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CRITICAL REVIEW

Multimodal molecular imaging 
evaluation for early diagnosis and prognosis 
of cholangiocarcinoma
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Abstract 

Cholangiocarcinoma (CCA) is an aggressive and lethal malignancy with limited therapeutic options. Despite recent 
advances in diagnostic imaging for CCA, the early diagnosis of CCA and evaluation of tumor invasion into the bile 
duct and its surrounding tissues remain challenging. Most patients with CCA are diagnosed at an advanced stage, at 
which treatment options are limited. Molecular imaging is a promising diagnostic method for noninvasive imaging of 
biological events at the cellular and molecular level in vivo. Molecular imaging plays a key role in the early diagnosis, 
staging, and treatment-related evaluation and management of cancer. This review will describe different methods for 
molecular imaging of CCA, including nuclear medicine, magnetic resonance imaging, optical imaging, and multi-
modal imaging. The main challenges and future directions in this field are also discussed.
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Key points

•	 Molecular imaging has higher sensitivity and speci-
ficity than conventional imaging for the diagnosis of 
cholangiocarcinoma.

•	 Different molecular imaging methods have specific 
advantages for cholangiocarcinoma diagnosis.

•	 Molecular imaging has great potential for finding 
targets, probe synthesis, and clinical applications in 
cholangiocarcinoma.

Introduction
Cholangiocarcinoma (CCA) is a primary malignant 
tumor that occurs in intrahepatic and extrahepatic 
bile duct epithelial cells with high invasiveness and 

heterogeneity [1, 2]. In > 90% of cases, the histological 
type of CCA is sclerosing adenocarcinoma [3]. Accord-
ing to the anatomical location of the tumor, CCA can be 
divided into intrahepatic cholangiocarcinoma (ICCA), 
perihilar cholangiocarcinoma (PCCA), and distal chol-
angiocarcinoma (DCCA) [4–6]. The incidence of CCA is 
the highest in Asia, with more than 80 cases per 100,000 
population [7]. Surgery is the most effective treatment 
for CCA. However, because the clinical symptoms of 
CCA are nonspecific and early diagnosis is difficult, most 
patients present in the terminal stage of cancer. Thus, 
CCA patients typically resort to palliative care and the 
overall 5-year survival rate of is < 10% [4, 8–11]. There-
fore, it is essential to explore more effective diagnostic 
methods.

CCA is diagnosed via a combination of clinical symp-
toms, imaging manifestations, biochemical features, and 
histological examinations, and imaging plays a crucial 
role. US is the first and more common choice for screen-
ing CCA because it is inexpensive and simple to perform. 
However, US is difficult to assess the range of tumor 
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invasive and is not efficient for detecting small invasive 
CCAs. Moreover, the accuracy of US varies according 
to tumor type, equipment quality, and operator expe-
rience [12, 13]. CT and MRI can characterize the mass 
and evaluate bile duct dilatation, vascular infiltration, and 
lymph node invasion to some extent. CT is considered 
the standard imaging modality for detecting CCA fea-
tures and for staging. MRI is superior to CT for diagnosis 
and staging, and is comprises specific sequences such as 
diffusion-weighted imaging and MRCP. However, it lacks 
accuracy for the evaluation of tumor invasion along the 
bile duct. PET scan imaging is used to assess and evalu-
ate distant metastasis. In contrast to CT morphological 
imaging, DWI and PET improve the diagnostic sensitiv-
ity and provide additional tumor information, including 
predicting the risk of tumor recurrence and prognosis 
[14–18]. However, mucinous CCAs can lead to false-neg-
ative results when using PET scanning. PTC and ERCP 
play a critical role in the management of PCCA. These 
techniques not only detect malignant biliary strictures, 
but can also be used to collect biliary brush samples for 
cytological and genetic evaluation. However, their appli-
cation is limited by complications such as pancreatitis 
and bleeding caused by the invasive procedure [4, 19, 20]. 
In addition, the performance of imaging examinations 
varies according to the type of CCA. For ICCA, US is 
not accurate for differentiating it from HCC, especially in 
patients with cirrhosis. CT, MRI, and PET are relatively 
accurate for the diagnosis of ICCA. It has been reported 
that the sensitivity and specificity of PET for ICCA is 93% 
and 80%, respectively [21]. For PCCA and DCCA, the 
accuracy of US is 80–95% in DCCA patients, whereas 
PCCA is more difficult to identify [22, 23]. The sensitiv-
ity and specificity of MRI/MRCP for detecting PCCA are 
88–89% and 75–85%, respectively, and CT are 75–79% 
and 79–80%, respectively [24, 25]. When PET is used to 
diagnose ECCA, the sensitivity and specificity are low at 
55% and 33%, respectively [21].

Molecular imaging is an emerging discipline at the 
intersection of molecular biology and traditional medi-
cal imaging. It uses imaging methods to display specific 
molecules at the tissue, cellular, and subcellular levels. It 
can assess the changes at the molecular level in vivo, and 
perform qualitative and quantitative imaging studies on 
the biological behaviors of molecules. Molecular imaging 
provides a noninvasive, timely, and cost-effective method 
to study the fundamental behavior of organisms, thereby 
improving our understanding of diseases [26, 27]. Com-
pared with traditional imaging techniques, molecular 
imaging can detect the specific histopathological changes 
at the cellular and molecular levels before the morpho-
logical changes of the disease take place [26]. This tech-
nology has the advantage of finding smaller lesions while 

simultaneously providing a basis for differential diagnosis 
and curative effect evaluation. This allows a more accu-
rate diagnosis of the disease. Molecular imaging methods 
used in clinical and preclinical research in CCA include 
nuclear medicine imaging (PET and SPECT), MRI, opti-
cal imaging, and multimodal imaging. In the near future, 
it is expected that molecular imaging techniques will be 
used to study the pathogenesis of CCA in more detail to 
identify the key components of the onset stage, thereby 
providing an early and definitive diagnosis of CCA. In 
addition, it may help predict which high risk patients 
will develop the disease and provide information for the 
design of effective targeted therapy for any patient popu-
lation. This article reviews clinical and preclinical stud-
ies on the application of different molecular imaging 
modalities in CCA over the past two decades. The aim of 
this study was to describe and discuss the role and char-
acteristics of different molecular imaging methods for 
CCA diagnosis and research. It is expected to improve 
the accuracy of early diagnosis of CCA, establish the best 
treatment strategies, and ameliorate the quality of life 
and prognosis of patients.

Nuclear medicine imaging
Nuclear medicine imaging is an imaging technology that 
shows physiological and pathological activity by detect-
ing the metabolic processes of tracers with radionuclide. 
PET/CT is one of the earliest functional metabolic imag-
ing methods used in the clinic. It has certain advantages 
for tumor diagnosis, differential diagnosis, and tumor 
monitoring. PET/CT tracers are synthesized by covalent 
connections of isotopes [28]. The tracer that has been 
used clinically and is the most commonly applied PET/
CT tracer is fluorine-18 fluorodeoxyglucose(18F-FDG), a 
glucose analog that can be selectively absorbed by cells 
characterized by high glucose metabolism. In addition, 
there are some PET/CT tracers used in preclinical stud-
ies, such as those targeting COX-2, VEGF and CXCR4.

Several research groups have demonstrated that the 
sensitivity of 18F-FDG-PET in primary CCA is 90% or 
higher [29–31]. A retrospective study of 54 patients 
showed that the sensitivity, specificity, and accuracy 
of PET scanning for the diagnosis of CCA were 92.3%, 
92.9%, and 92.6%, respectively [29]. Moon et  al. ana-
lyzed 54 patients in a retrospective study and showed 
that the sensitivity and specificity of 18F-FDG-PET 
in the diagnosis of primary CCA is 89.1% and 87.5%, 
respectively [30]. Glucose uptake is related to the pri-
mary tumor location, size, and histopathological dif-
ferentiation of CCA [30]. Multiple studies indicate that 
the sensitivity of 18F-FDG-PET is higher in intrahepatic 
CCA than in perihilar and extrahepatic lesions. A ret-
rospective study of 62 patients performed by Corvera 
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et  al. showed that the sensitivity and specificity of 
18F-FDG-PET differs significantly between suspected 
intrahepatic CCA (95% and 100%) and extrahepatic 
CCA (69.2% and 66.7%) [31]. The results of 18F-FDG-
PET in the diagnosis of CCA are also related to the 
growth mode of the tumor. A study of 36 patients per-
formed by Anderson et  al. showed that the detection 
rate of nodular tumors is higher than that of invasive 
tumors, and the sensitivity for nodular morphology is 
85%, whereas that for invasive morphology is 18% [32].

Furthermore, the resectability of CCA is dependent on 
its local and distant spread. Li et al. used 18F-FDG-PET/
CT to evaluate CCA prior to surgery. In that study, the 
operative and pathological results of 17 patients were 
reviewed for lymph node and distant metastasis (Fig. 1). 
The results showed that the sensitivity for the primary 
tumor was 58.8%, the sensitivity for lymph node and dis-
tant metastasis was 41.7–64.7% and 41.7–55.6%, respec-
tively, and the specificity was 80–86.7% and 87.5–95%, 
respectively [33]. Another study indicated that the sen-
sitivity of PET in detecting distant metastasis was only 
65%; however, other lesions that were not detected by 
conventional imaging could be seen on PET, and their 
findings led to a change of treatment in 30% of patients 
with CCA [32]. Therefore, 18F-FDG-PET/CT can provide 
additional staging information for the preoperative diag-
nosis of lymph node and distant metastasis, which is a 
supplement to conventional CT scan.

Local cholangitis and pericholangitis are related to 
the conversion of the biliary epithelium from atypical 
hyperplasia to malignant tumors [34]. Cyclooxygenase-2 
(COX-2) plays a key role in this inflammatory cascade 
because it can catalyze the transformation of arachidonic 
acid to prostaglandins [35], which are inflammatory 
lipids that lead to local inflammation. Some human CCA 
cell lines express high levels of inducible COX-2 enzymes 
during inflammation [36]; therefore, COX-2 is considered 
a reasonable target for CCA. Chi-Wei et al. developed a 
PET imaging agent that could specifically target COX-2, 
ortho-[18F]F-celecoxib, which is synthesized by the addi-
tion of the radioactive atom 18F to the non-steroidal anti-
inflammatory drug celecoxib (Fig.  2A). An investigation 
of ortho-[18F]F-celecoxib in rat CCA (Fig. 2B, C) showed 
that the amount of ortho-[18F]F-celecoxib uptake in CCA 

Fig. 1  Three patients with perihilar cholangiocarcinoma. Reproduced 
from Li et al. [33]. A The hilar tumors on the CT scan also showed 
an increase in glucose metabolism on the PET scan. B CT analysis 
revealed that a lymph node along the head of the pancreas was 
enlarged. PET analysis showed that this region had high glucose 
metabolism. C CT analysis revealed a small nodule near the right 
abdominal wall with no obvious malignant features. However, PET/CT 
analysis showed that the nodule was a peritoneal metastasis, which 
was further verified by histopathology after surgical excision

Fig. 2  A Structure of ortho-[18F]F-celecoxib. B PET image for ortho-[18F]F-celecoxib was collected by scanning after caudal vein injection. Red arrow 
indicates the area for the liver of CCA rats (left) and normal rats (right), respectively. Reproduced from Chi-Wei et al. [35]
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cells was significantly higher than that in normal cells. 
The ratio of tumor cells to normal cells was 1.38 ± 0.23, 
and the intake dose was 1.14 ± 0.25 (%ID/g) [35].

Huang et  al. studied the effect of the SPECT reagent 
[123I]iodooctyl fenbufen amide ([123I]IOFA) on CCA 
in a similar way. The results showed that a lower level 
and homogeneous pattern of [123I]IOFA uptake were 
observed in the liver of normal rats. However, in the liver 
of rats with CCA, higher [123I]IOFA radioactivity absorp-
tion and heterogeneous patterns were regarded as hot 
spots of tumor lesions. An increase in COX-2 expres-
sion was detected by immunostaining in the bile ducts of 
CCA rats, but not in normal rats. Thus, the SPECT rea-
gent [123I]IOFA has imaging potential for CCA with over-
expression of COX-2 (Fig. 3) [37].

The inflammatory and stromal cells recruited by tumor 
cells release growth factors and chemokines, which 

stimulate the proliferation of tumor microvascular 
endothelial cells, thereby promoting tumor growth [38]. 
Vascular endothelial growth factor (VEGF) is a pleio-
tropic cytokine that binds to the extracellular domains of 
many different receptor kinases and participates in anti-
apoptotic pathways, mitosis, and cell chemotaxis [36, 39]. 
Therefore, VEGF is the established target for anti-angio-
genesis intervention. In recent years, receptor blocking 
antibodies and small molecule receptor kinase inhibitors 
has been developed as potential anti-angiogenic drugs. 
These molecules can attenuate VEGF-mediated signals, 
resulting in strong anti-proliferation and anti-angiogenic 
effects [6, 40]. CCA tumor cells also express high levels 
of VEGF, which leads to the production of a rich vascu-
lar bed. Li et al. labeled VEGF165 with 123I, and then used 
SPECT to image a variety of tumors, including CCA. 
In this study, four lesions from two CCA patients were 

Fig. 3  A Structure of radioiodine-labeled [123I]IOFA. B SPECT/CT images of CCA rats after injection of [123I]IOFA for 30–60 min.T: tumor, Lv: liver, H: 
heart. Reproduced from Huang et al. [37]
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included in the experimental observation. In the [123I]
VEGF165 scan, three lesions showed increased uptake of 
imaging agent, and the detection rate of lesions was 75%. 
In this study, CT/MRI were superior to [123I]VEGF165 in 
displaying CCA, although [123I]VEGF165 may be a useful 
tool for visualizing CCA angiogenesis. Because the [123I]
VEGF165 scan shows a cold spot in benign lesions, it is 
also helpful for the differential diagnosis of benign and 
malignant lesions and their activity.

C-X-C motif chemokine receptor 4 (CXCR4) is highly 
expressed in more than 20 different types of tumors and 
plays an important role in tumor development, invasion, 
and metastasis, as well as cell-microenvironment interac-
tion [41, 42]. A radiolabeled CXCR4 ligand, [68 Ga]Pen-
tixafor, has high sensitivity and contrast in displaying the 
presence of receptors in vivo [43, 44]. PET imaging using 
[68 Ga]Pentixafor has been used in a variety of malignant 
tumors and inflammatory diseases [45, 46]. Werner et al. 
performed [68 Ga]Pentixafor PET/CT examinations on 19 
newly diagnosed and untreated CCA patients along with 
other tumor groups, such as hepatocellular carcinoma 
(HCC), and found that the uptake level of radioactive 
tracer in CCA patients was the highest [47]. This result 
indicated the potential usefulness of CXCR4 as a target 
for CCA molecular imaging (Fig. 4) [47].

MR imaging
Despite substantial research on traditional MRI and 
MRCP examination of CCA, there are few reports on 
MR molecular imaging of CCA. MR technology has sig-
nificant advantages over other molecular imaging tech-
niques, such as extremely fine spatial resolution, superior 
soft-tissue resolution, and no radiation. MR provides 

information regarding the change of tumor volume and 
the anatomical structure of the surrounding tissue while 
using the correlation between the increase in apparent 
diffusion coefficient (ADC) and tumor necrosis to quan-
titatively distinguish necrosis and tumor residue after 
treatment [48]. This makes MR an effective index to eval-
uate the efficacy of tumor treatments.

Compared with traditional gadolinium-based extracel-
lular contrast agents, tissue-specific MR contrast agents 
targeting hepatobiliary or reticuloendothelial systems 
can increase the contrast between focus and liver, as well 
as the significance of focus on T1WI or T2/T2*WI after 
contrast. GD-EOB-DTPA is a gadolinium-based MR 
hepatobiliary-specific contrast agent. EOB-DTPA mag-
netic resonance cholangiography has high accuracy for 
the differential diagnosis of different subtypes of CCA 
[49]. A recent meta-analysis [50] showed that the sen-
sitivity, specificity, and AUC of MRI extracellular con-
trast agents were 94%, 71%, and 0.92, respectively. This 
is comparable to the corresponding values for CT in 
evaluating the resectability of PCCA, although the use of 
EOB-DTPA improved the sensitivity and specificity. In 
addition, hepatobiliary contrast agent may not be suit-
able for CCA patients with cholestatic jaundice. Because 
cholestasis will decrease the uptake of contrast agent by 
hepatocytes, leading to an attenuation of degree of con-
trast [51]. In general, MRI combined with EOB-DTPA 
can accurately assess tumor scope, biliary tree, and vas-
cular and adjacent structure involvement, in addition to 
facilitating differential diagnosis and providing prognos-
tic information.

Superparamagnetic iron oxide (SPIO) consists of mag-
netic iron particles that can be specifically taken up by 

Fig. 4  Results of immunohistochemical (IHC) and noninvasive CXCR4 cross-sectional PET, CT, and PET/CT fusion images in patients with 
cholangiocarcinoma and hepatocellular carcinoma (HCC). Cholangiocarcinoma showed high expression of CXCR4, while hepatocellular carcinoma 
showed no expression of CXCR4 on PET imaging. Reproduced from Werner et al. [47]
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reticular endothelial cells. SPIO can magnify the nuclear 
magnetic resonance signal and improve the imaging sen-
sitivity [52]. Few studies on SPIO for CCA have been 
reported, and the number of cases of CCA is rare in the 
known. Jin et al. conducted a comparative study of SPIO 
and mangafodipir for various liver diseases including 
three patients with CCA, and the results showed that 
the detection rate of SPIO for CCA was 100% [53]. In 
another study by Simone et al., a patient with CCA was 
successfully identified by blind evaluation using SPIO 
[54]. Polakova et  al. indicated that oral SPIO negative 
contrast agent administered before MRCP improved the 
display rate of the extrahepatic bile duct, especially for 
patients with ascites [55].

SPIO has good surface activity, which allows it to inter-
act with a variety of active substances to achieve active 
targeting [56]. A series of MR-specific probes were 
developed to improve SPIO targeting with good results. 
For example, Reichardt et al. confirmed that when small 
VEGF receptor tyrosine kinase inhibitors were combined 
with SPIO nanoparticles, the newly synthesized complex 
could be used to monitor the early response of adenocar-
cinoma to anti-angiogenic therapy through steady-state 
MR imaging [57]. Although some of these studies did 
not focus on CCA, certain aspects were similar. Thus, it 
is reasonable to believe that MR molecular imaging has 
great potential for future research on CCA.

Current MRI molecular imaging of CCA faces many 
challenges. First, part of MR contrast agents may have 
uncertain toxic effects to human body. Finding a contrast 
medium with good imaging effects, and no toxicity is dif-
ficult. Second, it is difficult for MRI to accurately evaluate 

CCA patients after biliary stent implantation. Lastly, 
the reliability of biomarkers of MRI molecular imag-
ing remains uncertain and further research is urgently 
needed (Table 1).

Optical imaging
Optical imaging is gradually becoming a part of mod-
ern clinical medical imaging. Optical molecular imaging 
is based on the detection of optical information passing 
through biological tissues. The introduction of a suitable 
fluorescent probe allows detection of a fluorescence sig-
nal after excitation by a laser source of a specific wave-
length. Alternatively, it can also introduce reporter genes, 
the products of which can fluoresce spontaneously. The 
emitted fluorescence carries tissue biochemical infor-
mation related to absorption and scattering. The pri-
mary methods include bioluminescence imaging (BLI) 
and fluorescent imaging (FLI). BLI uses luciferase to 
label target cells or genes and their products, whereas 
FLI technology depends on cells or gene vectors carry-
ing fluorescent reporter groups [58, 59]. Optical imaging 
has high sensitivity and superior spatial resolution simi-
lar to nuclear medical imaging, and the cost is relatively 
low. In addition, diffuse optical tomography (DOT) and 
fluorescent molecular tomography (FMT) can provide 
3D optical information and have better depth sensitiv-
ity [60]. At present, most of the optical imaging studies 
applied to CCA are in the animal experimental stage, and 
only probe-based confocal laser endomicroscopy (pCLE) 
technology is used in the clinic. The pCLE combines opti-
cal imaging with confocal laser microendoscopy. It can 
be used to evaluate the subepithelial bile duct mucosa 

Table 1  Characterization of traditional imaging techniques for CCA​

US, ultrasound; MRCP, MR cholangiopancreatography; ECCA, extrahepatic cholangiocarcinoma; ERCP, endoscopic retrograde cholangiopancreatography

Technique Advantages Limitations Leading role

US Inexpensive and simple to conduct 1. Difficulty in differential diagnosis
2. Difficult to assess the range of tumor 
invasive

First choice for screening

Enhanced CT 1. The sensitivity, specificity and accuracy in 
the evaluation of primary tumor, vascular 
and distant metastasis are very high
2. High spatial resolution

1. Radiation
2. Difficult to evaluate longitudinal invasion 
along the bile duct

Standard imaging mode for CCA diagnosis 
and staging

MRI/MRCP 1. Comprehensive evaluation of tumor, 
vascular and bile duct
2. No radiation
3. Multi-plane and multi-parameter imaging
4. Extremely high soft tissue resolution
5. Biliary tree visualization (MRCP)

1. Expensive cost
2. Long inspection time
3. Easy to be disturbed by artifacts

1. Differential diagnosis of difficult cases of 
CCA (except enhanced CT)
2. Evaluation of longitudinal invasion of 
ECCA along bile duct

ERCP 1. Evaluate bile duct strictures and intralu-
minal lesions
2. Both Diagnosis and treatment are feasible

1. Invasive complications
2. Difficult to evaluate the bile duct above 
the site of obstruction

Pathological diagnosis and biliary drainage

PET 1. Whole-body imaging
2. Extremely sensitive

May lead false positives and false negatives Determination of distant Metastasis and 
tumor staging
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in  vivo, and the additional microscopic information it 
provides is a promising diagnostic tool [61]. High-qual-
ity cross-sectional images of the epithelium will enable 
the characterization of tumors in  vivo without multiple 
resections and biopsies in the near future [62, 63].

The glucose transporter (GLUT) is a carrier that trans-
ports glucose across the mammalian cell membrane. 
Although the GLUT protein is not expressed in normal or 
benign lesions, it is expressed at high levels in malignant 
tumors [64]. 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) 
amino]-2-deoxy-d-glucose (2-NBDG) is a fluorescent 
tracer that enters living mammalian cells via GLUT in a 
time-, concentration-, and temperature-dependent man-
ner. The fluorescence intensity of cells expressing GLUT 
increases significantly after exposure to 2-NBDG, and 
the cells can be distinguished more clearly [65]. However, 
its application to the diagnosis of cancer in vivo needs to 
be performed with caution because it is toxic to normal 
cells. Whether the fluorescence is emitted from tumor 
cells or non-tumor cells needs to be determined [66]. 
Yokoyama et al. found that 2-NBDLG, an l-glucose fluo-
rescent derivative used as a functional probe for pCLE, 
could effectively reduce the background uptake of nor-
mal biliary tract cells and minimize the potential toxic-
ity, thereby improving the imaging of CCA tumor cells 
(Fig. 5) [62].

FLI, BLI, DOT, and FMT also use the principle of optics 
for imaging. But, photon scattering and the absorption 
still limit the depth at which they can be used. Photoa-
coustic (PA) imaging was developed to solve the problem 
of imaging depth. Because the attenuation of the ultra-
sonic wave is three orders of magnitude smaller than that 
of photons, the imaging depth can be extended by several 
centimeters [60]. In addition, PA imaging has a unique 
property in that signals can be generated through endog-
enous luminescent groups in biological tissues (such as 
hemoglobin, myoglobin, lipids, and melanin). As a result, 
many biological processes in the body can be monitored, 
such as angiogenesis during tumor formation, the devel-
opment of hypoxia in the tumor, and the visualization of 
blood flow in the tissue [67]. Zhang et al. designed a cys-
tine knot peptide probe complex targeting integrin αvβ6 
with high affinity for PA imaging of tumors [67]. Integrin 
αvβ6 is an important cell surface adhesion factor related 
to tumor invasion and metastasis. It is highly expressed 
in various malignant tumor cells, including CCA, but it 
is not expressed in normal adult tissues. Integrin αvβ6 
shows potential for PA imaging of CCA.

Optical molecular imaging technology is an important 
tool for the study of small animal models, which provides 
unique insights into the pathogenesis of diseases, drug 
development, and therapeutic effects. Although optical 
molecular imaging is still in the preclinical cellular and 

small animal research and application stages, the devel-
opment of molecular contrast agents that can be applied 
to patients is expected to expand the clinical applications 
of optical molecular imaging (such as endoscopy, intra-
operative imaging, etc.). Compared with MRI, CT, and 
PET, optical imaging has several advantages such as the 
absence of electromagnetic radiation, high spatial reso-
lution, real-time imaging ability, and large field of view, 
as well as low-cost and mobile imaging instruments. 
Although the lack of penetration depth due to tissue scat-
tering and absorption of light hinders its use in whole-
body imaging, optical molecular imaging provides a safe, 
real-time, non-invasive method for tumor detection and 
intraoperative imaging guidance, and it can depict the 
edge of the tumor and reveal cellular and molecular func-
tional information in cancer. Therefore, the low depth of 
penetration should not hinder the development of optical 
molecular imaging methods.

Multimodal imaging
Single imaging methods are associated with certain limi-
tations. Nuclear medicine has extremely high sensitivity 
but poor spatial resolution, and it is thus not effective for 
locating the exact position of lesions. MR, however, has 
high spatial resolution but relatively poor sensitivity com-
pared with nuclear medicine and optical imaging. Optical 
imaging has good sensitivity and spatial resolution, but 
the imaging depth is limited (Table 2). To overcome the 
limitations of a single imaging method, modern molec-
ular imaging integrates different imaging components 
into one probe. This enables the acquisition of accurate 
anatomical, functional, or metabolic signals at the same 
time. For instance, the complementary combination of 
optical imaging and MRI can be applied to the exami-
nation of many diseases, and both are free of radiation. 
Therefore, research focusing on multimodal imaging has 
become more prominent. PET/MRI, SPECT/MRI, MRI/
UCL (upconversion luminescent), and other dual-mode 
imaging methods have been successfully applied to ani-
mal models in vivo.

National Cancer Care Network (NCCN) guidelines 
recommend CT or MRI for the diagnosis and stag-
ing of CCA. Both contrast-enhanced CT and MR scan 
can identify mass-forming CAA; however, periductal-
infiltrating CCA and primary sclerosing cholangitis are 
difficult to detect by contrast-enhanced CT or MRI. 
FDG-PET is the most accurate method for systemic stag-
ing of CCA, including detection of lymph node stage and 
distant metastases, as well as for the diagnosis of recur-
rent disease. However, FDG-PET faces similar challenges 
to contrast-enhanced CT or MR imaging in differentiat-
ing benign from malignant bile duct strictures. This is 
because increased FDG uptake also occurs in benign bile 
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Fig. 5.  2-NBDLG fluorescence imaging of the hamster biliary tract by probe-based confocal laser endomicroscopy and matching histopathology 
sections. a Macro-zoom micrograph of 2-NBDLG fluorescence imaging process. b Fluorescence images after local injection of 2-NBDLG into the 
biliary tract. c, d HE staining of the corresponding sections in different scope fields. e–h Different animal in the same experimental group. i–l Normal 
control group. Reproduced from Hiroshi Yokoyama et al. [62]
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duct strictures due to secondary inflammation caused by 
stent placement or primary sclerosing cholangitis [68, 
69]. Kim and colleagues [70] reported that FDG-PET, CT, 
and MR had a diagnostic accuracy of 86%, 68%, and 57% 
for CCA tumor detection, respectively. The emergence of 
PET/MR bimodal imaging technology has enabled func-
tional molecular multi-parameter imaging. Although 
substantial data on the effect of FDG-PET/MR imaging 
are lacking, empirical evidence suggests that monitoring 
the biological characteristics of tumors using molecular 
probes has advantages over PET/CT or MR alone [60]. 
The maximum standardized uptake value (SUVmax) of 
primary focus in PET/MR of CCA patients is similar to 
the SUVmax in PET/CT. For hilar areas with a complex 
anatomical structure, PET/MR combined with functional 
information obtained by FDG-PET and the contrast reso-
lution of MR are more effective than PET/CT in assess-
ing the degree of catheter involvement. In a retrospective 
analysis of 37 patients with CCA, Ferrone et al. [71] used 
conventional imaging and showed that 15 patients had 
early resectable disease and 22 patients had advanced 
disease outside the range of surgical resection. PET/
MR changed the clinical management of 11/37 patients 
(29.7%): in five patients (13.5%), surgery was canceled 
because of other diseases, and four patients (10.8%) who 
were “inoperable” underwent surgery. The surgical plan 
of two patients (5.4%) was changed based on PET/MR. 
This suggested that PET/MR may influence the manage-
ment of untreated CCA patients. An added benefit is that 
patients receive less radiation. PET/MR also has some 
disadvantages, such as long examination time, and the 
need to correct the attenuation of SUVmax and other 
data before it can be used for reference [72, 73]. However, 
PET/MR is a new nuclear medicine hybrid technology 
that can improve the local and systemic staging of CCA 
patients, potentially affecting their clinical treatment 
[71]. Although molecular imaging has had a great impact 
on diagnostic imaging, it has not been integrated into 
the intervention process until recently. Interventional 

molecular imaging aims to make full use of the advan-
tages of the two imaging fields. Interventional radiol-
ogy can expand the ability of existing molecular imaging 
techniques as follows: (a) by reaching deep targets, (b) by 
allowing careful observation of small targets, (c) by accu-
rately guiding the delivery of non-target imaging tracers 
or therapies, and (d) by improving the effectiveness of 
targeted imaging and therapy [74]. In CCA, interven-
tional molecular imaging can be used to monitor the 
delivery of non-targeted imaging tracers or therapeutic 
agents to their specific targets. One example is the use 
of high spatial resolution magnetic resonance imaging 
to monitor drug delivery to the bile duct wall. Motexafin 
gadolinium (MGd) is a broad-spectrum anticancer drug. 
Because of its unique chemical structure, it can function 
as a radiotherapy and chemotherapy sensitizer as well 
as facilitating T1-weighted image enhancement of MR 
images and red fluorescence emission [75]. Zhang et  al. 
locally delivered a mixture of MGd, 5-fluorouracil, and 
trypan blue into the choledochus wall of swine followed 
by MR imaging. The results showed that the distribution 
of MGd in the choledochus wall was clearly displayed by 
MR imaging (Fig. 6) [76].

Zhang et  al. also studied radiofrequency hyperther-
mia in the bile duct using an MR heating guidewire to 
enhance the therapeutic effect of chemotherapeutic 
drugs on CCA. In the study, they used MR and optical 
bimodal imaging for monitoring. The results showed that 
combination treatment with chemotherapy and radi-
ofrequency hyperthermia caused an immediate and sig-
nificant decrease in the ADC value and the fluorescence 
signal of the tumor (Fig. 7) [77]. These results provided a 
theoretical basis as well as a new idea for imaging-medi-
ated monitoring after combined treatment of late CCA.

Conclusions and future perspectives
CCA is a highly aggressive and heterogeneous malig-
nancy with a dismal prognosis. Despite extensive 
research, current treatment strategies remain limited and 

Table 2  Characterization of various molecular imaging modalities with CCA​

µM, micromolar; nM, nanomolar; pM, picomolar; fM, femtomolar
a Spatial resolution is depth dependent

Technique Spatial resolution Sensitivity Depth Time Significant advantages

Nuclear PET 6–10 mm pM Unrestricted min-h High sensitivity to deep tissue

SPECT 7–15 mm nM–pM Unrestricted min-h

MR 1–1.5 mm µM Unrestricted min-h High spatial resolution to deep soft tissue and no radiation

Optical BLI 0.1–2a mm fM Few mm min High spatial resolution and sensitivity to superficial tissues

FLI 0.1–2a mm pM Few mm min

FMT 1 mm pM 1–2 cm min 3D optical imaging and better depth sensitivity

OA 0.01–1a mm pM Several cm min Higher imaging depth than OI and can monitor biological process
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ineffective in most cases. Medical imaging is an impor-
tant method for the diagnosis and treatment of patients, 
which is a prerequisite for accurate medicine. The pur-
pose of molecular imaging is to improve the sensitivity 
and specificity of traditional image detection. The molec-
ular imaging study of CCA is still in the early stages and 
mostly limited to animal experiments and preclinical 
research. Thus, there are many difficulties and challenges 
ahead. The selection of a reliable target to distinguish 
CCA from other tumors or normal tissues is essential 
for molecular imaging of CCA. Accordingly, there are 
currently few mature probes used in CCA molecular 
imaging. On the one hand, developing or discover probe 
complexes for CCA targeting is expensive and time-
consuming. On the other hand, the safety, specificity, 
and sensitivity of molecular probes used in the human 
body need to be further verified. For these reasons, the 
development of molecular probe complexes for specific 
monitoring of tumor cell growth and death has become 

the focus of CCA molecular imaging research. Currently, 
there is an activatable probe known as “smart probe” that 
can change the molecular conformation independently 
according to the microenvironment (such as pH, ion con-
centration, the partial pressure of oxygen), thus affecting 
the strength of imaging signals. This is the most advanced 
tumor imaging probe, and the improved signal-to-noise 
ratio makes it a potentially effective probe for the molec-
ular imaging of CCA [78].

This review focuses on four different molecular imag-
ing modalities. The current advantages and limitations 
of each method should be considered when design-
ing future studies involving molecular imaging. PET 
and SPECT imaging are the earliest molecular imaging 
modalities used in clinical practice; they are sensitive 
for the detection of CCA and play a vital role in tumor 
grading and recurrence monitoring. However, nuclear 
medicine has poor spatial resolution; therefore, PET 
and SPECT should be combined with CT or MRI for 

Fig. 6  Under the guidance of magnetic resonance imaging, the mixture including motexafin gadolinium was delivered into the choledochus wall 
of swine. A T1 weighted sagittal image; B the needle pricked into the choledochus wall (arrow) where motexafin gadolinium was delivered; this 
was displayed as a high signal interpenetrating the choledochus (arrowheads). C, D Cross-sectional images of the choledochus before (C) and after 
injection (D). Reproduced from Zhang et al. [76]
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multimodal imaging in practical applications. MRI has 
several advantages such as high spatial resolution, excel-
lent soft tissue contrast, and no radiation exposure. Since 
MRI uses various sequences for imaging, it can be used 
in CCA to assess the extent of tumor invasion, provid-
ing differential diagnosis and prognostic information. 
Although MRI is a useful imaging method, it has low 
sensitivity and a long acquisition time. In MR molecular 
imaging, the unique characteristics of molecular imaging 
such as high sensitivity are combined to make MRI one 
of the best molecular imaging modalities. Optical imag-
ing has been widely used in many cell and animal studies 
in the past few decades. Despite several advantages such 
as high sensitivity, no radiation, and low cost, the clinical 
application of optical imaging remains uncertain because 

of limitations such as light attenuation with increased 
tissue depth. Endoscopic technology and intraoperative 
real-time dynamic detection are the main directions for 
the application of optical imaging to the clinical diagnosis 
and treatment of CCA. Finally, the multimodal nanomo-
lecular imaging platform can integrate the advantages of 
these imaging modalities and compensate for the cor-
responding shortcomings. These techniques increase 
the diversity of CCA molecular imaging, thus greatly 
improving the diagnostic accuracy and prognosis of CCA 
patients.

There are still many new opportunities in CCA molec-
ular imaging research. Molecular imaging research of 
CCA, which is part of personalized medicine, is moving 
in the direction of miniaturization of targeted materials, 

Fig. 7  Optical imaging of cholangiocarcinoma lumps (arrow) with different treatments. A–D Control group; E–H chemotherapy group; I–L 
radiofrequency hyperthermia group; M–P combined treatment group of chemotherapy and radiofrequency hyperthermia. Reproduced from 
Zhang et al. [77]
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nanoscale imaging media, and multi-modal imaging 
methods. The translation of animal and preclinical tri-
als to clinical application is the next focus of molecular 
imaging. In the future, the use of molecular imaging for 
early screening will greatly benefit patients with CCA.
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