSM values and tissue iron 
content of DGM structure have been observed by post-
mortem studies [23].

Brain development
According to Li et  al., the WM becomes more diamag-
netic as the brain develops, from 1 to 83 years old.

During the early phases of brain development, QSM 
can be used to monitor loss or delayed myelination.

Magnetic susceptibility anisotropy (MSA) is one of the 
QSM techniques that measure myelin concentration and 
progression of myelination in the postnatal brain.

A Rapid decrease in Magnetic susceptibility anisotropy 
values or no improvement represents different conditions 
such as dysmenorrhea or hypomyelination disorders 
[111].

Aging
During the aging process, a gradual increase in the mag-
netic susceptibility values occurs as a natural physi-
ological process due to iron accumulation and myelin 
breakdown.

In a recent study on using QSM for evaluating age-
related changes, a nonlinear increase of susceptibil-
ity with aging was perceived in the globus pallidus, red 
nucleus (RN), SN, and dentate nucleus (DN).

Also, a linear increase in magnetic susceptibility was 
observed in structures like Pt and Cd [112].

Other QSM clinical applications
In addition to the above, QSM has other clinical uses 
such as investigation of iron deposition and susceptibility 
changes in the WM in neurodegenerative diseases such 
as FTD, Vascular Dementia (VaD), Huntington’s Dis-
ease (HD), Wilson’s Disease, and motor neuron disease 
(MND) [77].

This technique is also used in neurovascular disorders 
fields such as traumatic brain injury (TBI), venous oxygen 
saturation, inflammatory/demyelination disease, assess-
ing brain tumor due to its differentiation of calcification 
and hemorrhage[113], cerebellar Ataxia, imaging of trau-
matic intracranial hemorrhage, and monitoring multiple 
sclerosis patients without the need for Gd [114].

Other areas of use of this method are the evaluation of 
tissue function in diseases [115],MR venography, check-
ing cerebral cavernous malformations [116], mapping 
rate of cerebral metabolic [117], mapping magnetic nano-
carrier distribution [118], accurate measurement of liver 
iron concentration [119] and differentiation diamagnetic 
materials such as calcium from paramagnetic materials 
such as iron [120].

The methods of differentiation between the studied groups, 
based on QSM values
The research projects in this field have only compared the 
iron deposition in the brain nuclei between the studied 
groups; by reviewing the articles, an increase in iron dep-
osition in several brain nuclei was observed during some 
cognitive disorders, which can act as biomarkers to dif-
ferentiate these disorders (Table 2).

Nevertheless, no specific value has been introduced for 
differentiation between these groups based on the QSM 
values ​​of various brain regions and different articles have 
used different methods to achieve this goal.

In general, the Receiver operating characteristic (ROC) 
curve analyses can differentiate between healthy individ-
uals and the study group in the QSM technique, which 
requires appropriate Cut-Off values.

So far, no standard ​​cut-off values ​​have been announced, 
and researchers can use statistical software such as Med-
Calc (www.​medca​lc.​org, Ostend, Belgium) [121, 122], 
Excel, or other ways [123, 124] to achieve this goal.

There are different steps and different algorithms for 
QSM reconstruction that have been used in various 
research projects [2, 15, 21, 92, 121–136].

Post mortem confirmation study to assess the validity of QSM 
technique
In 2012, a study was performed to determine the accu-
racy of the QSM technique for measuring iron deposits 
in the brain using the QSM technique and inductively 

http://www.medcalc.org
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coupled plasma mass spectroscopy of post mortem tissue 
specimens [54].

Based on the estimated brain tissue density of 1.04 g/
cm3 and the effective number of Bohr magnetons 
(3.78), the contribution of ferritin paramagnetic to tis-
sue susceptibility was estimated to be approximately 
0.00132 ppm * [Fe] at 36.5 °C [137].

Since most of the iron in the brain is bound to ferritin 
proteins, it can be concluded that magnetic susceptibility 
is sensitive to changes in the concentration of iron in the 
human brain [22].

However, some factors confuse the results and can have 
a detrimental effect on the magnetic sensitivity of the tis-
sue, such as iron in oligodendrocytes, which play a sig-
nificant role in myelination, the abundance of other trace 
elements, Substances such as deoxygenated blood, trans-
ferrin, hemosiderin, myelin, calcium [71] and orientation 
dependency of susceptibility [138].

Conclusion
There is a wide range of conditions needed to examine 
magnetic susceptibility changes in the brain.

Different methods each have advantages and disadvan-
tages, but the QSM technique performs relatively well 
compared to other methods.

This method can be applied to some routine sequences 
in an MRI scanner and is independent of the field’s shape, 
echo time, direction, and strength.

It has higher spatial contrast than R2 * and higher sen-
sitivity compared to FDRI.

Considering the review of all methods of measuring 
and evaluating iron deposition in different brain areas, 
selecting the QSM method for clinical application is a 
good choice.

However, more extensive studies are required on the 
clinical use of this technique.
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