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Radiomic features of breast parenchyma: 
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Abstract 

Objective:  To assess the similarity and differences of radiomics features on full field digital mammography (FFDM) in 
FOR PROCESSING and FOR PRESENTATION data.

Methods:  165 consecutive women who underwent FFDM were included. Breasts have been segmented into “dense” 
and “non-dense” area using the software LIBRA. Segmentation of both FOR PROCESSING and FOR PRESENTATION 
images have been evaluated by Bland–Altman, Dice index and Cohen’s kappa analysis. 74 textural features were com-
puted: 18 features of First Order (FO), 24 features of Gray Level Co-occurrence Matrix (GLCM), 16 features of Gray Level 
Run Length Matrix (GLRLM) and 16 features of Gray Level Size Zone Matrix (GLSZM). Paired Wilcoxon test, Spearman’s 
rank correlation, intraclass correlation and canonical correlation have been used. Bilateral symmetry and percent 
density (PD) were also evaluated.

Results:  Segmentation from FOR PROCESSING and FOR PRESENTATION gave very different results. Bilateral symmetry 
was higher when evaluated on features computed using FOR PROCESSING images. All features showed a positive 
Spearman’s correlation coefficient and many FOR-PROCESSING features were moderately or strongly correlated to 
their corresponding FOR-PRESENTATION counterpart. As regards the correlation analysis between PD and textural 
features from FOR-PRESENTATION a moderate correlation was obtained only for Gray Level Non Uniformity from 
GLRLM both on “dense” and “non dense” area; as regards correlation between PD and features from FOR-PROCESSING 
a moderate correlation was observed only for Maximal Correlation Coefficient from GLCM both on “dense” and “non 
dense” area.

Conclusions:  Texture features from FOR PROCESSING mammograms seem to be most suitable for assessing breast 
density.
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Key points

•	 Segmentation from FOR PROCESSING and FOR 
PRESENTATION gave very different results.

•	 Bilateral symmetry was higher when evaluated on 
features computed using FOR PROCESSING images.

•	 Texture features from FOR PROCESSING mammo-
grams seem to be most suitable for assessing breast 
density.
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Introduction
Female breast cancer has now surpassed lung cancer as 
the leading cause of global cancer incidence in 2020, with 
an estimated 2.3 million new cases, representing 11.7% 
of all cancer cases. It is the fifth leading cause of cancer 
mortality worldwide, with 685,000 deaths [1].

The elevated incidence rates reflect a longstanding 
higher prevalence of reproductive and hormonal risk 
factors (early age at menarche, later age at menopause, 
advanced age at first birth, fewer number of kids, less 
breastfeeding, menopausal hormone therapy, oral con-
traceptives) and lifestyle risk factors (alcohol intake, 
excess body weight, physical inactivity), also increased 
detection through organized or opportunistic mammo-
graphic screening [2]. An exceptionally high prevalence 
of mutations in high-penetrance genes, such as BRCA1 
and BRCA2, in part accounts for the high incidence in 
Israel and in certain European subpopulations. However, 
breast cancer mortality has declined over the years due to 
multiple factors, including more sensitive screening tech-
niques and improved treatment regimen [3].

In the last decade there has been growing consensus 
regarding the role of breast parenchyma as an independ-
ent risk factor for breast cancer [4–6]: consequently, a 
number of approaches to breast parenchyma assessment 
have been proposed, among which radiomic texture fea-
ture extraction is the most spread [7–9]. Radiomics is an 
emerging field and has a keen interest, especially in the 
oncology field [10–12]: it has been shown that radiom-
ics could be predictive of TNM grade, histological grade, 
response to therapy and survival in various tumors [13–
15]. Textural radiomic features of breast parenchyma 
have been shown to be useful for cancer classification, 
too [16].

Radiomics features, when associated with other impor-
tant information and correlated with outcomes, can pro-
vide accurate and robust evidence-based clinical-decision 
support systems (CDSS). The main challenge is the opti-
mal gathering and integration of multimodal data sources 
in a quantitative manner capable to deliver unambiguous 
clinical information that accurately and robustly enable 
outcome prediction as a function of the necessary deci-
sions [17–19]. The central hypothesis of radiomics is 
that the quantitative individual voxel-based variables 
are more sensitively associated with various clinical end 
points compared with the more qualitative radiologic, 
histopathologic, and clinical data more commonly used 
today [17–19].

Digital processing of full field digital mammogra-
phy (FFDM) has enormously increased the possibil-
ity to objectively assess textural properties of breast 
images. Full field digital mammography can be stored 
as FOR PROCESSING (original or raw images) or FOR 

PRESENTATION (processed images, usually via propri-
etary, not publicly available software). Often, in routine 
clinical environment only FOR PRESENTATION images 
are available. However, although the latter emphasize 
certain characteristics of the image useful for masses 
and calcifications detection, they might not fully retain 
the original information contained in the FOR PRO-
CESSING image, potentially useful for parenchyma 
characterization.

Previous studies [7–9] have evaluated a number of fea-
tures for breast parenchyma assessment. However, a few 
recent changes in the field require further deeper analy-
sis. In particular, recently, texture features have been 
standardized by the Image Biomarker Standardization 
Initiative (IBSI) [18]. It is important therefore to per-
form a comprehensive evaluation of differences between 
FOR PROCESSING and FOR PRESENTATION using 
the standardized features which include several additive 
texture features with respect to Gastounioti et  al. [7]. 
Moreover, in Gastounioti et al. [7], texture features have 
been computed using a ‘lattice’ approach for characteri-
zation of the whole breast: however, the lattice has been 
summarized by an overall averaging: while that approach 
is directed towards taking approximately into account 
feature variability across the breast, it does not give pre-
cise information about the dense/non-dense areas of the 
breast. A third point is that previous studies assessed only 
two mammographic equipment (Siemens and Hologic) 
[7–9]: it is of course of interest to test whether results can 
be extended to other manufacturers.

The objective of our study was to assess the similarity 
and differences of radiomics features on FFDM in FOR 
PROCESSING and FOR PRESENTATION. Expand-
ing previous studies, we addressed the problem using 
an enlarged set of texture radiomic features, dense/non-
dense areas comparison and a new manufacturer; appro-
priate statistical analysis has been used.

Methods
Study population
Study population included 165 women who underwent 
mammography at the Breast Unit of the University Hos-
pital “Luigi Vanvitelli” in Naples, Italy, from June 2020 to 
November 2020. The study was approved by local ethi-
cal committee and each patients enrolled have signed the 
informed consensus. Patients’ characteristics have been 
summarized in Table 1. Breast density of the sample has 
been assessed by two expert radiologists in consensus 
(G.G., M.P.B.) according to BI-RADS 5th edition pub-
lished in 2013 [20]. It should be underlined that accord-
ing to [20] “if the breasts are not of apparently equal 
density, the denser breast should be used to categorize 
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breast density”. Therefore, only one category per each 
woman was available.

Equipment and images
Women have been imaged according to current guide-
lines consisting of Full Filed Digital mammography 
(FFDM) in both mediolateral oblique (MLO) and cranio-
caudal views (CC) using the system Giotto Class pro-
duced by IMS GIOTTO S.p.A. (Sasso Marconi–Bologna 
Italy). The specific operating conditions of mammo-
graphic image acquisition have been summarized in 
Table 2. Specifically, we highlight that the mammography 
was equipped with a tungsten anode. Tungsten anode 
has been shown to reduce administered dose while pre-
serving image quality [21, 22]. For this work only MLO 
images have been considered because of the larger pres-
ence of breast parenchyma on this kind of projection: a 
total of 330 images (left/right) have been used.

Breast segmentation
Breasts have been segmented into “dense” area (roughly 
corresponding to the fibroglandular tissue) and “non-
dense” area (the remaining part of the breast) using the 
publicly available softare LIBRA [8, 9] available for MAT-
LAB (Version: 9.3.0.713579, R2017b. Natick, Massachu-
setts: The MathWorks Inc.). LIBRA has been specifically 
developed for breast segmentation, pectoral muscle 
removal and percent density computation. Both FOR 
PROCESSING and FOR PRESENTATION images from 
our dataset have been tested for proper segmentation. 
Bland–Altman, Dice index and Cohen’s kappa analysis 
(“Statistical analysis” section) has been used to assess dif-
ferences between the two types of segmentation. Subse-
quently, radiomic features have been computed both on 
“dense” and “non-dense” area and on FOR PROCESSING 
and FOR PRESENTATION images. Percent density from 
LIBRA has also been computed.

Before LIBRA segmentation, FOR-PROCESSING 
images underwent minimal pre-processing: logarithm 
and z-scoring; FOR-PRESENTATION images were sub-
jected only to z-score to align image histogram to FOR-
PROCESSING image [7, 9].

It should be emphasized that LIBRA has been devel-
oped on equipment by two specific manufacturers (Sie-
mens and Hologic). One of the objective of our analysis 
was to assess whether LIBRA could be used reliably on 
a different manufacturer (IMS GIOTTO S.p.A.) without 
any modification.

Radiomic features
Recently, the IBSI [18] has standardized a set of 174 fea-
tures. Such features have been implemented in PyRadi-
omics [19] a library available within Python environment 
[23]. Briefly, IBSI features include texture and morpho-
logical features. In this study we considered only textural 
features. In fact, it has been suggested in literature that 

Table 1  Study population

BMI; BIRADS breast imaging reporting and data system

Number of women 165

Age (mean ± SD) 56.4 y ± 9.1

Age at first menstrual period (mean ± SD) 12.0 y ± 1.6

Women in menopause 116

Age menopause (mean ± SD) 49.8 y ± 5.0

BMI (mean ± SD) 25.4 kg/mm2 ± 4.3

Pregnancy after 30yrs 41 (31.2%)

No childbirth 34 (20.6%)

BIRADS density

Type A 14 (8.5%)

Type B 80 (48.5%)

Type C 35 (21%)

Type D 36 (22%)

Table 2  Equipment characteristics

Anode material Tungsten (W)

Filter materials 0.05 mm Silver (Ag); a 0.7 mm Aluminum 
(Al) filter may be also available on the 
system

Detector a-Se flat panel detector

Pixel size 85 µm

kVp (median, range) 31 (26–35)

Exposure time (ms) (median, range) 516 (285–1340)

mAs (median, range) 77 (39–200)

Anode/filter combination W / Ag

Entrance dose (mGy) 5.01 (1.51–15.1)
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texture feature might well describe parenchymal struc-
ture [7, 8, 20].

Seventy-four textural features were used in this study, 
grouped into 4 main groups: 18 features of First Order 
(FO), 24 features of Gray Level Co-occurrence Matrix 
(GLCM), 16 features of Gray Level Run Length Matrix 
(GLRLM) and 16 features of Gray Level Size Zone Matrix 
(GLSZM). See Table 3 for a list of all features. A detailed 
description of each textural feature is reported in the 
website https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/​
featu​res.​html. Features have been computed both on 
dense and non-dense breast areas (see Fig. 1).

Statistical analysis
Our analysis had the objective to assess differences 
between features computed from FOR PROCESSING 
and from FOR PRESENTATION images on both ‘dense’ 
and ‘non-dense’ areas of the breast.

First, we assessed differences in LIBRA breast area 
(dense or non-dense) segmentation using Bland–Altman, 
Dice index and Cohen’s kappa analysis [24]: while the first 
is mainly a graphical approach and has been performed 
on the area expressed in cm2, the other two give an agree-
ment measure (Dice is between 0 and 1, while kappa is 
with − 1, 1) between the two segmentations. Bilateral 
symmetry (correspondence in breast area and percent 
density between left/right breast) was also used to evalu-
ate goodness of segmentation. The objective of this analy-
sis was to verify that LIBRA processing was sufficiently 
accurate for the equipment from IMS GIOTTO S.p.A., as 
this equipment has not been tested previously for LIBRA.

Second, for each feature, Wilcoxon paired test has been 
applied between FOR-PROCESSING versus FO-PRES-
ENTATION. As a further measurement, Spearman’s rank 
correlation coefficient has been evaluated. Canonical 
correlation analysis has been used to assess the correla-
tion of linear combination of dense/non-dense features 
between FOR PROCESSING and FOR PRESENTATION 
[25].

Third, percent density (PD) correlation with each fea-
ture has been assessed via Spearman’s coefficient. Finally, 
for each feature bilateral symmetry (correspondence 
between the two breasts of the same woman) has been 
assessed using intraclass correlation coefficient (ICC) [7].

Dependence of correlation from equipment and 
women factors such as kVp, mAs, body part thick-
ness, body mass index (BMI), age, menopause has been 
assessed via linear mixed effect models [26].

Results
Segmentation assessment
In Fig.  1 we reported an exemplificative case of breast 
area (whole breast without pectoral muscle, dense area, 

non-dense area) segmentation: FOR PROCESSING and 
FOR PRESENTATION images gave very different results. 
This can be further appreciated in Fig. 2a, b reporting the 
Bland–Altman analysis of the whole breast and dense 
area. Dice index and Cohen’s kappa applied to the whole 
breast gave an average agreement of 0.97 ± 0.02 and 
0.96 ± 0.03 respectively.

As regards dense and non-dense area, as can be seen 
in Figs.  1 and 2a, often dense area segmented on FOR 
PROCESSING was very small with respect to the FOR 
PROCESSING counterpart. In this case it was not possi-
ble to use Dice index or Cohen’s kappa and bilateral sym-
metry for breast and dense areas have been evaluated: 
results have been reported in Fig. 3 showing that bilateral 
symmetry was higher when using FOR PROCESSING 
images.

Recognizing these limitations and such large differ-
ences between breast areas, for subsequent feature com-
putation we decided to use only the segmentation of 
dense and non-dense areas from FOR PROCESSING 
images.

Features assessment
Table  3 reports association between features computed 
on FOR-PROCESSING and FOR-PRESENTATION 
images over segmented dense and non-dense areas: 
Spearman’s correlation coefficients rho and p value of 
Wilcoxon test have been reported (significance level 
p = 0.05). Almost all texture features were significantly 
different, only 8 features (indicated with ‘a’ in the table) 
were not different according to Wilcoxon test: Skew-
ness of FO; Inverse Difference (ID), Inverse Difference 
Moment (IDM), Inverse Variance, Maximum Probabil-
ity of GLCM and Small Area Low Gray Level Emphasis, 
Long Run High Gray Level Emphasis, Long Run Low 
Gray Level Emphasis of GLSZM.

However, all Spearman’s correlations were posi-
tive: in particular, 12 features had a strong correlation 
(rho ≥ 0.8), 30 had moderate correlation (rho ≥ 0.6), 25 
were weakly correlated (rho ≥ 0.4), 7 were practically 
uncorrelated (rho < 0.4); by visual inspection, for strongly 
and moderately correlated features the relationship was 
approximately linear.

Considering canonical correlation (Table  3, Can 
Cor column) to asses association between FOR-PRO-
CESSING and FOR-PRESENTATION of combination 
of dense plus non dense area, all features had a mod-
erate correlation (Can Cor ≥ 0.6) except that Inter-
quartile Range and Robust Mean Absolute Deviation 
of FO, Autocorrelation, Cluster Prominence, Cluster 
Shade, Joint Average and Sum Average of GLCM and 
High Gray Level Zone Emphasis, Large Area Emphasis, 
Small Area High Gray Level Emphasis, Small Area Low 

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Table 3  Comparison between FOR-PROCESSING and FOR-PRESENTATION features computed on “dense” area and “non-dense” area

Feat group Feature name w r (dense) r (no dense) Can Cor PD FOR 
PRES 
dense

PD FOR 
PROC 
dense

PD FOR 
PRES 
no-dense

PD FOR 
PROC 
no-dense

1st or 10 percentile 0.99 1.00 1.00 − 0.21 − 0.16 − 0.15 − 0.17

90 percentile 0.99 1.00 1.00 − 0.21 − 0.11 − 0.16 − 0.15

Energy 1.00 1.00 1.00 0.51 0.54 − 0.45 − 0.45

Entropy 0.57 0.64 0.71 0.13 0.55 0.25 0.39

Interquartile Range 0.50 0.30 0.50 0.17 0.71 − 0.24 0.36

Kurtosis 0.57 0.92 0.92 − 0.37 − 0.62 (a) − 0.15

Maximum 0.78 0.57 0.84 − 0.20 − 0.12 − 0.35 − 0.15

Mean Absolute Deviation 0.47 0.61 0.76 (a) 0.66 − 0.15 0.13

Mean 0.99 1.00 1.00 − 0.21 − 0.13 − 0.17 − 0.17

Median 1.00 1.00 1.00 − 0.20 − 0.13 − 0.17 − 0.18

Minimum 0.97 – 0.98 − 0.24 − 0.16 – –

Range 0.59 0.57 0.80 (a) 0.42 − 0.35 − 0.15

Robust Mean Absolute Deviation 0.49 0.29 0.52 0.15 0.71 − 0.26 0.28

Root mean squared 0.99 1.00 1.00 − 0.21 − 0.13 − 0.16 − 0.17

Skewness (a) 0.64 0.92 0.92 − 0.49 − 0.58 (a) 0.13

Total energy 1.00 1.00 1.00 0.51 0.54 − 0.45 − 0.45

Uniformity 0.55 0.61 0.74 − 0.16 − 0.59 − 0.23 − 0.45

Variance 0.44 0.94 0.99 (a) 0.60 (a) 0.08

glcm Autocorrelation 0.51 0.40 0.55 0.31 0.36 0.21 − 0.31

Cluster Prominence 0.39 0.71 0.53 − 0.16 0.35 0.18 0.06

Cluster Shade 0.40 0.57 0.50 − 0.37 (a) − 0.15 − 0.06

Cluster tendency 0.50 0.68 0.70 (a) 0.48 0.21 0.14

Contrast 0.69 0.69 0.80 − 0.15 − 0.44 0.39 0.32

Correlation 0.63 0.77 0.73 0.34 0.66 − 0.35 − 0.26

Difference average 0.71 0.73 0.77 − 0.11 − 0.39 0.37 0.48

Difference entropy 0.71 0.75 0.79 − 0.12 − 0.39 0.35 0.50

Difference variance 0.68 0.76 0.85 − 0.21 − 0.51 0.40 0.30

Inverse Difference (ID) (a) 0.72 0.72 0.78 (a) 0.36 − 0.32 − 0.47

Inverse Difference Moment (IDM) (a) 0.72 0.72 0.78 (a) 0.36 − 0.31 − 0.47

Inverse Difference Moment Normalized 
(IDMN)

0.70 0.70 0.79 0.14 0.43 − 0.39 − 0.33

Inverse Difference Normalized (IDN) 0.71 0.74 0.77 (a) 0.38 − 0.36 − 0.49

Informational Measure of Correlation 
(IMC) 1

0.66 0.67 0.70 − 0.30 − 0.65 0.38 0.48

Informational Measure of Correlation 
(IMC) 2

0.65 0.70 0.68 0.32 0.67 − 0.31 − 0.12

Inverse Variance (a) 0.72 (a) 0.78 (a) 0.35 − 0.31 − 0.10

Joint Average 0.47 0.42 0.58 0.32 0.29 0.21 − 0.29

Joint Energy 0.66 0.64 0.75 (a) − 0.28 − 0.28 − 0.49

Joint Entropy 0.69 0.68 0.79 (a) 0.17 0.30 0.46

Maximal Correlation Coefficient (MCC) 0.48 0.73 0.75 (a) 0.60 − 0.43 − 0.61

Maximum Probability (a) 0.60 0.61 0.75 − 0.12 − 0.36 − 0.30 − 0.49

Sum Average 0.47 0.42 0.58 0.32 0.29 0.21 − 0.29

Sum entropy 0.59 0.64 0.71 0.15 0.54 0.24 0.40

Sum squares 0.49 0.66 0.66 (a) 0.44 0.25 0.16

glszm Gray Level Non Uniformity 0.88 0.89 0.92 0.72 0.50 − 0.56 − 0.62

Gray Level Non Uniformity Normalized 0.54 0.65 0.72 − 0.15 − 0.59 − 0.29 − 0.52

Gray Level Variance 0.46 0.64 0.72 (a) 0.46 0.39 0.43

High Gray Level Zone Emphasis 0.52 0.29 0.49 0.30 0.40 0.21 − 0.43
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Gray Level Emphasis, Zone Variance, High Gray Level 
Run Emphasis, Short Run High Gray Level Emphasis of 
GLSZM. Among these only Small Area Low Gray Level 
Emphasis was included among the 8 features not dif-
ferent according to Wilcoxon test between FOR-PRO-
CESSING and FOR-PRESENTATION features.

Considering the correlation analysis between PD and 
textural features:

•	 using FOR-PRESENTATION data on “dense” area 
(Table 3, PD FOR PRES dense column), a moderate 
correlation was obtained for Gray Level Non Uni-
formity of GLSZM and Size Zone Non Uniformity, 

Gray Level Non Uniformity and Run Length Non 
Uniformity of GLRLM;

•	 using FOR-PRESENTATION data on “non-dense” 
area (Table  3, PD FOR PRES non-dense column), a 
moderate correlation was obtained only for Gray 
Level Non Uniformity of GLRLM (this feature was 
included among the 4 features with moderate corre-
lation on “dense” area);

•	 using FOR-PROCESSING data on “dense” area 
(Table  3, PD FOR PROC dense column), a mod-
erate correlation was obtained for Interquartile 
Range, Kurtosis, Mean Absolute Deviation, Robust 
Mean Absolute Deviation, Variance of FO; correla-
tion; Informational Measure of Correlation (IMC) 

The columns have the following meanings: w: results of paired Wilcoxon test between FOR-PROCESSING and FOR PRESENTATION: as regads dense-area non-
significant (p > 0.05) test have been marked with “(a)”; as regads no-dense area all features were significantly different; r: Spearman’s correlation coefficient (they are 
all statistically significant, p < 0.05); CanCor: canonical correlation (see text for details); PD-FOR-PRES and PD-FOR-PROC: Spearman’s correlation coefficient between PD 
and features computed on FOR-PRES and FOR-PROC respectively, non-significant correlation (p > 0.05) have been marked with (a). For feature named ‘Minimum’ it was 
not possible to compute Spearman correlation on no-dense area because the value is always 0

Table 3  (continued)

Feat group Feature name w r (dense) r (no dense) Can Cor PD FOR 
PRES 
dense

PD FOR 
PROC 
dense

PD FOR 
PRES 
no-dense

PD FOR 
PROC 
no-dense

Large Area Emphasis 0.74 0.22 0.44 0.16 0.40 − 0.18 − 0.51

Large Area High Gray Level Emphasis 0.71 0.74 0.60 0.56 0.60 − 0.17 − 0.50

Large Area Low Gray Level Emphasis 0.43 0.88 0.96 − 0.15 0.16 (a) − 0.17

Low Gray Level Zone Emphasis 0.25 0.72 0.65 − 0.35 (a) − 0.13 − 0.04

Size Zone Non Uniformity 0.89 0.74 0.90 0.64 0.71 − 0.29 − 0.41

Size Zone Non Uniformity Normalized 0.75 − 0.38 0.78 − 0.18 − 0.39 0.17 − 0.49

Small Area Emphasis 0.75 − 0.37 0.78 − 0.18 − 0.39 0.17 − 0.49

Small Area High Gray Level Emphasis 0.52 0.18 0.50 0.25 0.33 0.22 − 0.47

Small Area Low Gray Level Emphasis 0.22 0.40 0.29 − 0.40 − 0.15 − 0.21 − 0.29

Zone Entropy (a) 0.73 0.28 0.75 0.40 0.66 0.12 0.52

Zone Percentage 0.75 0.68 0.79 − 0.16 − 0.39 0.22 0.24

Zone Variance 0.74 0.20 0.43 0.15 0.40 − 0.17 − 0.51

glrlm Gray Level Non Uniformity 0.89 0.88 0.89 0.66 0.50 − 0.61 − 0.62

Gray Level Non Uniformity Normalized 0.55 0.62 0.74 − 0.16 − 0.59 − 0.24 − 0.49

Gray Level Variance 0.49 0.53 0.66 (a) 0.47 0.36 0.28

High Gray Level Run Emphasis 0.52 0.37 0.52 0.31 0.39 0.21 − 0.36

Long Run Emphasis 0.74 0.63 0.75 0.15 0.39 − 0.26 − 0.33

Long Run High Gray Level Emphasis (a) 0.50 0.68 0.84 0.36 0.47 (a) − 0.32

Long Run Low Gray Level Emphasis (a) 0.29 0.98 0.96 − 0.29 (a) (a) − 0.02

Low Gray Level Run Emphasis 0.24 0.78 0.75 − 0.34 (a) 0.43 0.33

Run Entropy 0.60 0.66 0.71 0.23 0.61 0.20 0.20

Run Length Non Uniformity 0.98 0.71 0.98 0.79 0.80 − 0.47 − 0.24

Run Length Non Uniformity Normalized 0.75 0.68 0.80 − 0.16 − 0.39 0.21 0.26

Run Percentage 0.75 0.69 0.79 − 0.16 − 0.39 0.21 0.31

Run Variance 0.74 0.55 0.73 0.15 0.39 − 0.26 − 0.34

Short Run Emphasis 0.75 0.68 0.79 − 0.16 − 0.39 0.21 0.24

Short Run High Gray Level Emphasis 0.52 0.18 0.48 0.29 0.37 0.23 − 0.02

Short Run Low Gray Level Emphasis 0.23 0.70 0.62 − 0.36 (a) 0.28 0.16
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Fig. 1  Representative examples of segmentation of FFDM using LIBRA. a Segmentation using FOR PROCESSING images; b the same breasts 
segmented using FOR PRESENTATION images. In red the breast area; in green the dense area. There are large differences in the main breast area 
(pectoral muscle removal) and in the dense area. c, d An example from another woman representative of very large errors with consequently wrong 
Percent Density (PD)
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1, IMC2, Maximal Correlation Coefficient (MCC) 
of GLCM and Large Area High Gray Level Empha-
sis, Size Zone Non Uniformity, Zone Entropy, Run 
Entropy, Run Length Non Uniformity of GLSZM;

•	 using FOR-PROCESSING data on “non-dense” area 
(Table 3, PD FOR PROC no-dense column), a mod-
erate correlation was obtained for MCC of GLCM 
and Gray Level Non Uniformity obtained of GLSZM 
and of GLRLM (only MCC of GLCM was included 
among the 14 features with moderate correlation on 
“dense” area).

Other findings
In Fig. 4 was reported the bilateral symmetry (intra-class 
correlation coefficient between left/right breast) per each 
feature on dense and non-dense areas. It can be seen that 
bilateral symmetry is higher when feature are computed 
on FOR PROCESSING images.

In Fig.  5, percent density (PD) association with 
BI-RADS assigned by radiologists was reported. 
Kruskal–Wallis test was significant (p < 0.001). Multiple 
comparison test (Tukey HSD) indicates that BI-RADS 
density A is not significantly different from BI-RADS 
density B (p > 0.05).

No significant dependence of the correlation from 
equipment and women factors such as kVp, mAs, part 
thickness, BMI, age, menopause assessed via linear 
mixed effect models was found. Weak correlations were 
observed between equipment variables (PD, BMI, Age) 
and patient features (BPT, KVP, ED) (Fig. 6).

Discussion
In the last two decades FFDM has replaced screen film 
mammography (SFM) in breast cancer screening [27–
29]. FFDM image acquisition initially generates an image 
which is proportional to the X-ray attenuation through 
the breast, known as the raw image (i.e., FOR PROCESS-
ING; often with a 14-bit gray-level depth). Then, ven-
dor specific post-processing algorithms are applied to 
increase lesion conspicuity before radiological presenta-
tion, creating what is known as the processed image (i.e., 
FOR PRESENTATION; often with a 12-bit gray-level 
depth). It seems reasonable to assume that breast paren-
chyma analysis should be performed directly from raw 
images since they retain the original relationship with the 
physical properties of the breast tissue [5–9].

In this study we assessed differences between texture 
features computed on automatically segmented dense 
(manly fibro-glandular) and non-dense (mainly fat) area 
within the breast both on FOR PROCESSING and on 
FOR PRESENTATION data.
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Fig. 2  Bland–Altman analysis of (a) breast and (b) dense area (cm2) segmented with LIBRA on FOR PROCESSING and on FOR PRESENTATION images. 
Each marker represents an image. Robust linear fitting is reported in red (solid); identity line is dotted for reference. Spearman’s rank correlation 
index is (a) 0.88, (b) − 0.16 (p < 0.001). While a strong correlation exists betweeen breast areas, the negative correlation coefficient for dense area can 
be understood by the example in Fig. 1: often the dense area segmented on FOR PRESENTATION images is very small compared to the dense area 
segmented from FOR PROCESSING
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Fig. 3  Bilateral simmetry with respect to breast-area (a), dense-area (b) and percent-density (c). Each circle is a woman. Women with strong 
bilateral simmetry should be aligned with the identity line (dashed)
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Our findings can be resumed as follows. Mainly, all 
features showed a positive Spearman’s correlation coef-
ficient and many feature of FOR-PROCESSING were 
moderately or strongly correlated to their corresponding 
FOR-PRESENTATION counterpart; nonetheless, Wil-
coxon test suggested differences for most of the features 
except for ID, IDM, Inverse Variance, Maximum Prob-
ability of GLCM and Small Area Low Gray Level Empha-
sis, Long Run High Gray Level Emphasis, Long Run Low 
Gray Level Emphasis of GLSZM.

Moreover, our results showed that the segmentation 
from FOR PROCESSING and FOR PRESENTATION 
might give very different results: the breast area seg-
mented from the FOR PRESENTATION images is dif-
ferent because the pectoral muscle has not been properly 
removed. Moreover, often the dense area is really very 
small when segmented on FOR PRESENTATION: this 
might cause loss of potentially important texture infor-
mation. In addition, the bilateral symmetry was higher 
when using features computed form FOR PROCESSING 
images.

As regards, the correlation analysis between PD and 
textural features on FOR-PRESENTATION a moderate 
correlation was obtained only for Gray Level Non Uni-
formity of GLRLM both on “dense” and “non dense” area. 
On the other side, considering the correlation analysis 
between PD and textural features on FOR-PROCESSING 

a moderate correlation was observed only for MCC of 
GLCM both on “dense” and “non dense” area.

Our results are in line with the findings in [7]; how-
ever a number of differences with that study must be 
highlighted. First, in [7] a limited number of features 
(28) has been investigated; however, thanks to the effort 
of IBSI [18] it is today possible to examine a very large 
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number of features. In our study we used 74 features 
(computed on the original image without wavelet trans-
form) subdivided into four main groups. Moreover, the 
group of GLSZM has not been investigated at all in [7].

Second, in [7] a “lattice” approach has been used to 
compute features, however an averaging over the lat-
tice has been made to resume the behavior of the 
breast; in our study, instead, we segmented the breast 
into two main regions “dense” and “non-dense” and 

Fig. 6  Correlations among equipment variables and patient features: per each couple of variables, scatter plot and spearman correlation value have 
been reported. Lower matrix: scatter plot; Upper matrix: correlation with Spearman Correlation Coefficient.The Spearman correlation coefficient, rs, 
can take values from + 1 to − 1. A rs of + 1 indicates a perfect association of ranks, a rs of zero indicates no association between ranks and a rs of − 1 
indicates a perfect negative association of ranks. The closer rs is to zero, the weaker the association between the ranks. PD percent density (%), BMI; 
BPT body part thickness (mm), KVP kVp; ED entrance dose (mGy). In small font (red in color version) not significant correlations (p > 0.05)
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the correlation between features have been searched 
in both regions separately and concurrently (canonical 
correlation analysis).

Third, a few indices used in [7] might be inappropriate 
for evaluating correlation: specifically, Bland–Altman 
analysis of breast area might miss true correspond-
ence between areas; to this aim, we used Dice index 
and Cohen’s kappa for comparing non-dense areas; 
however, the comparison between dense areas seemed 
inappropriate because they were strongly different by 
visual inspection.

There are a number of limitations to the presented 
study. First, the limited size of the sample. Second, 
radiologist-provided estimates of breast percent density 
were not available for independent validation. Third, 
only digital mammograms from a single manufacturer 
(IMS Giotto S.p.a) have been analyzed.

In conclusion, segmentation results suggest that 
LIBRA is capable to properly segment FOR PROCESS-
ING images from the vendor considered. As regards 
radiomic texture features, our results indicates that, 
although some features seem to be robust with respect 
to the type image used for computation, FOR PRO-
CESSING mammograms may be most suitable for 
assessing breast density, as these images are less influ-
enced by vendor-specific post-processing algorithms.
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