
Wang et al. Insights into Imaging           (2022) 13:82  
https://doi.org/10.1186/s13244-022-01204-9

ORIGINAL ARTICLE

Quantifying lung cancer heterogeneity using 
novel CT features: a cross‑institute study
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Abstract 

Background:  Radiomics-based image metrics are not used in the clinic despite the rapidly growing literature. We 
selected eight promising radiomic features and validated their value in decoding lung cancer heterogeneity.

Methods:  CT images of 236 lung cancer patients were obtained from three different institutes, whereupon radiomic 
features were extracted according to a standardized procedure. The predictive value for patient long-term prognosis 
and association with routinely used semantic, genetic (e.g., epidermal growth factor receptor (EGFR)), and histopatho-
logical cancer profiles were validated. Feature measurement reproducibility was assessed.

Results:  All eight selected features were robust across repeat scans (intraclass coefficient range: 0.81–0.99), and were 
associated with at least one of the cancer profiles: prognostic, semantic, genetic, and histopathological. For instance, 
“kurtosis” had a high predictive value of early death (AUC at first year: 0.70–0.75 in two independent cohorts), negative 
association with histopathological grade (Spearman’s r: − 0.30), and altered expression levels regarding EGFR muta-
tion and semantic characteristics (solid intensity, spiculated shape, juxtapleural location, and pleura tag; all p < 0.05). 
Combined as a radiomic score, the features had a higher area under curve for predicting 5-year survival (train: 0.855, 
test: 0.780, external validation: 0.760) than routine characteristics (0.733, 0.622, 0.613, respectively), and a better capa-
bility in patient death risk stratification (hazard ratio: 5.828, 95% confidence interval: 2.915–11.561) than histopatho-
logical staging and grading.

Conclusions:  We highlighted the clinical value of radiomic features. Following confirmation, these features may 
change the way in which we approach CT imaging and improve the individualized care of lung cancer patients.
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Key points

•	 Radiomics-based image features are not used in the 
clinic despite growing literature.

•	 We selected eight features that have been informative 
in lung cancer screening.

•	 They show additional value in revealing semantic, 
genetic, histopathological and prognosis heterogene-
ity.

•	 These features are also robust to repeat imaging, seg-
mentation operator and algorithm.

•	 The findings provide new insights into individualized 
care of lung cancer patients.

Background
More than one in ten human cancers occurs in the lung 
[1]. The biological, spatial, and temporal heterogeneity 
of lung cancer makes its clinical management a critical 
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challenge [2]. Computed tomography (CT) provides a 
means to observe the lung noninvasively and visual-
ize lesions macroscopically, which can be performed 
repeatedly when necessary; thus, CT is core to the 
diagnosis and treatment workflow of lung cancer. The 
advantage of the knowledge inherent in CT images, 
however, is not being fully applied in the clinic, as 
only a few semantic characteristics or simplistic met-
rics (e.g., diameter) are routinely used [3, 4]. In the 
research field, efforts have been made in the transla-
tion of images into quantitative features that describe 
tumor shape and texture characteristics, as well as the 
association of these features with known clinical end-
points. This approach, termed radiomics, provides a 
unique opportunity for the generation of innovative 
methods for phenotypic profiling of lung cancer [5]. 
Several studies have demonstrated the potential use of 
radiomics-based metrics to deepen our knowledge on 
how lung cancers differ from benign lesions [6], and 
how cancer types differ from one another regarding 
development [7], prognosis [8], treatment response, 
and recurrence [9].

There are several important barriers that impede the 
use of radiomic features clinically: (1) the majority of 
radiomic research reports on isolated results regarding 
specific tasks, such as cancer diagnosis or prognosis; thus 
far, the value of radiomic features has rarely been dem-
onstrated in independent datasets and for multiple tasks 
[10, 11]; (2) many radiomic features are computationally 
complex and difficult to interpret; lack of consensus on 
the definition [12] and interpretation of the associations 
between specific radiomic features with known cancer 
phenotypes make it challenging for physicians to uptake 
[3]; and (3) considering the variations in imaging acquisi-
tion and processing, the percentage of radiomic features 
that are deemed reproducible is low, about 6–43% in 
phantom studies and 10% in patient studies [13].

Because it has been ~ 10  years since radiomics gained 
its name, it is a suitable time to consider the controver-
sies between a rapidly growing body of publications and 
the clinical application [14]. In a previous proof-of-con-
cept study, in which we determined the optimal time for 
diagnostic testing in lung cancer screening, we found that 
several radiomic features were robust to image noise, 
associated with semantic characteristics, and predic-
tive of lung cancer diagnosis [15]. In the present study, 
we validate the clinical value of these radiomic features 
based on their ability to predict long-term prognosis of 
lung cancer patients. We also provide additional support 
for their clinical uptake by showing the associations of 
these features with semantic, genetic, and histopathologi-
cal heterogeneity in lung cancer, as well as the measure-
ment reliability of these features.

Methods
Data sources
The proof-of-concept study was conducted between 2014 
and 2019 at Peking Union Medical College Hospital and 
included 92 patients enrolled in a lung cancer screen-
ing program [15]. The CT images used in this study 
were from 236 lung cancer patients at three other insti-
tutes [16, 17]. Cohort A: a total of 146 early-stage non-
small cell lung cancer (NSCLC) patients were recruited 
between years 2008 and 2012 at Stanford University 
School of Medicine and underwent CT and/or positron 
emission tomography (PET)/CT scan before surgical 
treatment (three patients had no CT images and were 
excluded). Cohort B: CT images of 61 lung adenocarci-
noma patients before surgical treatment were acquired 
between years 2006 and 2009 at H. Lee Moffitt Cancer 
Center. Cohort C: CT images were collected in 2017 at 
Memorial Sloan-Kettering Cancer Center and were from 
32 patients with NSCLC who underwent two CT scans of 
the chest within 15 min.

The images were retrieved from the Cancer Imaging 
Archive (https://​www.​cance​rimag​ingar​chive.​net). To 
reflect the diverse clinical settings of each clinical center, 
there was no attempt to harmonize the image acquisition 
protocols (the clinical settings of each center are summa-
rized in Appendix Table 3). The data usage policy for the 
collection of each image was followed. There was no need 
for ethical approval because all the patient information 
was de-identified.

Image segmentation and feature extraction
The process of image segmentation and feature extrac-
tion has been previously standardized [15] and was per-
formed accordingly in this study.

In brief, regions-of-interest (ROIs) were delineated fol-
lowing an interactive process: cross-sectional slices with 
the maximum area per pulmonary lesion were selected, 
and the threshold method (for juxtapleural lesions or 
part-solid and non-solid lesions) or manual initial con-
touring (for complex cases) was exercised, followed by 
automated refinement using Image Segmenter Toolbox, 
MATLAB R2018a until visual satisfaction. Two investi-
gators contoured the ROIs on the initial scan images to 
assess the between-operator variation, and one of the 
investigators used two segmentation algorithms—region-
based and edge-based active contour models—to assess 
the between-algorithm variation.

Radiomic features were then extracted from the ROIs 
using online and in-house adapted codes of MATLAB 
software (see [15] for specific definitions). We evaluated 
two sets of radiomic features: (1) eight selected features, 
including a shape feature (circularity; quantifying the 
degree of the ROI approximating a circle), three statistical 

https://www.cancerimagingarchive.net


Page 3 of 12Wang et al. Insights into Imaging           (2022) 13:82 	

features (variance, kurtosis, and energy; quantifying the 
dispersion, sharpness and magnitude of ROI brightness, 
respectively), three texture features (cluster-shade, maxi-
mum-probability, and long-run high gray-level emphasis 
mean [LongHEM]; quantifying the asymmetry, predomi-
nance of coexisting image pixel pairs, or the degree of 
bright coarse structural textures, respectively), and a 
wavelet feature (long-run emphasis mean on approxima-
tion signal; reflecting the structural texture in a probably 
finer resolution); these features had undergone a rigor-
ous selection process in the proof-of-concept study using 
the following criteria: robustness to artificial image noise, 
predictive performance of cancer diagnosis, and non-
redundancy (i.e., small effect of collinearity between fea-
tures); see [15] for detailed feature selection workflow; (2) 
11 features that revealed similar clinical utility potential 
but correlated to one of the selected features. We present 
the eight selected features in the results section, and the 
remaining information is available in Appendix.

For comparison purposes, diameter was calculated as a 
classical image metric, which was calculated by the aver-
age of the major and minor axis lengths, rounded to the 
nearest integer; semantic characteristics of the cancer 
images (including solid, lobular, specular, juxtapleural, 
and pleura tags) were interpreted by a researcher and a 
radiologist experienced at reading chest CT images.

Analytic workflow and methods
Data on survival outcomes were available from Cohorts 
A and B, and we used these two cohorts for examining 
the prognostic value of the radiomic features. We ran-
domly divided Cohort A (considering its relatively large 
sample size) using a 2:1 ratio for the training and testing 
groups; independent external validation was then per-
formed using Cohort B. A machine-learning random sur-
vival forest (RSF) model was used to build a composite 
radiomic score that could more comprehensively evalu-
ate the cancer characteristics than a single feature. The 
RSF is an extension of random forest (ensemble of tree 
models) to survival outcome [18] and was implemented 
with R package “randomForestSRC,” with hyper-param-
eters (ntree = 50, nodesize = 10, nodedepth = 4) deter-
mined by grid search. The predicted risk for each patient 
was rescaled to 0–100 by normalization to convert it to a 
score. Prognosis values of the radiomic features and score 
were measured by C-statistic (overall discrimination of 
time-to-survival outcome), as well as at several points 
of interest (e.g., to determine 2- or 5-year survival), 
using time-dependent area under the receiver operating 
curve (AUCt). Hazard ratio (HR) of death was computed 
between groups of patients with high and low scores.

To determine a clinical explanation of the novel fea-
tures, in the proof-of-concept cohort, we associated the 

radiomic features with the semantic characteristics that 
are widely used in lung cancer image interpretation [15]; 
we further validated these associations in Cohorts A, B, 
and C. We also used information available in Cohort A 
on gene mutations (epidermal growth factor receptor 
[EGFR], Kirsten rat sarcoma viral oncogene homolog 
[KRAS], and anaplastic lymphoma kinase [ALK]) and 
histopathology (types and grades) to confirm the findings 
biologically. The associations of the radiomic features 
with these micro-level subtypes were examined using a 
differential expression analysis approach using the Wil-
coxon test and Spearman’s correlation.

Lastly, for comprehensive assessment of the measure-
ment reliability of the radiomic features, we examined 
feature reproducibility in terms of image acquisition 
(between-repeat scans) and segmentation (between oper-
ators and between algorithms) using data from Cohort C. 
Features with an intraclass coefficient (ICC) ≥ 0.8 were 
considered robust to the abovementioned variation. 
Bland–Altman plots were drawn for visual analysis.

The statistical tests were two-sided, with a significance 
level of 0.05. All the statistical analyses were performed 
with R version 3.5.2.

Results
Patient characteristics
Across the three patient cohorts (Table  1), the charac-
teristics of lung cancer did not vary significantly regard-
ing location (31.3–40.6% in the left lung [p = 0.2765]) 
or semantic characteristics (65.6–68.9% were a lobular 
shape, 24.5–37.5% were a spiculated shape, 37.7–59.4% 
had pleural invasion [elastic, visceral, or parietal], and 
15.6–23.0% had pleura tags [all p > 0.050]), with the 
exception of image intensity, which varied between 
cohorts (50.8–81.3%, solid intensity [p = 0.0155]). 
Between patients in Cohorts A and B, there were no 
significant differences regarding cancer stage: 17.5% vs 
29.3% staged IIIA or above, respectively; or regarding 
survival: median survival time was 40.0 vs 62.8 months, 
respectively (both p > 0.050).

Prognosis value
When used alone, the feature, “LongHEM,” showed a 
prognostic value that was equal to diameter. The over-
all C-statistic was 0.627 (LongHEM) vs 0.570 (diame-
ter) in Cohort A, and 0.602 vs 0.605 in Cohort B; AUCt 
for predicting survival beyond 2 and 5  years was 0.617 
(LongHEM) vs 0.612 (diameter) and 0.588 vs 0.597, 
respectively, in Cohort A, and 0.648 vs 0.618 and 0.670 
vs 0.678, respectively, in Cohort B. A similar prognostic 
value was observed regarding features “kurtosis,” “energy,” 
and “maximum-probability” (Appendix Table 4).



Page 4 of 12Wang et al. Insights into Imaging           (2022) 13:82 

Next, we developed a composite score using the eight 
selected features. The prognostic value of the compos-
ite score (Appendix Table  5) was greater than diameter, 
the five semantic characteristics, and a combination of 
these routine characteristics. For instance, when used for 
predicting survival beyond 5 years, the AUCt was 0.855 
(train), 0.780 (test), and 0.760 (external validation) for the 
composite score, vs 0.733 (train), 0.622 (test), and 0.613 
(external validation) for a combination of diameter and 
semantic characteristics.

When patients in Cohorts A and B were stratified 
according to their median scores, we found significantly 
different prognosis between groups with low and high 
scores (p < 0.050 in both cohorts; Fig.  1A, B). Patients 
with a low radiomic score were associated with higher 
chances of survival from the beginning (1  year) of the 
follow-up process, and the between-group divergence 
in survival curves became more apparent after this time 
point. The performance of the radiomic score was bet-
ter compared to histopathological staging (Fig.  1C, D) 
and grading (Fig.  1E; data only available for Cohort A). 
The HR of patients with a high vs low radiomic score 
was 5.828 (95% confidence interval [CI] 2.915–11.561) 
in Cohort A and 2.722 (95% CI 1.117–6.633) in Cohort 
B. The prognostic value was demonstrated across age, 
gender, and smoking category subgroups (Fig.  1F), and 

more pronounced among older (aged ≥ 70  years, HR 
8.189), female (HR 7.210), and non-smoking patients (HR 
15.190; all p < 0.050 against a null effect).

Associations with semantic, genetic, and histopathological 
profiles
First, by associating the radiomic features with the 
semantic characteristics (Table  2), the following find-
ings in the proof-of-concept cohort were independently 
confirmed in Cohort A: up-regulation of feature “maxi-
mum-probability” in cancers of solid intensity, of feature 
“variance” in cancers of spiculated shape, and of features 
“circularity” and “energy” in cancers attached to the 
pleura. We also found an association between “circular-
ity” and juxtapleural location in Cohort B. Additionally, 
down-regulation of the feature “kurtosis” in juxtapleural 
cancers was demonstrated in Cohorts A and B, and up-
regulation of feature “LongHEM” in juxtapleural cancers 
was observed in Cohorts A and C. The directions of the 
significant differentially expressed features were consist-
ent across different cohorts, with the exception of “Long-
HEM” and spiculated shape.

We then analyzed the relatively large sample size and 
the available information from Cohort A to evaluate radi-
omic expression patterns regarding different genetic and 
histopathological profiles.

Table 1  Characteristics of lung cancer patients

NA, not available; IQR, inter-quartile range
† Age < 65 years: n = 20; ≥ 65 years: n = 41; specific data unavailable
‡ Data unavailable for three patients

Characteristics Cohort A
(N = 143)

Cohort B
(N = 61)

Cohort C
(N = 32)

p value

Male, n (%) 108 (75.5) 31 (50.8) 16 (50.0) 0.0004

Mean age, years (range) 69.3 (43–87) NA† 62.1 (29–82) –

Cancer location 0.2765

Left upper lobe 38 (26.6) 20 (32.8) 4 (12.5)

Left lower lobe 20 (14.0) 8 (13.1) 6 (18.8)

Right upper lobe 51 (35.7) 21 (34.4) 9 (28.1)

Right middle lobe 13 (9.1) 5 (8.2) 3 (9.4)

Right lower lobe 21 (14.7) 7 (11.5) 10 (31.3)

Semantic characteristics

Solid 90 (62.9) 31 (50.8) 26 (81.3) 0.0155

Lobular 96 (67.1) 42 (68.9) 21 (65.6) 0.9470

Spiculated 35 (24.5) 17 (27.9) 12 (37.5) 0.3218

Juxtapleural 59 (41.3) 23 (37.7) 19 (59.4) 0.1121

Pleura tag 28 (19.6) 14 (23.0) 5 (15.6) 0.6936

Cancer stage 0.0617

0-IIB 118 (82.5) 41 (70.7)‡ NA

IIIA–IVB 87 (17.5) 17 (29.3) NA

Median survival (IQR), month 62.8 (45.9, 72.5) 40.0 (31.0, 49.0) NA 0.0636
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Fig. 1  Survival of lung cancer patients. Stratified by composite radiomic score, (A) Cohort A, (B) Cohort B; histopathological staging, (C) Cohort A, 
(D) Cohort B; histopathological grading, (E) Cohort A (data not available for Cohort B); and by demographic subgroups for the examination of score 
value, (F) Cohort A
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EGFR-mutated (n = 23) relative to wild-type (n = 93) 
lung cancers showed an up-regulation of the feature 
“kurtosis” (median: 3.87 vs 2.48; p = 0.0238), and down-
regulation of the features “maximum-probability” 
(0.53 vs 0.75; p = 0.0130) and “energy” (0.05 vs 0.09; 
p = 0.0401; Fig.  2A). Moreover, a down-regulation of 
feature “variance” was observed in ALK-translocated 
(n = 2) vs wild-type (n = 109) cancers (4.60 vs 8.64; 
p = 0.0282), but there was no differentially expressed 

features regarding KRAS-mutated (n = 27) vs wild-type 
(n = 88) cancers.

For cancers stratified by different histopathological 
groups (adenocarcinoma, squamous cell lung cancers, 
and other NSCLCs; Fig. 2B), the difference observed for 
the feature “variance” was highly significant (8.25 vs 8.94 
vs 9.61; p = 0.0031). Other differentially expressed fea-
tures regarding these histopathological groups included 
“cluster-shade” and “maximum-probability” (p < 0.050 for 

Table 2  Association of selected radiomic features with semantic characteristics of lung cancer

↑ and ↓ denote up- and down-regulation of the feature in the presence of the semantic characteristics, respectively

A, B, C, P denote statistically significant (* p < 0.050; ** p < 0.010) association observed in cohorts A, B, C and the proof-of-concept cohort, respectively

LongHEM, long-run high gray-level emphasis mean

Feature Solid Lobular Spiculated Juxtapleural Pleura tag

Circularity ↓A** ↑P*;↑A**;↑B* ↓A**

Variance ↑A** ↑P**;↑A* ↓B** ↑A*

Kurtosis ↓A** ↓P* ↓A**;↓B* ↑A**

Energy ↑A** ↑P**;↑A** ↓A**

Cluster-shade ↓A* ↓P* ↑C* ↓B*

Maximum-probability ↑P**;↑A** ↓P* ↑A**

LongHEM ↑A** ↑P*;↓C* ↑A*;↑C** ↑P*

A_Long-run emphasis ↓P* ↑A** ↓C*

Fig. 2  Association of image metrics with gene and histopathological phenotypes. A Volcano plot showing the significantly up-regulated (red) 
and down-regulated (blue) image metrics (p < 0.050) regarding EGRF mutation. B Radar plot of differentially expressed image metrics regarding 
histopathological type. C Dose–response plot of histopathological grade with image metrics. *p < 0.050; **p < 0.010. EGFR: epidermal growth factor 
receptor
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both of the features). Moreover, we found that four fea-
tures significantly increased or decreased along with an 
increase in histopathological grade (Fig. 2C): “LongHEM” 
(Spearman’s coefficient of correlation: 0.331), “kurtosis” 
(−  0.329), “energy” (0.325), and “maximum-probability” 
(0.281; all p < 0.010).

Compared to the selected radiomic features, diam-
eter had no discriminative power regarding cancers 
with EGFR or ALK mutations, nor for histopathological 
types (all p > 0.050). The correlation with histopathologi-
cal grade (Spearman’s coefficient of correlation: 0.226; 
p < 0.010) was weaker than for the four aforementioned 
radiomic features (“LongHEM,” “kurtosis,” “energy,” and 
“maximum-probability”).

Feature reproducibility
Despite the visual differences in the segmented ROIs 
between repeat scans and segmentation operators and 
algorithms (see Fig. 3 as an example), the eight radiomic 
features were generally not affected by these sources of 
variation (Fig.  4; Appendix Table  6). Specifically, ICC 
ranged from 0.81 (“LongHEM”) to 0.98 (“energy”) in 
repeat scans, and from 0.80 (“circularity”) to 0.99 (“kur-
tosis”) between segmentation operators and algorithms, 
with the exception of an ICC of 0.70, which was observed 
for between operators, and an ICC of 0.57, which was 
observed for between algorithms (“cluster-shade”).

Discussion
Only a few quantitative or semantic features are routinely 
used in lung cancer image interpretation, and these fea-
tures are considered insufficient because they are too sim-
ple or prone to inter-observer variability [19]. Currently, 

despite rapidly expanding literature on radiomics, there 
is no clinical use of radiomic features [20]. On the basis of 
our previous report [15] and the findings in the current 
study, we show that the eight selected radiomic features 
are predictive of both the diagnosis and prognosis of lung 
cancer, descriptive of semantic characteristics, and some 
are indicative of genetic and histopathological profiles. 
The selected features were largely robust to variation in 
image noise, repeat imaging, and visual differences in 
ROIs caused by segmentation operators and algorithms. 
When combined, the radiomic features showed a mod-
erate prognosis value (AUCt for 5-year survival: 0.760 in 
external validation) and capability for risk stratification 
(HR 5.828 and 2.722 in two independent cohorts; the 
HRs among elderly, female, and non-smoking subgroups 
were 8.189, 7.210, and 15.190, respectively), and the strat-
ification capability was even better than histopathological 
staging and grading. These results highlight the feasibility 
of using new metrics for lung cancer images in the clini-
cal setting.

Because of the substantial heterogeneity in lung can-
cers, new methods for subtyping are needed. This issue 
has led to numerous efforts regarding cancer characteri-
zation at the tissue (imaging), cellular (microcopy), and 
molecular (genetic test) levels [5, 21]. Of these methods, 
histopathological methods are some of the oldest meth-
ods (specialty of histopathology techniques dates back 
to 1838 [22]), which laid a foundation for the diagnosis 
and treatment of cancer. Alterations to the cancer classi-
fication system are being pursued in the age of precision 
medicine [21], driven by improved methods that are able 
to reveal the molecular basis of the disease. The time for 
the introduction of medical imaging lied in between [9]; 

Fig. 3  Segmented lung cancer images
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strengthened by a better computation power, descrip-
tion of the cancer morphology (and potentially its evolv-
ing biology) can go beyond human perceptions [23]. 
This may help to explain why the radiomic score out-
performed the histopathological staging and grading 
in this study. Similar findings were observed in another 
study [24] that used more features for the construction 
of a radiomic signature than our study. Our finding on 
the interweaving associations between radiomic features 
and pathohistological and genetic profiles, as well as find-
ings from several other publications (regarding predic-
tion of lung cancer histopathology [25], EGFR and ALK 
mutations [26, 27], and prognosis among ALK-positive 
patients [28] using radiomic features), altogether con-
firm the presence of a connection between the macro-
level imaging information and micro-level biology. As CT 
images are routinely collected, the analysis of radiomic 
features could be a relatively inexpensive and non-inva-
sive means for cancer profiling.

Radiomic features are prone to variations in each step, 
from image acquisition to segmentation [29]. This is a 

key issue for the application of radiomics. For instance, 
many of the radiomic-semantic associations observed in 
our proof-of-concept study, validated in Cohort A or B, 
were not found in Cohort C. Despite the small sample 
size in Cohort C, we believe this discrepancy was due to 
the larger slice thickness (2.5–6.0 mm) in the samples in 
Cohort C compared with the other cohorts (0.6–3.0 mm). 
In a recent publication [13], slice thickness had the larg-
est impact on feature reproducibility compared with 
other factors; slice thickness impacted visualization and 
interpretation of semantic characteristics (e.g., spiculated 
shape) according to our experience. We did not focus the 
present study on volumetric radiomic features or features 
requiring sophisticated quantification (such as those 
based on wavelet and other transformed images) because 
multiple previous publications [30, 31] and our proof-of-
concept study [15] showed less reproducibility for these 
features than for shape, statistical, and a subset of texture 
features, even for peritumoral radiomics [31]. Instead, 
in the present study, following a rigorous selection pro-
cess, we focused on several radiomic features. The feature 

Fig. 4  Reproducibility of eight radiomic features regarding measurements between scans
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reproducibility results confirmed that these features were 
reliable. Therefore, the analysis of these features may help 
to avoid spurious findings in subsequent analyses and in 
the clinical setting.

Among the selected radiomic features, “kurtosis” is a 
simple statistical feature describing the sharpness of the 
image intensity level distribution. Because of its simplic-
ity, features of this category may be more robust than 
measuring shape and texture features (e.g., “circularity” 
and “cluster-shade” in this study), according to a system-
atic review [29]. For instance, “kurtosis” showed an ICC 
of > 0.96 between repeat scans and between segmentation 
operators and algorithms, which is relatively higher com-
pared with other selected features. The clinical poten-
tial of the “kurtosis” feature as a new image metric for 
classification and progression of lung diseases has been 
repeatedly observed [32]. We further revealed several 
good properties of “kurtosis,” such as its high predictive 
value of early death (AUC at first year: 0.70–0.75 in two 
independent cohorts), negative linear association with 
histopathological grade (Spearman’s r: −  0.30), and sig-
nificantly altered levels regarding EGFR mutations and 
regarding nearly all the semantic characteristics investi-
gated. On the basis of these findings, we expect a wider 
application of this quantitative metric in the future given 
its ease-of-computation and interpretation.

Nevertheless, we could not expect too much from a 
single metric as a solution to a specific clinical task. For 
instance, in this study, the prognostic value of the radi-
omic features were, at best, equal to the use of diam-
eter when used alone, and for most of the features, such 
values may vary over time. For some features, the tem-
poral trend may also differ between cohorts (Appendix 
Table  4). Owing to their substantial heterogeneity, lung 
cancers of the same histopathological type can show 
varying imaging and survival characteristics; such vari-
ations have also been reported in cancers of the same 
genetic type [33]. Implications of these complex findings 
are far-reaching. First, these findings indicate that a lot 
more progress required in the pursuit for novel methods 
for cancer characterization. Regarding morphology, it 
was recently indicated that homology-based [34], peritu-
moral [35], or sequential radiomic features [36] may add 
to the value of standard radiomics, though further vali-
dations are needed. Second, to capture and differentiate 
tumoral heterogeneity, we need to take advantage of the 
effect of combined approaches. One example of this from 
the current study is that when the selected features (non-
redundant measurements of cancer appearance) were 

combined as a score, their prognostic value was signifi-
cantly enhanced. Therefore, mathematical formulas, sta-
tistical models, or machine learning algorithms deserve 
further investigation in this context [37]. Third, despite 
our enthusiasm for optimizing models’ precision for 
precise cancer care, we argue for an equal emphasis on 
basic techniques that are highly reproducible and allow 
adequate interpretation of the results.

There are several limitations in this study: (1) although 
digital images can be stored over long periods, the ret-
rospective nature of this study limited our access to the 
demographic and genetic data of some patients; (2) CT 
images from more diverse scanning protocols should 
be considered for a better extrapolation of the results, 
and the impact of varying scanning protocols on feature 
reproducibility remain inadequately assessed; (3) the 
use of PET/CT images can improve the accuracy of can-
cer staging; therefore, it remains unknown whether the 
results on the prognosis value of the composite radiomic 
score against histopathological staging may be altered by 
adding such information; (4) we only examined a small 
number of selected radiomic features and applied them 
to a case-mix of lung cancer patients; this may have led to 
a lower prognostic accuracy compared with other reports 
[38, 39]; (5) the value of the selected radiomic features 
was only assessed at a certain time point (before surgery). 
It was indicated in our previous study that features such 
as “LongHEM” may be a good metric for monitoring pur-
poses when measured repeatedly (i.e., delta radiomics); 
validation of this finding requires longitudinal data and 
further analysis.

Conclusion
Following a previous work, we demonstrated in this study 
that several selected radiomic features are predictive of 
survival outcome and can differentiate between seman-
tic, genetic, and histopathological heterogeneities in lung 
cancer. Moreover, the measurement of these features was 
reproducible in repeat scans and image segmentation. 
Following confirmation, the novel features described in 
this study may help to improve approaches of CT image 
analysis, and therefore, may improve individualized care 
of lung cancer patients.

Appendix
Tables 3, 4, 5 and 6. 
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Table 3  CT image acquisition protocols

† With the exception of one using Ultravist contrast

Cohort A Cohort B Cohort C
Data source Memorial Sloan-Kettering Cancer 

Center
Stanford University School of Medicine H. Lee Moffitt 

Cancer Center

Tube voltage 120 kVp 80–140 kVp 120–140 kVp

Tube current 298–441 mA 124–699 mA 14–384 mA†

Slice thickness 1.25 mm 0.6–3.0 mm 2.5–6.0 mm

Contrast enhancement No Yes/No Yes/No

Table 4  Overall and time-dependent performance of single image metrics

GLCM, Gray-level co-occurrence matrix

Table 5  Overall and time-dependent performance of a composite radiomic score at predicting lung cancer prognosis

All values are expressed as accuracy (95% confidence interval) unless otherwise stated

AUC, area under time-dependent receiver-operating curve

Training set Test set External validation set

C-statistic 0.830 0.687 0.672

AUC (t = 1 y) 0.965 (NA) 0.811 (NA) 0.643 (0.459,0.800)

AUC (t = 2 y) 0.913 (0.832,0.978) 0.658 (0.496,0.789) 0.673 (0.515,0.819)

AUC (t = 3 y) 0.851 (0.781,0.937) 0.642 (0.473,0.781) 0.760 (0.628,0.911)

AUC (t = 4 y) 0.856 (0.771,0.937) 0.739 (0.561,0.854) 0.760 (0.628,0.911)

AUC (t = 5 y) 0.855 (0.771,0.934) 0.780 (0.611,0.905) 0.760 (0.628,0.911)
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