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Abstract 

Background:  Graph theoretical network analysis with structural magnetic resonance imaging (MRI) of multiple scle‑
rosis (MS) patients can be used to assess subtle changes in brain networks. However, the presence of multiple focal 
brain lesions might impair the accuracy of automatic tissue segmentation methods, and hamper the performance 
of graph theoretical network analysis. Applying “lesion filling” by substituting the voxel intensities of a lesion with the 
voxel intensities of nearby voxels, thus creating an image devoid of lesions, might improve segmentation and graph 
theoretical network analysis. This study aims to determine if brain networks are different between MS subtypes and 
healthy controls (HC) and if the assessment of these differences is affected by lesion filling.

Methods:  The study included 49 MS patients and 19 HC that underwent a T1w, and T2w-FLAIR MRI scan. Graph 
theoretical network analysis was performed from grey matter fractions extracted from the original T1w-images and 
T1w-images after lesion filling.

Results:  Artefacts in lesion-filled T1w images correlated positively with total lesion volume (r = 0.84, p < 0.001) 
and had a major impact on grey matter segmentation accuracy. Differences in sensitivity for network alterations 
were observed between original T1w data and after application of lesion filling: graph theoretical network analysis 
obtained from lesion-filled T1w images produced more differences in network organization in MS patients.

Conclusion:  Lesion filling might reduce variability across subjects resulting in an increased detection rate of net‑
work alterations in MS, but also induces significant artefacts, and therefore should be applied cautiously especially in 
individuals with higher lesions loads.

Keywords:  Graph theoretical network analysis, Multiple sclerosis, Lesion filling, Demyelinating diseases, 
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Key points

•	 Lesion filling increases the sensitivity of T1w-derived 
network analysis in multiple sclerosis (MS).

•	 Lesion filling produces more artefacts in patients 
with greater lesion volumes.

•	 Network parameters are more affected in relapse-
remitting than progressive MS.
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Background
Multiple sclerosis (MS) is an inflammatory demyelinat-
ing disease, and the most common neurodegenerative 
disease among young adults [1]. The disease is charac-
terized by apparently randomly located inflammatory 
lesions within the central nervous system (CNS), result-
ing in a variety of clinical manifestations among patients 
[1]. The relapsing–remitting multiple sclerosis pheno-
type (RRMS) presents acute clinical manifestations, the 
so-called relapses, followed by a period of full or partial 
recovery and stable disability between episodes, whereas 
the progressive phenotype (PMS) is defined when a con-
sistent increasing in neurological disability is confirmed 
independent of relapses [2–5]. Despite the high heteroge-
neity within MS pathology due to the random location of 
lesions, there are also common symptoms. These symp-
toms may include a decreased visual function, bladder 
dysfunction, and impaired motor and sensory functions 
[6]. Although allocation of symptoms to specific spinal 
cord dysfunction is generally supported by a myelopathy 
visible on MRI, studies have not yet been able to consist-
ently link symptoms to individual cerebral lesions visible 
on MRI. A general explanation for this discrepancy is the 
existence of functional cerebral networks, which implies 
that lesions in different parts of a network can result in 
similar symptoms. A progressive disruption of functional 
networks during disease progression could explain the 
increase in disability in later stages of MS.

To investigate this hypothesis, graph theoretical net-
work analysis could be used for different phenotypes or 
stages of MS. According to graph theory, the connec-
tions between brain regions can be presented in a graph, 
in which the brain regions are represented as nodes and 
the interactions as lines (edges). These interactions can 
be used to calculate various parameters, like path length, 
which describes the number of edges between two brain 
regions. These parameters are calculated per subject and 
can then be compared between two groups. In principle, 
any imaging modality could be used for graph theory, 
but the clinical meaning and relevance is highly depend-
ing on the imaging used as input. So far, mainly diffusion 
tensor imaging (DTI) has been used for structural net-
work analysis in MS [7]. DTI assesses white matter (WM) 
tractography and therefore could be used to determine 
white matter connectivity. Grey matter (GM) connec-
tivity in MS could be studied using parameters obtained 
from T1-weighted (T1w) MRI, such as cortical volume, 
cortical thickness, or grey matter fraction [7]. Studies 
showed high similarities between DTI and T1w results 
obtained with graph theoretical network analysis in MS 
patients [8–10]. A challenge for network analysis using 
either DTI or T1w MRI in MS is the random location of 
lesions, and for T1w especially the effect of juxtacortical 

lesions on GM segmentation. A method to cope with the 
variation in lesion load and distribution is the applica-
tion of lesion filling [11]. Lesion filling replaces the voxel 
intensities in lesions with the voxel intensity of surround-
ing tissue, resulting in an image without apparent lesions, 
and thus devoid of the pathological signal intensity vari-
ations. Some studies performing network analysis in MS 
apply lesion filling [12, 13], whereas others do not [8, 14], 
and therefore, there is no clear consensus regarding the 
application of lesion filling.

Studies on structural networks using graph theoretical 
network analysis in MS show inconsistent findings. Some 
studies, assessing either GM (T1w) or WM (DTI) con-
nectivity, found a decrease in global and local efficiency 
of the network in MS patients [8–10, 15], whereas other 
studies found an increase [12, 14, 16]. This discrepancy 
between studies might reflect the deteriorating reorgani-
zational properties of the brain to minimise clinical dis-
ability during disease progression. These controversies 
regarding WM and GM connectivity could therefore be 
due to differences in study populations, especially with 
regard to disease duration and disease subtype. Dedi-
cated studies on the effects of different MS phenotypes 
or disease stages on connectivity measures could help to 
resolve this issue.

Our study aims to (1) determine the effect of lesion 
filling on graph theoretical network parameters derived 
from T1w MRI, (2) identify which regions are important 
for MS pathogenesis by assessing abnormalities in GM 
connectivity, and (3) investigate if GM connectivity dif-
fers between RRMS and PMS patients.

Methods
Participants
Seventy-five subjects were recruited at the Medical Fac-
ulty of the University of São Paulo, which consisted of 24 
healthy controls (HC), 30 RRMS patients, and 21 PMS 
patients. Inclusion criteria for the healthy controls were 
age between 18 and 65 years and at least 4 years of edu-
cation. Patients were diagnosed with clinically defined 
MS according to the revised McDonald criteria [17], 
were relapse free and had not received steroid treatment 
for at least 30 days before MRI scanning. Exclusion cri-
teria were any major medical conditions that prevented 
MRI acquisition (i.e. pregnancy, renal, cardiac, or hepatic 
insufficiency) or presence of severe psychiatric disor-
ders. Hence, 3 healthy subjects were excluded due to 
unexpected comorbidities, 1 participant withdrew from 
the study and did not allow further use of data, 1 par-
ticipant was scanned with a different head coil due to 
dysphagia, 1 subject did not conclude the whole proto-
col, and 1 participant received intravenous steroid treat-
ment 5 days before MRI acquisition which was reported 
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only after the scan. All participants signed the informed 
consent form to participate in the study. The study was 
conducted according to the Declaration of Helsinki and 
subsequent revisions, and was approved by the medical 
ethics committee of the University of São Paulo (protocol 
3.256.558). Differences in demographics were assessed 
with nonparametric tests where applicable.

Image acquisition
MRI scans of the brain were performed on a 3  T 
SIGNA PET-MRI scanner (General Electric Com-
pany) with a 24-channel head coil. The protocol com-
prised of a 3D-T1w (TR/TE/TI = 7.664/3.112/600  ms, 
voxel size 1 × 0.5 × 0.5  mm) and a 3D-T2w FLAIR 
(TR/TE/TI = 6500/141.213/1905  ms, voxel size 
1.3 × 0.5 × 0.5 mm) sequence.

Image processing
T2w-FLAIR images were co-registered to the 3D-T1w 
images. The lesion growth algorithm (LGA) of the lesion 
segmentation toolbox (LST) in SPM12 (Wellcome Trust 
Centre for Neuroimaging, Institute of Neurology, Lon-
don, 2014) was used with a kappa of 0.3 to perform lesion 
segmentation on T1w and T2w-FLAIR images, resulting 
in a lesion probability map. Subsequently, these lesion 

probability maps were used for lesion filling of T1w 
images by using local information (i.e. filling the lesion 
with the intensity of adjacent voxels), allowing accurate 
lesion filling even in images that are corrupted by bias 
field [18]. Original and lesion-filled T1w MRI images 
were processed by GM, WM and cerebrospinal fluid 
(CSF) segmentation and spatial normalization to the 
Montreal Neurological Institute (MNI) space using the 
tissue probability maps in SPM12 [19]. The accuracy of 
the co-registration, segmentation, lesion filling, and nor-
malisation was checked by visual inspection. Network 
analysis was performed both on the original T1w data 
and on the T1w data with lesion filling.

Network‑analysis
Graph theoretical network analysis comprises 4 main 
steps (Fig. 1): (1) defining the appropriate nodes, (2) esti-
mation of a continuous measure of association between 
nodes, (3) generation of an association matrix, and (4) 
calculating the network parameters of interest. Using 
the 116 regions of interest (ROIs) within the automated 
anatomical labelling (AAL) atlas within the Wake For-
est University (WFU) Pickatlas tool in SPM12 [20], grey 
matter fractions were extracted from the GM segmenta-
tion derived of ROIs in the T1w images. The grey matter 

Fig. 1  Flowchart of the graph theoretical network analysis. AAL: automated anatomical labelling
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fractions corresponding to the 116 AAL ROIs were used 
as nodes. Association matrices were generated with 
Brain Analysis using Graph theory (BRAPH) [21] from 
Spearman correlations to assess the inter-regional asso-
ciations (the edges between nodes): a higher correlation 
indicated a stronger inter-region association. Spearman 
correlations were used due to their insensitivity to outli-
ers and skewed distributions. Negative correlations were 
set to zero, because not all network parameters can be 
calculated in the presence of negative correlation coeffi-
cients. In recent years, there have been advances in using 
weighted graphs and increasing calls for their use across 
all neuroimaging modalities [22]. Therefore, several net-
work parameters (Table  1) were calculated per group 
using weighted undirected graphs. Global parameters 
are calculated over the whole brain and therefore provide 
information regarding the integrity of the whole brain 
network. However, nodal parameters are calculated for 
individual brain regions, and thus provide information 
regarding the network integrity of the individual brain 
regions.

Nonparametric permutation tests were applied to both 
data derived from original T1w MRI and data derived 
from lesion filled T1w MRI to assess the significance of 
the differences in the network parameters between two 
groups (HC vs. MS total, HC vs. RRMS, HC vs. PMS, 
and RRMS vs. PMS) [23]. The tests were performed by 
first determining the differences between two groups 
for each network parameter. Then, the subjects were 
permutated between the two groups, and the network 
parameters (e.g. strength) were calculated again for the 
permuted groups (containing a mix of subjects of the 
two groups). This process was repeated 1000 times. After 

each permutation, the differences in network param-
eters between the permutated groups were determined, 
resulting in distributions of between-group differences 
and 95% confidence intervals (CIs) of the differences per 
network parameter. HC (or RRMS in case of RRMS vs. 
PMS) were used as a reference for the 95% CIs. If the dis-
tribution of a particular MS group was outside the 95% 
CI of the reference group (HC or RRMS), the difference 
was considered significant at a global level. The results 
on a nodal level were corrected for multiple comparisons 
using the false discovery rate (FDR) Benjamini–Hoch-
berg procedure [24] with a q of 0.05 to correct for the 
number of regions that were tested. Differences were 
considered to be truly significant and not dependent on 
chance, if the uncorrected p values were both ≤ 0.05 and 
equal to or smaller than the FDR corrected p values.

Results
Study population
Only patients off-steroid treatment without comorbidi-
ties, who correctly concluded the whole MRI protocol, 
were included in the graph theoretical network analysis. 
This led to a final inclusion of 19 HC, 30 RRMS (disease 
duration 9.3y ± 5.9), and 19 PMS patients (disease dura-
tion 11.8y ± 6.8), of which 11 had primary and 8 second-
ary PMS (Table 2). Patients with RRMS were significantly 
younger (age 35.7 vs. 49.3  years, t = − 5.7, p < 0.001) 
and had significantly lower disability scores than PMS 
patients (EDSS 2.7 vs 6.3, U = 556, p < 0.001), but had 
similar numbers and volumes of white matter lesions, 
years of education, and disease duration. Surprisingly, a 
small number of non-specific brain lesions that do not 

Table 1  Studied network parameters and their definitions

*Network parameters at global level were calculated by averaging the outcome of nodal measures over all ROI’s

Measure Definition Nodal level Global level

Degree Number of connections to a node x x*

Strength Sum of the weight of all connections to a node x x*

Path length Lowest number of connections between two nodes x x*

Clustering coefficient The fraction of a node’s neighbours that are also neighbour between each other x x*

Global efficiency Average inverse of shortest path length x x*

Local efficiency Global efficiency of a node regarding its neighbourhood x x*

Within module degree z-score Within module degree of centrality x

Participation The diversity of intermodular interconnections of individual nodes x

Transitivity The probability of interconnectivity of adjacent nodes x

Modularity Degree to which the graph can be subdivided into multiple small-world networks x

Assortativity coefficient Correlation coefficient between degrees/strengths of all nodes on two opposite ends of 
a connection

x

Small-worldness The ratio of clustering coefficient on global level and the clustering coefficient of a 
random graph divided by the ratio of the average path length on global level and the 
average path length of a random graph

x
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correspond with a specific diagnosis or aetiology were 
detected in HC.

Global network topology based on original T1w MRI data
Modularity and assortativity were the only global net-
work parameters derived from T1w images without 
lesion filling that showed significant differences between 
groups. Modularity was significantly higher in HC than 
in MS patients. The T1w-derived assortativity (correla-
tion coefficient, indicating whether similar nodes are 
connected to each other) was significantly lower in HC 
than in MS patients (Table 3, Fig. 2). Both parameters did 
not significantly differ between RRMS and PMS patients.

Lesion filling
Lesion filling on T1w MRI data was applied to evalu-
ate the effect of lesion filling on the graph theoretical 
network outcome parameters. In total, 804 lesions were 
detected across the study population. Lesion-filling was 
accompanied with a total amount of 233 artefacts, of 
which 79 were substantial (wrong classification of tis-
sue) and 152 minor (Fig. 3). Most artefacts generated by 
lesion filling were observed for lesions at the interface 
between tissues (e.g. interface between WM and CSF, or 
WM and GM) and lesions with a large volume. Quanti-
tative assessment using Spearman correlation, revealed a 
correlation between total lesion volume and the number 
of lesion filling artefacts (r = 0.84, p < 0.001). An exam-
ple of the substantial effects of the lesion filling artefacts 
on GM segmentations is displayed in Fig.  4. All images 
were included in the network analysis, irrespective of the 
extent of lesion filling artefacts.

Global network topology of lesion filled MRI
Network analysis of lesion-filled T1w images (Fig. 5 and 
Table 3) showed significant differences in all global net-
work parameters between the HC and total MS group. 
In particular, the average degree, average strength, global 

and local efficiency, clustering coefficient, transitiv-
ity, assortativity, and small-worldness were significantly 
increased in the total MS group, whereas the average 
path-length and modularity were significantly decreased 
(Table 3). Comparison of HC with RRMS showed similar 
significant differences for all parameters. The PMS group 
only significantly differed from HC for the parameters 
average degree, average strength, transitivity, path-length 
and modularity. For all network parameters, the scores 
of the PMS group deviated less from HC than those of 
the RRMS group. No statistically significant differences 
between the RRMS and PMS group were found for any of 
the parameters.

Nodal network topology with and without lesion filling
Regional values for nodal network topology are presented 
in Additional file  1: Table  S1–S6. For a better overview, 
FDR corrected significant nodes (q = 0.05) were compiled 
together based on their anatomical location (Table  4). 
When assessing network parameters derived from origi-
nal MRI data at the level of individual nodes, the degree 
was statistically significant decreased in frontal lobe of 
PMS compared to HC, and increased in posterior fossa 
of PMS compared to HC (Additional file 1: Table S1). No 
significant differences between groups were observed 
for any other parameter after false-discovery rate (FDR) 
correction. In contrast, network analysis of lesion-filled 
T1w images showed statistically significant differences 
between groups for many regional network topologies, 
even after FDR correction (Table 4 and Additional file 1: 
Table S2–S6).

The nodal degree was increased in all brain areas in 
all MS groups, when compared to HC. Nodal strength, 
global efficiency, and cluster coefficient in posterior fossa 
were higher in the total MS and RRMS groups than in 
HC, but was not affected in PMS. In all MS groups, path 
length in the temporal lobe, parietal lobe, occipital lobe, 
and posterior fossa was lower than in HC. In the total MS 

Table 2  Study population characteristics. Age, education, disease duration, EDSS, amount of lesions, lesion volume are presented as 
mean (± SD)

Significant differences between RRMS and PMS patients are indicated with an asterisk. *p < 0.001

HC MS total RRMS PMS

Number of participants 19 49 30 19

Gender (%male) 21.1 34.7 29.0 42.1

Age (years) 41.3 (± 12.8) 41.0 (± 10.5) 35.7 (± 7.6)* 49.3 (± 8.9)*
Education (years) 13.9 (± 3.8) 13.1 (± 3.9) 13.7 (± 3.5) 12.3 (± 4.4)

Disease duration (years) 0 10.3 (± 6.3) 9.3 (± 5.9) 11.8 (± 6.8)

EDSS 0 (± 0) 4.1 (± 2.1) 2.7 (± 1.4)* 6.3 (± 0.8)*
Number of lesions 1.9 (± 2.7) 15.7 (± 8.5) 16.3 (± 9.3) 14.7 (± 7.3)

Total lesion volume (ml) 0.3 (± 0.8) 23.9 (± 8.5) 15.3 (± 18.7) 25.5 (± 29.9)



Page 6 of 13van der Weijden et al. Insights into Imaging           (2022) 13:63 

and RRMS groups, path length was also decreased in the 
frontal lobe and in the insula and cingulate gyri.

Assessing the regions more in detail (Additional file 1: 
Table S2–S6), most network parameters were affected in 
the right Heschl gyrus, cerebellum crus 2, and right cer-
ebellum part 7b in all MS groups, whereas nodal degree, 
nodal strength, path length, and clustering coefficient 
were also affected in right superior occipital gyrus, and 
left and right middle temporal gyrus.

Nodal degree in the left supplementary motor area 
was only significantly decreased in PMS patients (108) 
compared to HC (112), but not in RRMS patients (115). 

Furthermore, both the nodal degree and path length 
in the left calcarine fissure (CAL.L), left dorsolateral 
cingulate gyrus (DCG.L), and right paracentral lob-
ule (PCL.R) were only significantly affected in RRMS 
(CAL.L: 115; 1.36, DCG.L: 115; 1.45, PCL.R: 115; 1.55, 
respectively) but not in PMS patients (CAL.L: 115; 
1.69, DCG.L: 113; 2.10, PCL.R: 110; 2.40, respectively) 
compared to HC (CAL.L: 112; 2.53, DCG.L: 110; 2.57, 
PCL.R: 105; 2.96, respectively). The nodal degree of 
the right putamen was only affected in RRMS patients 
(115) compared to HC (97), and not in PMS patients 
(100).

Table 3  Differences in global graph theoretical network parameters between groups. The corresponding 95% confidence intervals 
(CI) are presented between brackets

Differences relative to the healthy controls are statistically significant when the differences fall outside the 95% CI. Significant differences are indicated with an asterisk 
*. No statistically significant differences were observed between the RRMS and PMS group

Network parameter MRI HC versus MS total HC versus RRMS HC versus PMS RRMS versus PMS

Average degree Original T1w 3.17
(− 1.35–7.37)

3.93
(− 2.68–7.60)

0.29
(− 4.50–4.61)

− 3.64
(− 6.50–3.59)

Lesion-filled T1w 5.16
(− 0.01–2.31)*

5.17
(− 0.38–2.68)*

4.48
(− 1.93–1.80)*

− 0.69
(− 2.07–0.29)

Average strength Original T1w 17.0
(− 17.2–21.4)

16.0
(− 21.0–23.1)

14.5
(− 21.5–21.8)

− 1.5
(− 23.0–19.9)

Lesion-filled T1w 27.9
(− 15.0–20.0)*

30.1
(− 20.4–23.4)*

19.0
(− 18.1–18.5)*

− 11.1
(− 20.3–17.7)

Average path length Original T1w − 0.46
(− 0.66–0.53)

− 0.46
(− 0.75–0.67)

− 0.40
(− 0.64–0.60)

0.06
(− 0.63–0.64)

Lesion-filled T1w − 0.86
(− 0.57–0.34)*

− 0.92
(− 0.63–0.54)*

− 0.60
(− 0.49–0.46)*

0.32
(− 0.48–0.55)

Global efficiency Original T1w 0.11
(− 0.14–0.14)

0.10
(− 0.16–0.15)

0.10
(− 0.16–0.16)

0.00
(− 0.15–0.17)

Lesion-filled T1w 0.20
(− 0.12–0.15)*

0.22
(− 0.17–0.18)*

0.13
(− 0.14–0.14)

− 0.08
(− 0.15–0.14)

Local efficiency Original T1w 1.26
(− 1.91–1.78)

1.16
(− 1.91–1.72)

1.22
(− 1.93–2.00)

0.06
(− 1.66–2.01)

Lesion-filled T1w 2.33
(− 1.68–2.01)*

2.60
(− 2.29–2.26)*

1.50
(− 1.91–2.14)

− 1.10
(− 2.15–2.00)

Clustering Original T1w 0.17
(− 0.14–0.19)

0.15
(− 0.18–0.20)

0.14
(− 0.20–0.19)

− 0.01
(− 0.19–0.17)

Lesion-filled T1w 0.26
(− 0.12–0.19)*

0.28
(− 0.19–0.21)*

0.17
(− 0.17–0.17)

− 0.11
(− 0.20–0.15)

Transitivity Original T1w 0.25
(− 0.22–0.30)

0.22
(− 0.27–0.29)

0.22
(− 0.28–0.30)

0.00
(− 0.31–0.26)

Lesion-filled T1w 0.39
(− 0.19–0.27)*

0.42
(− 0.26–0.34)*

0.26
(− 0.24–0.26)

− 0.16
(− 0.30–0.22)

Modularity Original T1w − 0.061
(− 0.060–0.014)*

− 0.055
(− 0.054–0.030)*

− 0.045
(− 0.040–0.038)*

0.010
(− 0.029–0.054)

Lesion-filled T1w − 0.071
(− 0.044–0.011)*

− 0.069
(− 0.050–0.028)*

− 0.054
(− 0.026–0.027)*

0.015
(− 0.017–0.039)

Assortativity Original T1w 0.047
(− 0.024–0.031)*

0.028
(− 0.022–0.025)*

0.034
(− 0.027–0.026)*

0.007
(− 0.051–0.048)

Lesion-filled T1w 0.024
(− 0.001–0.023)*

0.025
(− 0.008–0.024)*

0.014
(− 0.019–0.019)

− 0.012
(− 0.018–0.008)

Small-worldness Original T1w 0.010 (− 0.027–0.064) 0.019 (− 0.038–0.064) − 0.011 (− 0.048–0.051) − 0.030 (− 0.060–0.053)

Lesion-filled T1w 0.065 (− 0.011–0.056)* 0.069 (− 0.028–0.054)* 0.034 (− 0.039–0.041) − 0.035 (− 0.053–0.027)
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Discussion
MS is a very heterogeneous disease with pathogenesis 
and symptomatology varying per individual. However, 
similarities among symptoms and disability are found, 
suggesting the presence of a common pathway in the 
pathogenesis. Therefore, this study aimed to find regions 
that are affected in MS, which might indicate the region’s 
importance in MS pathogenesis. In addition, we investi-
gated whether regions are differentially affected between 
MS phenotypes and, most importantly, what the effect 

of lesion filling is on the calculation of graph theoretical 
network parameters derived from structural T1w MRI 
images. Although lesion-filling introduced substantial 
artefacts for some lesions, it has significantly reduced the 
heterogeneity between MS patients, enabling detection 
of more differences in network parameters in a relatively 
small dataset. In general, the difference in global net-
work parameters between the RRMS and HC group was 
larger than between the PMS and HC group, but no sig-
nificant differences between the RRMS and PMS group 
were observed. Both in PMS and RRMS, all investigated 
network parameters were affected on nodular level in the 
right Heschl gyrus, cerebellum crus 2, and cerebellum 
part 7b. This indicates the importance of these regions in 
MS pathogenesis.

Graph theoretical network analysis on original T1w 
MRI data detected only a few differences between groups 
on a global level. The only global effects observed were 
a reduced modularity and a higher assortativity in MS 
patients, when compared to HC. Nodes with a high 
degree tend to be connected to nodes with a low degree, 
which results in a low assortativity [14, 25]. The increased 
assortativity in MS patients therefore suggests a more 
random network, which is supported by the decreased 
modularity. On nodal level, a decrease in degree of the 
precentral gyrus is observed and an increase in degree of 
the left cerebellum part 6 and vermis part 6. As a higher 

Fig. 2  Group differences of T1w MRI data without lesion filling in 
the global graph theoretical network parameters modularity and 
assortativity. Comparisons were made for HC versus MS total, HC 
versus RRMS, HC versus PMS, and RRMS versus PMS. Significant 
differences are indicated with an asterisk *

Fig. 3  The effects of lesion filling on T1w MRI illustrating artefacts due to lesion filling. Red arrows depict the locations of the lesions; blue circles 
depict lesion filling artefacts. The upper row shows some substantial artefacts due to lesion filling, composed of grey matter tissue allocation in the 
middle of white matter regions, the lower row shows a minor artefact, having blunt white matter edges
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degree indicates that the node is better connected, this 
seems contradictory to other literature that found that 
cerebellar dysfunction is common in MS [26]. However, 
functional reorganization to maintain high efficiency is 
a common phenomenon, which could lead to the gen-
eration of more connections in specific brain regions. 
The absence of significant differences for other network 
parameters in this study is likely due to the heterogeneity 
among MS patients, which can be caused by the random 
distribution of MS lesions or diffuse brain pathology. This 
implies that pathogenic effects are only observed when 
they are severe enough.

To compensate for the heterogeneity among MS 
patients and enhancing data-analysis sensitivity, lesion 
filling is often performed. Studies indicated that apply-
ing such a method enhances the reproducibility and 
reliability of GM and WM volume estimates [27–29]. 
This led to application of lesion filling for T1w struc-
tural graph theoretical network analysis in several stud-
ies. Due to the dark colour of the hypo intensity of MS 
lesions on T1w MRI, however, lesion intensities can be 
similar to GM, and therefore result in erroneous tissue 
segmentations. Since pathological changes represented 
by the lesions are omitted and a thorough evaluation of 
the effect of lesion filling has not yet been performed, 

the interpretability of the network analysis results after 
lesion-filling remains a matter of debate. Especially 
in graph theoretical network analysis, small changes 
in node intensity can have a substantial impact. For 
instance, if an affected hub is near a juxtacortical 
lesion, lesion filling might falsely insert extra GM vox-
els when “restoring” the structure, which might lead 
to erroneous results (see Figs. 3 and 4). In the current 
study, we also found a large number of artefacts aris-
ing from inaccurate lesion filling, especially in patients 
with a high number of lesions in the brain. The effects 
of minor artefacts, however, should be minimal, as they 
are considered to have no or negligible effects on tissue 
segmentation, and hence should hardly affect the cal-
culation of the network parameters, if at all. However, 
for the substantial artefacts, the tissue segmentation 
is affected to some extent, but the effect on calcula-
tion of the network parameters might be limited as 
the lesions occur at random locations and as such the 
artefacts caused by lesion filling as well. The artefacts 
would therefore only cause false negative results, and 
thus result in less significant findings. Therefore, stud-
ies applying lesion filling should carefully assess the 
lesion-filled images for artefacts, especially for datasets 
containing a high number of brain lesions. A possible 

Fig. 4  GM segmentation of both original T1w and lesion-filled T1w MRI
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Fig. 5  Group differences using lesion filled T1w data in global graph theoretical network parameters of structural connectomes. Comparisons that 
have been made were HC versus MS total, HC versus RRMS, HC versus PMS, and RRMS versus PMS. Significant differences are indicated with an 
asterisk *
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solution to optimize the accuracy of lesion-filling could 
be to include only WM voxels for lesion-filling of juxta-
cortical WM lesions.

Despite the imperfection of the lesion filling method, 
the 95% CIs of the network parameters derived from the 
lesion-filled T1w-based data were smaller than those 
derived from the original T1w-based data. Consequently, 
a considerable increase in discriminative power was 
obtained when lesion filling was applied. The hetero-
geneity in MS results in a high variation in the number 
of lesions, the size of lesions, and the location of lesions 
between patients. The applied graph theoretical method 

calculates the network parameters group-wise, so it is 
expected that a high degree of heterogeneity among sub-
jects would affect the robustness of these calculations. 
This might also explain the large increase in the number 
of significant findings when lesion filling was applied, and 
thus enables detection of subtle differences with small 
datasets.

Among the network parameters derived from the origi-
nal T1w MRI, differences were primarily detected on 
a global level. However, the original T1w MRI dataset 
generated multiple nodular parameters that were signifi-
cantly different between groups (uncorrected) in several 

Table 4  Compilation of regional differences in network topology derived from lesion-filled T1w MRI images. The results for the 
comparisons of the different MS groups with healthy controls are provided. The comparison RRMS versus PMS did not yield any 
significant results

*n.s. = not significant, ↑ is significantly increased compared to HC, ↓ is significantly decreased compared to HC

MS group Frontal lobe Temporal lobe Parietal lobe Occipital lobe Central 
structures

Cingulate gyri Posterior fossa

Path length

 MS total ↓ ↓ ↓ ↓ n.s ↓ ↓
 RRMS ↓ ↓ ↓ ↓ n.s ↓ ↓
 PMS n.s ↓ ↓ ↓ n.s n.s ↓

Degree

 MS total ↑ ↑ ↑ ↑ ↑ ↑ ↑
 RRMS ↑ ↑ ↑ ↑ ↑ ↑ ↑
 PMS ↑ ↑ ↑ ↑ ↑ ↑ ↑

Strength

 MS total ↑ ↑ ↑ ↑ n.s ↑ ↑
 RRMS ↑ ↑ n.s n.s n.s n.s ↑
 PMS n.s n.s n.s n.s n.s n.s n.s

Global efficiency

 MS total n.s n.s n.s n.s n.s n.s ↑
 RRMS n.s n.s n.s n.s n.s n.s ↑
 PMS n.s n.s n.s n.s n.s n.s n.s

Local efficiency

 MS total n.s n.s n.s n.s n.s n.s n.s

 RRMS n.s n.s n.s n.s n.s n.s n.s

 PMS n.s n.s n.s n.s n.s n.s n.s

Clustering

 MS total ↑ ↑ ↑ ↑ n.s ↑ ↑
 RRMS n.s n.s n.s n.s n.s n.s ↑
 PMS n.s n.s n.s n.s n.s n.s n.s

Within module degree z-score

 MS total n.s n.s n.s n.s n.s n.s n.s

 RRMS n.s n.s n.s n.s n.s n.s n.s

 PMS n.s n.s n.s n.s n.s n.s n.s

Participation

 MS total n.s n.s n.s n.s n.s n.s n.s

 RRMS n.s n.s n.s n.s n.s n.s n.s

 PMS n.s n.s n.s n.s n.s n.s n.s
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affected regions, but these effects did not survive FDR 
correction. In contrast, lesion filled T1w-based param-
eters showed significant differences on both a global and 
nodal level. This suggests that the results from lesion-
filled MRI are not the result of the artefact introduced by 
the lesion filling method, since the differences are already 
present in the original data. Therefore, it seems likely 
that the variance in the original dataset was too high to 
reach statistical significance. By reducing the variance, 
lesion filling increases the statistical power. So, an alter-
native way to overcome the group heterogeneity could be 
by using large sample sizes without lesion filling.

Using the lesion-filled T1w dataset, we found an 
increase in global and local efficiency and a decrease in 
modularity in MS patients, as compared to HC. This is in 
agreement with findings of Fleischer (2017), and Kocevar 
(2016) [12, 14], and might suggest functional reorganiza-
tion to maintain high cerebral efficiency. However, our 
findings of an increase in global and local efficiency and 
a decrease in modularity are in contrast to the results of 
other studies that found a decrease in global and local 
efficiency (He 2009, Shu 2011, Shu 2016, and Llufriu 
2017) [8–10, 15]. Our study set-up is most similar to that 
of Kocevar, assessing different MS types with T1w MRI, 
whereas He and co-workers did not use healthy controls 
and investigated only RRMS with T1w MRI. The studies 
by Shu (2011), Shu (2016), and Llufriu used DTI to inves-
tigate RRMS, CIS, and the total MS population, respec-
tively. The discrepancy between these studies illustrates 
the difficulties of comparing the graph theoretical net-
work parameters derived from different structural net-
works, like WM connectivity assessed with DTI, and GM 
connectivity assessed with T1w.

Furthermore, our study shows that network param-
eters of RRMS patients in general deviate more from 
HC than those of PMS patients. This observation seems 
to be in agreement with the studies of Schoonheim 
and colleagues [30–32]. According to their hypothesis, 
functional reorganisation of the cerebral network takes 
place in MS patients as compensatory mechanism for 
structural damage, which is in agreement with our find-
ing that a higher efficiency is found in RRMS patients 
than in HC. As a consequence, the network efficiency 
remains high enough for maintaining cognitive perfor-
mances. However, there is a threshold for the functional 
reorganization capacity of the brain. When this thresh-
old is reached, the brain is not able to fully compensate 
for the structural damage anymore, as suggested by 
the decreased efficiency observed in PMS compared to 
RRMS patients in this study. This is also supported by 
studies assessing axonal density in lesions that found 
a lower number of axons in progressive forms of MS 
compared to RRMS [33–35]. Thus, our results are in 

line with the findings of Fleischer, and Kocevar, and are 
supporting the Schoonheim hypothesis [12, 14, 30].

Future studies should thoroughly evaluate the accu-
racy of current lesion filling methods and evaluate the 
generation of artefacts on both T1w scans  and tissue 
segmentations. Such a study would be able to deter-
mine the most optimal lesion filling method and indi-
cate whether there is a need for further development of 
lesion filling methods. Until such a study is performed, 
no firm conclusions can be drawn regarding the opti-
mal application of lesion filling. Nonetheless, our study 
clearly illustrates the positive effects lesion filling can 
have on the calculation of network parameters, despite 
the considerable number of artefacts generated, high-
lighting the need for cautious considerations before 
applying lesion filling.

In conclusion, we found that the application of lesion 
filling has reduced the variability and increased the sen-
sitivity of the structural T1w network analysis. Although 
lesion filling is not perfect, we assume that application 
of lesion filling is especially important for studies with 
smaller sample sizes. In this study with a relatively small 
sample size, lesion filling indeed enabled graph theoreti-
cal network analysis to demonstrate that networks asso-
ciated with cerebellum crus 2, cerebellum part 7b, and 
Heschl’s gyrus are affected in all types of MS patients, 
and that networks involving the supplementary motor 
area are only significantly affected in PMS patients.
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