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STATEMENT

How does DICOM support big data 
management? Investigating its use in medical 
imaging community
Marco Aiello1*  , Giuseppina Esposito2, Giulio Pagliari2, Pasquale Borrelli1, Valentina Brancato1 and 
Marco Salvatore1 

Abstract 

The diagnostic imaging field is experiencing considerable growth, followed by increasing production of massive 
amounts of data. The lack of standardization and privacy concerns are considered the main barriers to big data capi-
talization. This work aims to verify whether the advanced features of the DICOM standard, beyond imaging data stor-
age, are effectively used in research practice. This issue will be analyzed by investigating the publicly shared medical 
imaging databases and assessing how much the most common medical imaging software tools support DICOM in 
all its potential. Therefore, 100 public databases and ten medical imaging software tools were selected and examined 
using a systematic approach. In particular, the DICOM fields related to privacy, segmentation and reporting have been 
assessed in the selected database; software tools have been evaluated for reading and writing the same DICOM fields. 
From our analysis, less than a third of the databases examined use the DICOM format to record meaningful informa-
tion to manage the images. Regarding software, the vast majority does not allow the management, reading and writ-
ing of some or all the DICOM fields. Surprisingly, if we observe chest computed tomography data sharing to address 
the COVID-19 emergency, there are only two datasets out of 12 released in DICOM format. Our work shows how the 
DICOM can potentially fully support big data management; however, further efforts are still needed from the scientific 
and technological community to promote the use of the existing standard, encouraging data sharing and interoper-
ability for a concrete development of big data analytics.
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Key points

•	 Standardization is crucial for big data capitalization.
•	 DICOM supports key actions for imaging data man-

agement.
•	 The majority of shared research databases does not 

fully exploit DICOM format.
•	 Imaging software tools do not fully support DICOM 

advanced feature.

•	 There is need to fully promote DICOM in data shar-
ing and software development.

Introduction
The modern era is going through a rapid technological 
evolution, and we are witnessing the production of a huge 
amount of information that can be worthily enhanced 
with appropriate management and analysis. We are, in 
fact, in the so-called big data era, where the value of data 
can be the real engine of innovation [1].

The healthcare sector, where multi-sources patient 
information is routinely collected, is gaining volume and 
complexity. Among big data types, imaging data can be 
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considered the largest in volume. In fact, it covers not 
only gigapixel images, such as tissues or organs at sub-
cellular resolutions, but also metadata and quantitative 
measurements. For instance, neuroimaging is currently 
producing more than 10 petabytes of data every year with 
a staggering ninefold increase in data complexity (i.e., 
data acquisition modalities) over the last three decades 
[2, 3].

Therefore, the standardization of the medical imaging 
formats plays a crucial role in the effective exploitation of 
the data and subsequent clinical decision making [1].

The World Health Organization (WHO) recognizes the 
lack of standardization, together with privacy concerns, 
as the main barrier to big data exploitation [4]. The Digi-
tal Imaging and Communications in Medicine (DICOM) 
format is the current standard for storing and transmit-
ting medical images, enabling the integration of medical 
imaging devices such as scanners, servers, workstations, 
printers, network hardware and picture archiving and 
communication systems (PACS) from multiple manufac-
turers [5]. DICOM encompasses raw imaging data and all 
the metadata related to the procedures of image acquisi-
tion and curation, including a series of processes such as 
de-identification of sensible data, annotation of regions 
of interest within the medical image, image enhancement 
or structured reporting.

In addition to DICOM, the most used formats designed 
for medical images are the analyzed format and its most 
recent version, Neuroimaging Informatics Technology 
Initiative (NIfTI), MetaImage (mhd) and nearly raw ras-
ter data (NRRD). They are mostly used for saving images 
for post-processing operations [6]. It is important to 
note, however, that DICOM remains the standard for 
the clinical management of images, which are routinely 
acquired in DICOM and eventually transformed into 
other formats. For this reason, our work does not focus 
on the already consolidated use of DICOM as a clinical 
standard but on the extension of the standard toward big 
data analytics, as a putative bridge between the clinic and 
research.

In fact, during the last years, the DICOM steering com-
mittee has carefully followed these needs by defining and 
extending the standard [7, 8]. Nevertheless, the simple 
definition of a standard is not enough to satisfy needs 
since the availability to users and the support with appro-
priate software tools are crucial.

This work aims to evaluate the effective implementa-
tion of the DICOM standard in the big data perspective 
and, in particular:

•	 To recognize and introduce how the DICOM stand-
ard effectively supports the current challenges in 
diagnostic imaging management and analytics.

•	 To verify whether the standard is implemented in 
clinical and research practice, investigating the public 
data shared by the research community and check-
ing how much the standard is actually supported in 
the main software for management and processing of 
diagnostic images.

The scientific literature shows different initiatives that 
aim to evaluate the use of DICOM and related software 
tools for research purposes, in particular for the manage-
ment of diagnostic data oriented to quantitative imaging 
[7, 9, 10] or for operations such as de-identification [11]; 
in this work, we intend to carry out a comprehensive 
evaluation that includes all the main data curation opera-
tions both for software tools and released datasets.

The next paragraphs deepen the introduction of this 
context and show the current support of the DICOM for-
mat in the diagnostic workflow.

Big data workflow
Despite large strides in the introduction of PACS over the 
past few decades and the acceptance of the international 
DICOM standard for the storage and transfer of medi-
cal imaging data, there still remain significant barriers 
for the effective implementation of big data analytics on 
diagnostic imaging data.

Diagnostic images constitute a huge amount of data 
circulating in health care.

Unfortunately, medical data are often stored in quali-
tative reports, which do not allow recovering the images 
of interest as well as the related details. The clinical deci-
sion, in fact, is usually made on information deriving 
from several sources which may vary from the patient 
to the diagnostic systems but could not be stored in an 
appropriate and standardized way. Each of these sin-
gle attributes could be considered as a fundamental ele-
ment for the consequent definition of algorithms or, e.g., 
supervised or unsupervised models.

Figure  1 shows a typical radiological workflow, in 
which the patient undergoes a diagnostic imaging 
examination. The results of the diagnostic procedure 
are elaborated by the instrumentation (e.g., computed 
tomography (CT) or magnetic resonance (MR) scan 
and stored in the DICOM format after the image for-
mation procedure. Series, scans or reports are usu-
ally safely stored in the hospital’s PACS and could 
be recalled by a radiologist or a clinician whenever 
needed. For instance, data retrieval is a fundamental 
step for reporting the result of the examination, identi-
fying any potential pathologic condition and giving the 
patient or other practitioners the relevant indications. 
Many critical and significant elements may be lost dur-
ing the conventional workflow because of the lack of 



Page 3 of 21Aiello et al. Insights Imaging          (2021) 12:164 	

standardization, the use of different formats or errors 
in the recording stage. We can recognize three funda-
mental actions, as shown in Fig. 1:

1.	 De-identification/anonymization: A DICOM file 
contains both the image and a large variety of data 
in the header. All of these elements can includeiden-
tifiable information about the patient, the study and 
the institution. Sharing such sensitive data demands 
proper protection in order to ensure data safety and 
maintain patient privacy [12].

2.	 Annotation/segmentation: This phase includes all 
the operations of delineation, demarcation, localiza-
tion and measurement of regions of interest (organs, 
lesions, suspicious or notable areas) within the diag-
nostic images [1]. As a final result, some quantitative 
data are reported with the images and could be used 
to build datasets for the development and validation 
of algorithms, models and the so-called semantic 
segmentation [13].

3.	 Clinical reporting: This operation includes the collec-
tion of data related to the patient’s pathological state, 
before and after the diagnostic session. A report usu-
ally includes critical data such as the clinical out-
comes, clinical characterization of the subjects and 
information about therapeutic treatments. Similar 
information has a huge potential in terms of data 

analysis but is often inaccessible due to the qualita-
tive and descriptive nature of these documents.

All the information processed and recorded during 
these steps should be prepared as efficiently as possible: 
The resulting datasets should be analyzed readily and 
should not require additional curation steps. In fact, any 
additional procedure would be infeasible, especially con-
sidering large amounts of data.

The FAIR Guiding Principles [14, 15] state that good 
data management is “the key conduit leading to knowl-
edge discovery and innovation, and to subsequent data 
and knowledge integration and reuse by the community 
after the data publication process.” FAIR, in fact, stands 
for findability, accessibility, interoperability and reusabil-
ity, which are perceived as the four key factors affecting 
data quality.

It is important to note that, in the age of machine learn-
ing, “reusability” refers to reuse not only by humans but 
also by machines. Consequently, it is important to con-
sider how to make data readable by machines in order to 
make best use of modern technologies.

Privacy and de‑identification
Privacy is one of the most discussed topics related to data 
collection, analysis and interpretation since, nowadays, 
these activities and their results are considered as a new 
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Fig. 1  Conventional radiological workflow and collection of information for big data analytics using specific DICOM tags. Blue arrows refer to the 
radiological workflow; green arrows refer to data collection for big data analytics
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business. Medical data may have several legitimate sec-
ondary uses, such as research projects or teaching, but 
it is strictly necessary to receive the informed consent 
from the patients. Another example is the development 
of decision support systems, which could be easily com-
mercialized as soon as the results of the digital toolkit 
are considered as adequate. Additionally, most personal 
data should be removed securely, even if in many cases 
some data or a link to personal data must be kept. The 
increasing demand for predictive models, clinical deci-
sion support systems and data analysis has led to a situ-
ation where the research needs are often in conflict with 
privacy rules [16]. At this moment, there is no commonly 
accepted solution since the amount and type of personal 
data requested by researchers varies on a case-by-case 
basis and the choice of information to be kept, modified 
or deleted depends on the purposes and regulations to 
comply with.

To overcome these problems, governments and insti-
tutions have developed rules and regulations that bring 
together privacy, data and research purposes. To this aim, 
some of the most requested and used regulations that 
must be considered to use data for research purposes are:

•	 HIPAA, 1996 Health Insurance Portability and Lia-
bility Act (HIPAA),

•	 GDPR, the general data protection regulation (EU) 
2016/679.

Specifically, the GDPR gives EU citizens or residents 
the right to request the deletion, modification or access 
of their data, while the HIPAA does not confer this right. 
The GDPR compliance affects all personal data, while the 
HIPAA is limited to the “Protected Health Information” 
(PHI), defined as information that can be used to directly 
or indirectly identify an individual in relation to his 
past, present or future health condition. In addition, the 
HIPAA contains the "Safe Harbor" method, which lists 18 
identifiers of types to be removed or modified, whereas 
there are no explicit lists of the elements to be eliminated 
in the GDPR.

Pseudonymization and anonymization are different 
ways to perform de-identification. Specifically, following 
the ISO 25237:2017 standard, anonymization is defined 
as a “process by which personal data are irreversibly 
altered in such a way that a data subject can no longer 
be identified directly or indirectly, either by the data con-
troller alone or in collaboration with any other party,” 
whereas pseudonymization is a “particular type of de-
identification that both removes the association with a 
data subject and adds an association between a particular 
set of characteristics relating to the data subject and one 
or more pseudonyms.”

From these definitions, anonymization can be used in 
accordance with HIPAA and both anonymization and 
pseudonymization are considered as “data processing” 
under the GDPR. In the latter case, the right of access, 
modification and cancellation of the citizen’s personal 
data must be guaranteed. However, as the anonymous 
data have no direct or indirect links to identify the origi-
nal patient, any additional processing or processing 
performed on that dataset falls outside the scope of the 
GDPR.

The implementation of de-identification on clinical 
diagnostic examinations passes through the search, elim-
ination and replacement of identifiers within the images 
and tags that describe them. Most DICOM objects 
contain demographic and associated medical images 
and information about the patient, which must be kept 
confidential or removed in case the tests are to be used 
for research purposes. As reported in the document 
“Security and Privacy in DICOM” [12], since 1999 the 
DICOM standard has included options to encrypt and 
protect data that move through the connections of net-
work in response to the implementation of HIPAA and 
not in response to cybersecurity problems; furthermore, 
in 2001 DICOM extended the use of the CMS (Crypto-
graphic Message Syntax) to encrypt DICOM data, allow-
ing the encryption of the PHI of a DICOM object.

Profiles and options to address the removal and 
replacement of attributes within a DICOM Dataset are 
reported in the Annex E of DICOM PS3.15 2020d. Spe-
cifically, it contains a Basic Profile with several retain 
or clean options, and other implementations such as 
“In standard Compliance of IOD.” Each attribute can be 
either replaced, cleaned, removed or kept, depending on 
the confidentiality level and the importance of the identi-
fier. The following tags should be added after the applica-
tion of one of the de-identification profiles, to retain the 
history of metadata as in Table 1.

There are various software tools to perform de-iden-
tification on DICOM images. Aryanto et  al. [11] offer a 
complete overview and critical analysis.

It is very important to mention that simply removing 
or modifying metadata in DICOM images may not be 
sufficient to prevent re-identification of the subject. In 
fact, topograms for CT data and ultrasound images may 
have patient information burned into the pixel data [17]. 
To manage this critical issue, some specific studies and 
tools are available to the scientific community [18–21]. 
In addition, it is demonstrated that humans or specific 
software could identify individual subjects by recon-
structing facial images contained in cranial MR or CT 
[22–24]. Further efforts are needed to develop reliable 
de-identification methods for medical images contain-
ing identifiable anatomical details, such as facial features. 
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Moreover, the creation of specific DICOM attributes that 
encode this operation is expected to fully standardize the 
de-identification procedures.

Annotation and segmentation
The key actions to extract fundamental features from 
medical images for both clinical decision making and 
research are annotation and segmentation. The annota-
tion procedure focuses on labeling images with addi-
tional information useful for data detection, classification 
and grouping [25–28]. In particular, this routine allows 
to transform descriptive and qualitative image features 
in machine-readable data, thus making them suitable for 
automatic image analyses as supervised artificial intelli-
gence (AI) methodologies [29]. Segmentation can be con-
sidered as a special case of annotation where one or more 
image areas are isolated in so-called regions of interest 
(ROI). Indeed, segmentation is based on drawing (manu-
ally, semi-automatically or fully automatically) a binary 
mask of pixels belonging to the ROI.

In the context of big data analytics, annotation and seg-
mentation routines are fundamental processes for data 
description, sharing and analysis. Furthermore, the huge 
amount of data to be managed requires approaches able 
to codify and standardize the annotation data.

To address this issue, the National Electrical Manu-
facturers Association (NEMA) developed DICOM-
RT, i.e., the first extension of the DICOM standard that 
could include information regarding annotations [30]. 

DICOM-RT was developed to specifically address the 
standardization of data deriving from radiotherapy (e.g., 
external beam, treatment planning, dose, radiotherapy 
images). In particular, five DICOM-RT objects were 
defined to manage: areas of significance (DICOM-RT 
Structure Set), transfer of treatment plans (DICOM-RT 
Plan), dose distribution of the radiation therapy plan 
(DICOM-RT Dose), radiotherapy images (DICOM-RT 
Image) and treatment session report (DICOM-RT Treat-
ment Record). Segmentation information provided as 
ROIs was specifically included in DICOM-RT Structure 
Set object and, conditionally for data containing dose 
points or dose curves, in DICOM-RT Dose object.

More recently, DICOM-SEG [31] has been introduced. 
It is a dedicated modality in which the annotation routine 
is encoded as text (Table 2) and the positional informa-
tion of the annotation is specified by a codified segmen-
tation image (image data).

It is worth mentioning that software to include seg-
mentation/annotation information as DICOM-SEG 
modality was developed, thus allowing the management 
of such information in DICOM. In particular, dedicated 
software packages as DCMTK [32], ITK [33, 34], dcmqi 
[10] (built upon DCMTK and ITK) and pydicom-seg [35] 
are suitable for this purpose.

Structured report
With the recent technical advances, the need to achieve 
full interoperability with the increasing amount of 

Table 1  The DICOM attributes to add after the application of the DICOM attribute confidentiality profiles

Type 3: optional; Type 1C: conditional

Attribute Tag Description Type

Private data element characteristics sequence attribute (0008, 0300) Characteristics of private data elements within or referenced in the cur-
rent SOP instance

3

Deidentification action sequence attribute (0008, 0305) Actions to be performed on element within the block that are not safe 
from identify leakage

3

Patient identity removed (0012, 0062) The true identity of the patient has been removed from the attributes 
and the pixel data

3

De-identification method (0012, 0063) A description or label of the mechanism or method use to remove the 
patient’s identity. May be multi-valued if successive de-identification 
steps have been performed

1C

De-identification method code sequence (0012, 0064) A code describing the mechanism or method use to remove the 
patient’s identity

1C

Burned in annotation attribute (0028, 0301) Indicates whether or not image contains sufficient burned in annotation 
to identify the patient and date the image was acquired

3

Recognizable visual features attribute (0028, 0302) Indicates whether or not the image contains sufficiently recognizable 
visual features to allow the image or a reconstruction from a set of 
images to identify the patient

3

Longitudinal temporal information modified (0028, 0303) Indicates whether or not the date and time attributes in the instance 
have been modified during de-identification

3

Encrypted attributes sequence attribute (0400, 0500) Sequence of items containing encrypted DICOM data 1C

Original attributes sequence attribute (0400, 0561) Sequence of items containing all attributes that were removed or 
replaced by other values in the top level dataset

3
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multi-modal patient data is arising. Structured report-
ing (SR) is becoming essential for clinical decision-mak-
ing and research applications, including big data and 
machine learning.

SR aims to standardize both the format and lexicon 
used in radiology reports [36]. A definition for SR is set 
by describing three increasing levels of SR according to 
Weiss and Bolos [37]: The first and basic level consists of 
a structured format with paragraph and subheadings; the 
second is marked by a consistent organization with items 
reported in a certain order; and the third and more com-
plex is characterized by the consistent use of dedicated 
lexicon and ontology.

The main reasons prompting to move from traditional 
free text reporting to standardized and structured report-
ing are summarized below and encompass both clini-
cal and research considerations [38–40]. First of all, the 
use of checklist-style SR and standardized SR templates 
ensures that all relevant items for a particular examina-
tion are addressed. This may reduce diagnostic error, 
improve report clarity and quality and ensure consistent 
use of terminology across practices. Secondly, the use of 
standardized lexicon and structure prevents ambiguity 
and facilitates comparability of disease states, treatments 
and any type of clinical results. Even if this constitutes 
guidance for referring physicians, it should be high-
lighted that a simple comparison of the results is crucial 
for clinical purposes.

Finally, the capability of SR to include quantitative 
imaging biomarkers (radiomics) and parameters (e.g., 

laboratory results) might make SR as “Big-data con-
tainer” leading not only to an integrated and precise clin-
ical decision (e.g., diagnosis, treatment option) but also 
to a substantial support for modern clinical research. The 
standardized structure and vocabulary typical of SR can 
be well suitable to be analyzed by computers, thus facili-
tating data sharing (e.g., registries and biobanks) or data 
mining in research [38–41].

In summary, a wide adoption of SR is critical not only 
for communicating results to physicians or patients, 
but also for making diagnostic imaging data suitable by 
AI algorithms. Clinical decision-making and research 
applications in AI and big data in medical imaging heav-
ily depend on data and standardization. One of the main 
challenges for the development of AI solutions for health 
care and radiology remains the unstructured nature of 
the data stored in electronic health records. In particu-
lar, radiological report data are often available only as 
unstructured narrative text [41–43].

The implementation of SR is complex and still scarce 
in clinical routine for several reasons. One of the biggest 
challenges in SR implementation is resistance to switch 
from the traditional narrative reporting to SR. Another 
issue concerns the risk of errors in case of improper use 
in clinical routine. Moreover, including unnecessary or 
irrelevant information in a template report may nega-
tively impact the coherence of the report and the sub-
sequent comprehension by referring physicians. Finally, 
the SR checklist schema may interfere with the radiolo-
gist’s reasoning and ability with a negative impact on the 

Table 2  Most pertinent/specific DICOM tags related to DICOM-SEG modality

Type 1: required (valid value); Type 3: optional; Type 1C: conditional

Attribute Tag Description Type

Image type (0008, 0008) Value reflecting if the image is primary or derived (value shall be 1 for DERIVED) 1

Instance number (0020, 0013) SOP instance number 1

Segmentation type (0062, 0001) Encoding properties of the segmentation (BINARY or FRACTIONAL) 1

Segmentation fractional type (0062, 0010) The meaning of fractional value (required for FRACTIONAL Segmentation type) 1C

Segments overlap (0062, 0013) Specify if one pixel can be in more than one segment 3

Segment sequence (0062, 0002) Description of the segment(s) 1

Segment number (0062, 0004) The number of the segment (unique) 1

Segment label (0062, 0005) User-defined label identifying the segment 1

Segment description (0062, 0006) User-defined description of the segment 3

Segment algorithm type (0062, 0008) Type of the algorithm used to generate the segment (AUTOMATIC, SEMIAUTOMATIC, 
MANUAL)

1

Segmented property category
Segmented property type

(0062, 0003)
(0062, 000F)

Sequence defining the specific property the segment represents 1

Definition source sequence (0008, 1156) Source sequence of the segment(s) 3

Segment algorithm name (0062, 0009) Name of the algorithm to generate the segment (required AUTOMATIC or SEMIAU-
TOMATIC in (0062,0008))

1C

Segmentation algorithm identifica-
tion attribute

(0062, 0007) A description of the segmentation algorithm 3
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search pattern and visual attention. The so-called eye-
dwell phenomenon may happen in case radiologists are 
more focused on the report template rather than the 
images. This may not only increase reporting time, but 
generate errors or missed findings [38–40].

Several steps were made by healthcare providers in 
order to overcome the above-mentioned limitations and 
encourage the use of uniform language and structure in 
radiology reporting, which are the basis for successfully 
implementing SR in clinical practice. For instance, RSNA 
developed RadLex, a standardized ontology of radiologi-
cal terms in constant updating and developed starting 
from SNOMED-CT. RadLex can be used together with 
popular medical lexicons such as SNOMED-CT, ICD-
10, CPT and BrainInfo [44]. Moreover, RSNA started the 
so-called Reporting Initiative with the aim of developing 
and providing vendor-neutral reporting templates [45]. 
This led to the publication of the Management of Radiol-
ogy Report Templates profile by IHE, which extensively 
describes the concepts and technical details for inter-
operable, standardized and structured report templates 
[46].

Since an essential requirement for the successful imple-
mentation of SR is to respect the current radiology work-
flow, the DICOM standard plays a key role [5]. Given its 
potentiality, NEMA introduced the DICOM-SR which 
defines the syntax and semantics of structured and stand-
ardized diagnostic reports. An exhaustive description of 
DICOM-SR can be found in Clunie’s work [47]. Briefly, 
like a DICOM image, the DICOM-SR has a header, which 
encodes the information of the patient and study identi-
fication, and a content, that instead is responsible for the 
coding of the report itself. The information elements in 
the report are hierarchically connected in a tree model, 
identifying the Sources and Targets Nodes and their rela-
tionships. Each element has a name and a value, forming 
the pairs Name-Value [48, 49]. DICOM-SR contains text 
with links to other data such as images, waveforms and 
spatial or temporal coordinates. Although DICOM-SR is 
not as widespread as DICOM for digital images, its use 
has many advantages [50, 51]. DICOM-SR documents 
can be stored and sent along with the images belong-
ing to the same study in PACS. In addition, DICOM-SR 
supports unified lexicons such as RadLex, ICD-10 and 
SNOMED. Finally, DICOM-SR templates have been 
defined to constrain the possible structures and to pro-
vide the basic codes that can be used to encode spe-
cific reports [50]. Specifically, a DICOM-SR template is 
applied to the document content to harmonize its struc-
ture. Each template is assigned to an unique template 
identifier (TID) with a related name and is specified by 
a table where each line corresponds to a so-called node 

with defined content item or indicates another template 
to be included in the SR document [48]. A specific limi-
tation of DICOM-SR is that even if it provides a data 
structure which embeds structured reports in a stand-
ard “container” that can be read across different software 
applications, it does not define how the content should 
be structured or standardized.

Table 3 and Fig. 2 show the definition of the DICOM-
SR Template for a Measurement Report and its sub-tem-
plates (TID 1500 from DICOM PS3.16 and PS3.21).

Similar to DICOM-SEG, several efforts have been made 
in software development supporting the management of 
structured reports in DICOM standard [10, 32–34].

Materials and methods
To evaluate the degree of effective use of the DICOM 
standard in the previously detailed actions (i.e., de-iden-
tification/anonymization, segmentation/annotation and 
clinical reporting), two different experiments have been 
designed and will be described in the following para-
graphs. The first explores the DICOM coding of infor-
mation in the main databases shared by the scientific 
community, whereas the second investigates and evalu-
ates the possibility of managing DICOM fields with a sys-
tematic selection of DICOM visualization software.

Imaging database evaluation
The databases included in our benchmark have been 
collected by a quasi-systematic internet survey, starting 
from four well-known lists of public repositories [52–55].

The study of databases aims to identify the type of 
information released and to evaluate its standardization. 
In particular, in this analysis we intend to verify whether 
the DICOM standard is used to collect, where possible, 
the information available.

Each database has been evaluated considering its 
modality of access and several key features, described 
hereafter. Furthermore, we performed a three-step 
review of the available repositories, in order to select 
which of them were suitable for this project. The datasets 
released up to March 1, 2021, were included. The detailed 
description of the database selection criteria is as follows:

Step 1:

•	 Access: We looked for open or public access. In par-
ticular, repositories which required an application 
with a project, or private datasets were not consid-
ered.

•	 Format: Only datasets providing imaging scans in 
DICOM format were selected.
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Table 3  DICOM SR template for measurement report, template ID 1500 (from DICOM PS3.16)

NL Rel with parent VT Concept name VM RT Cond Value set constraint

1  >  CONTAINER DCID 7021 “Measurement report 
document titles”

1 M Root node

2  >  HAS CONCEPT MOD INCLUDE DTID 1204 “Language of content 
item and descendants”

1 U

3  >  HAS OBS CONTEXT INCLUDE DTID 1001 “Observation context” 1 M

4  >  HAS CONCEPT MOD CODE EV (121,058, DCM, “Procedure 
reported”)

1-n U BCID 100 “Quantitative Diagnostic 
Imaging Procedures”

5  >  CONTAINS INCLUDE DTID 1600 “Image library” 1 U

6  >  CONTAINS CONTAINER EV (126,010, DCM, “Imaging 
measurements”)

1 C IF row 10 and 12 are absent

6b  >>  HAS CONCEPT MOD INCLUDE DTID 4019 “Algorithm identifica-
tion”

1 U

7  >>  CONTAINS INCLUDE DTID 1410 “Planar ROI measure-
ments and qualitative evaluations”

1-n U $Measurement = BCID 218 “Quanti-
tative Image Features”
$Units = BCID 7181 “Abstract 
Multi-dimensional Image Model 
Component Units”
$Derivation = BCID 7464 “General 
Region of Interest Measurement 
Modifiers”
$Method = BCID 6147 “Response 
Criteria”
$QualModType = BCID 210 “Qualita-
tive Evaluation Modifier Types”
$QualModValue = BCID 211 “Quali-
tative Evaluation Modifier Values”

8  >>  CONTAINS INCLUDE DTID 1411 “Volumetric ROI 
measurements and qualitative 
evaluations”

1-n U $Measurement = BCID 218 “Quanti-
tative Image Features”
$Units = BCID 7181 “Abstract 
Multi-dimensional Image Model 
Component Units”
$Derivation = BCID 7464 “General 
Region of Interest Measurement 
Modifiers”
$Method = BCID 6147 “Response 
Criteria”
$QualModType = BCID 210 “Qualita-
tive Evaluation Modifier Types”
$QualModValue = BCID 211 “Quali-
tative Evaluation Modifier Values”

9  >>  CONTAINS INCLUDE DTID 1501 “Measurement and 
qualitative evaluation group”

1-n U $Measurement = BCID 218 “Quanti-
tative Image Features”
$ImagePurpose = BCID 7551 
“Generic Purpose of Reference to 
Images and Coordinates in Meas-
urements”
$Units = BCID 7181 “Abstract 
Multi-dimensional Image Model 
Component Units”
$Derivation = BCID 7464 “General 
Region of Interest Measurement 
Modifiers”
$Method = BCID 6147 “Response 
Criteria”
$QualModType = BCID 210 “Qualita-
tive Evaluation Modifier Types”
$QualModValue = BCID 211 “Quali-
tative Evaluation Modifier Values”

10  >  CONTAINS CONTAINER EV (126,011, DCM, “Derived imag-
ing measurements”)

1 C IF row 6 and 12 are absent

10b  >>  HAS CONCEPT MOD INCLUDE DTID 4019 “Algorithm identifica-
tion”

1 U

11  >>  CONTAINS INCLUDE DTID 1420 “Measurements 
derived from multiple ROI meas-
urements”

1-n U
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•	 Species: We considered only humans, whereas there 
were few databases with rodents, small animals or 
phantom images.

Step 2:
Among selected databases providing images in 

DICOM format, we excluded those not including any 
additional information than the acquired images. Spe-
cifically, we considered the repositories having at least 
one of the following additional resources, not necessar-
ily provided in DICOM format:

•	 annotations/segmentations;
•	 radiologist reports;
•	 any clinical information.

In this step, the databases that provided clinical 
information, in any format, were included. The lat-
ter criterion was adopted since, in this step, we aimed 
to verify how many databases had sufficient informa-
tion to reconstruct dedicated DICOM-SR. Specifically, 
we considered this condition verified in the following 
cases:

1.	 traceability of the referenced images;
2.	 clinical information related to single imaging modal-

ity.

Step 3:
From the repositories identified in step 2, we selected 

databases that provided additional information accord-
ing to the DICOM standard. In particular, we excluded 
all databases not including at least DICOM-SEG or 
DICOM-SR. In the case of TCIA repository, we used 
the TCIA portal (https://​nbia.​cance​rimag​ingar​chive.​
net/​nbia-​search) for selection and filtering of the col-
lections. Moreover, the collections containing the TCIA 
third-party analysis results provided in DICOM-SEG or 
DICOM-SR modalities were also included. In particular, 

the aforementioned derived data corresponded to con-
tributions generated by researchers who were not part of 
the group which originally submitted the related TCIA 
collection.

In order to test the actual presence of available DICOM 
images, and any associated additional information in 
DICOM format, each dataset was inspected in its entire 
content. Specifically, the first patient folder containing 
DICOM images was opened by using PostDicom soft-
ware (https://​www.​postd​icom.​com/), which allows the 
reading of DICOM series. Exploiting PostDicom’s ability 
of reading information encoded in both the DICOM-SEG 
and DICOM-SR, the same procedure was performed for 
the associated additional information in DICOM format 
(if present).

Furthermore, to complement the analysis, it was con-
sidered appropriate to investigate the sharing of imag-
ing data during the spread of coronavirus disease 2019 
(COVID-19). The COVID-19 pandemic required a joint 
effort for the urgent development of tools and data shar-
ing to better face the emergency. In this situation, diag-
nostic imaging also plays a crucial role since the virus 
can generate a viral lung infection with a typical pattern 
in the chest computed tomography (CT), such as ground 
glass opacity, crazy-paving pattern and consolidation 
[56].

In particular, initiatives for the development of auto-
matic diagnostic support tools based on AI techniques 
for diagnosis and clinical prediction have proliferated 
[57]. For the development of these tools, it is essential to 
make available large and curated datasets that include, 
in addition to imaging scans, information relating to the 
segmentation of regions of interest (i.e., lesions generated 
by viral pneumonia) and information related to the clini-
cal status of the subject and the clinical outcome [58–61]. 
It is clear that, in this context, the use of standards plays 
a key role and, therefore, the analysis of CT COVID-19 
datasets sharing deserves particular attention.

NL, nesting level, defining the tree structure and depth; VT, value type; BCID, baseline context group identifier; DCID, defined context group identifier; VM, value 
multiplicity, defining if a tree node may appear only once or can be repeated; RT, requirement type, defining if a tree node is mandatory or optional; EV, enumerated 
value

Table 3  (continued)

NL Rel with parent VT Concept name VM RT Cond Value set constraint

12  >  CONTAINS CONTAINER EV (C0034375, UMLS, “Qualitative 
evaluations”)

1 C IF row 6 and 12 are absent

12b  >>  HAS CONCEPT MOD INCLUDE DTID 4019 “Algorithm identifica-
tion”

1 U

13  >>  CONTAINS CODE 1-n U

13b  > >  HAS CONCEPT MOD CODE BCID 210 “Qualitative evaluation 
modifier Types”

1-n U BCID 211 “Qualitative Evaluation 
Modifier Values”

14  >>  CONTAINS TEXT 1-n U

https://nbia.cancerimagingarchive.net/nbia-search
https://nbia.cancerimagingarchive.net/nbia-search
https://www.postdicom.com/
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TID 1500
Measurement Report

TID 1204
Language of Content
Item and Descendants

TID 1002
Observer Context

TID 1005
Procedure Context

TID 1006
Subject Context

TID 1001
Obserer Context

TID 1003
Person Observer
Identifying Attributes

TID 1004
Device Observer
Identifying Attributes

TID 1007
Subject Content,
Patient

TID 1008
Subject content,
Fetus

TID 1009
Subject content,
Specimen

TID 1010
Subject content,
Device

TID 1007
Subject content,
Specimen

TID 1600
Image Library

TID 1410
Obserer Context

TID 1411
Volumetric ROI
measurements

TID 1501
Measurement Group

TID 1420
Measurements Derived from
Multiple ROI Measurements

TID 1602
Image Library Entry
Descriptiors

TID 1601
Image Library Entry

TID 1602
Image Library Entry
Descriptiors

TID 1603
Image Library Entry Descriptiors
for Projection Radiography

TID 1604
Image Library Entry Descriptiors
for Cross-Sectional Modalities

TID 1605
Image Library Entry Descriptiors
for CT

TID 1606
Image Library Entry Descriptiors
for MR

TID 1607
Image Library Entry Descriptiors
for PET

TID 1603
Image Library Entry Descriptiors
for Projection Radiography

TID 1604
Image Library Entry Descriptiors
for Cross-Sectional Modalities

TID 1605
Image Library Entry Descriptiors
for CT

TID 1606
Image Library Entry Descriptiors
for MR

TID 1607
Image Library Entry Descriptiors
for PET

TID 1502
Time Point Context

TID 1419
ROI Measurements

TID 310
Measurements
Properties

TID 315
Equation or Table

TID 1000
Quotation

TID 4019
Algorithm
Identification

TID 1502
Time Point Context

TID 1419
ROI Measurements

TID 310
Measurements
Properties

TID 315
Equation or Table

TID 1000
Quotation

TID 4019
Algorithm
Identification

TID 1502
Time Point Context

TID 300
Measurements

TID 310
Measurements
Properties

TID 315
Equation or Table

TID 320
Image or Spatial
Coordinates

TID 321
Waveform or
Temporal Coordinates

TID 1000
Quotation

TID 4108
Tracking Identifier

TID 4019
Algorithm
Identification

Fig. 2  DICOM SR measurement report template structure (template ID 1500) and its sub-templates (from DICOM PS3.21). TID: template ID, MR, 
magnetic resonance; CT, computed tomography; PET, positron emission tomography
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For this purpose, publicly accessible datasets including 
chest CT images with COVID-19 lesions, available at the 
first pandemic year (up to March 2021), have been iden-
tified in leading scientific research repositories. For each 
dataset, a sample of the data was downloaded to verify 
the format used for the release of CT scans and associ-
ated segmentations and clinical information.

Imaging software evaluation
In this section, we specifically consider the analysis of the 
software tools suitable for the diagnostic workflow. For 
this reason, the tools allowing at least the direct visuali-
zation of the DICOM images have been focused on, and 
their ability to manage the other data curation actions 
has been analyzed.

The software and tools included in our benchmark 
have been collected by a quasi-systematic Internet sur-
vey using the I Do Imaging (IDI) [62] initiative. Moreo-
ver, all software tools listed in the DICOM/PACS viewer 
webpage of Radiology Cafè [63] have been included to 
account for relevant software tools intended for clinical 
use.

The first includes all free software tools released and 
reviewed for research purposes, whereas the latter 
includes all software tested by a consultant radiologist 
and thought to represent the best currently available 
online, including core functionalities required by a radi-
ologist for reviewing studies and/or teaching. In order to 
meet our evaluation criteria, the IDI database has been 
filtered for DICOM support, display of images and rank 
greater than four stars. Note that we have not included 
software or tools with no rating. Each software has been 
evaluated according to the following inclusion criteria:

•	 DICOM format: We have considered only software 
tools that could at least read a DICOM series.

•	 Display: This is a mandatory requirement, each soft-
ware should, at least, display the image contained in a 
DICOM series.

•	 License: We considered free or open-source software. 
Commercial software or tools were included only if a 
free trial version was available.

After selecting software tools that fulfilled the inclusion 
criteria, we considered the following features for the soft-
ware evaluation procedure:

•	 De-identification: Software that could modify a 
DICOM header, e.g., editing or removing tag values 
and save back all the de-identified personal informa-
tion;

•	 Segmentation and annotation: Software and tools 
that could read and/or write a DICOM file with 
segmentations or annotations, using the dedicated 
DICOM tags;

•	 Structured report: Reading and writing DICOM 
structured reports, i.e., enclosed documents or data.

To evaluate if a specific software was able to read a 
DICOM-SR file, we checked if DICOM-SR content was 
successfully read by the software and displayed to the 
operator.

In order to test the functionality of the software 
selected in the management of the DICOM fields, spe-
cific “probe” datasets have been created. Two exem-
plary DICOM publicly available folders, specifically 
downloaded from TCIA Prostate-diagnosis [64] and 
CMET-MRhead [65], served for this scope. For the seg-
mentation and annotation functionalities, the data were 
already embedded as DICOM-SEG modality in CMET-
MRhead repository. Conversely, since NRRD format 
was used for these data types in Prostate-Diagnosis 
repository, dcmqi tool [10] was used to convert NRRD 
segmentations to DICOM-SEG. To generate DICOM-
SR from the probe datasets, the template TID1500 
“Measurement Report” was used (from DICOM PS3.16, 
http://​dicom.​nema.​org/​medic​al/​dicom/​curre​nt/​output/​
html/​part16.​html#​sect_​TID_​1500). In particular, for 
both probe datasets, basic measurements (e.g., mean, 
standard deviation, median, range, volume) were evalu-
ated on the original DICOM images by means of the 
associated DICOM-SEG and encapsulated in DICOM-
SR by using the dcmqi package [10].

All software and tools ran on a Windows V10 operating 
system, except for the Horos DICOM Viewer that was 
tested on Mac OS Catalina V10.15.6.

Results
Imaging database evaluation
Regarding the selection of databases to be analyzed, 210 
databases were identified after the quasi-systematic web 
survey. 100 repositories were collected after the first 
selection criteria (step 1), among which 83 databases 
were selected by applying the criteria of step 2.

In step 3, we identified which of the 83 detected data-
bases provided additional information according to the 
DICOM standard. In particular, we excluded all data-
bases not including at least DICOM-SEG or DICOM-SR. 
After the exclusion of 49 items, 34 datasets were finally 
selected (Fig. 3).

Table 4 shows the 83 databases identified after step 2, 
with lines colored in bold corresponding to the 34 data-
sets selected after applying step 3 criteria, including their 
characteristics (e.g., dataset name, collection, pathology) 

http://dicom.nema.org/medical/dicom/current/output/html/part16.html#sect_TID_1500
http://dicom.nema.org/medical/dicom/current/output/html/part16.html#sect_TID_1500
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and additional information other than DICOM images 
(e.g., CI, clinical info; A/S, annotations/segmentations; 
CR, clinical report). Focusing on the seventh, eighth 
and ninth columns (CI, A/S, CR), it is evident that, 
respectively:

•	 No clinical information, when available, is reported 
in DICOM format. Of the 67 databases including 
clinical information, only 29 provided clinical infor-
mation that are sufficient to reconstruct DICOM-SR;

•	 Twenty-seven out of 56 databases that contain the 
definition of regions of interest use the DICOM-SEG 
format.

•	 Twenty-four datasets providing clinical reports, out 
of 83, use the DICOM-SR format. Furthermore, it 
was verified that all datasets comply with the correct 
DICOM format for data de-identification.

Of note, the highest result variability was found for 
A/S data (eighth column in Table  4). Indeed, excluding 
databases that provided segmentation or annotation in 
DICOM-SEG, ten databases released segmentation data 
in DICOM-RT, ten databases in image format (eight in 
NIfTI, one in mhd and one in NRRD data type), nine 
stored in tabular format (XLS and CSV data type) and 
nine stored in structured data format (four in XML and 
five in JSON data type). Except for image format, the 
remaining data formats require dedicated routines to 
manage A/S information by associating file content to 
positional information.

Focusing on the COVID-19 databases, 12 datasets have 
been identified [66–77]. Of note, we found that only two 
of the reviewed COVID-19 datasets were released in 
DICOM format [76, 77].

Five datasets use a non-specific image format for the 
medical domain as portable network graphics [66–68], 
tagged image file format [69] and hierarchical data format 
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Fig. 3  Flow diagram describing the process of imaging database evaluation and selection. DICOM, Digital Imaging and Communications in 
Medicine; DICOM-SEG, DICOM segmentation object; DICOM-SR, DICOM structured report object
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Table 4  Selected databases (n = 83) providing additional information other than DICOM images

Dataset name Dataset 
collection

Pathology Region Modality Number 
of 
samples

CI A/S CR TCIA analysis 
results

PNEUMONIA RSNA Pneumonia Lung RX 30,000 N Y (JSON) N

CT Lymph 
Nodes

TCIA Lymphad-
enopathy

Abdomen, 
mediastinum

CT 176 N Y (NIfTI) N

Pancreas-CT TCIA Healthy con-
trols

Pancreas CT 82 N Y (NIfTI) N

Prostate-3 T TCIA Prostate cancer Prostate MR 64 N Y (.mhd) N

RIDER Lung 
CT

TCIA Lung cancer Chest CT 32 N Y (XLS), Y*a, YR N [78, 79]

Brain-Tumor-
Progression

TCIA Brain cancer Brain MR 20 N Y* N

CBIS-DDSM TCIA Breast cancer Breast MG 1566 N Y* N
QIN LUNG CT TCIA Non-small cell 

lung cancer
Lung CT 47 N Ya (NIfTI), Y*a N [78–82]

4D-Lung TCIA Non-small cell 
lung cancer

Lung CT 20 N YR N

AAPM RT-MAC 
Grand Chal-
lenge 2019

TCIA Head and neck 
cancer

Head–neck MR 55 N YR N

Head–Neck 
Cetuximab 
(RTOG 0522)

TCIA Head and neck 
carcinomas

Head–neck CT, PT 111 N YR N

LCTSC TCIA Lung cancer Lung CT 60 N YR N

MRI-DIR TCIA Squamous cell 
carcinoma

Head and Neck MR, CT 9 N YR N

Anti-PD-1 
Lung

TCIA Lung cancer Lung CT, PT, SC 46 N Y*a Y*a [83]

Anti-PD-1_
MELANOMA

TCIA Melanoma Skin CT, MR, PT 47 N Y*a Y*a [83]

CT Colonog-
raphy (ACRIN 
6664)

TCIA Colon cancer Colon CT 825 Yb N N

LDCT-and-Pro-
jection-data

TCIA Various Head, chest, 
abdomen

CT 300 Yb N N

NSCLC-
Radiomics-
Genomics

TCIA Lung cancer Lung CT 89 Yb N N

REMBRANDT TCIA Low- and high-
grade glioma

Brain MR 130 Yb N N

Acrin-FLT-
Breast (ACRIN 
6688)

TCIA Breast cancer Breast PET, CT, OT 83 Y N N

Acrin-FMISO-
Brain (ACRIN 
6684)

TCIA Glioblastoma Brain CT, MR, PT 45 Y N N

ACRIN-NSCLC-
FDG-PET 
(ACRIN 6668)

TCIA Non-small cell 
lung cancer

Lung PT, CT, MR, CR, 
DX, SC, NM

242 Y N N

CPTAC-CM TCIA Cutaneous 
melanoma

Skin MR, CT, CR, PT, 
pathology

94 Y N N

CPTAC-LSCC TCIA Squamous cell 
carcinoma

Lung CT, CR, DX, 
NM, PT, pathol-
ogy

212 Y N N

CPTAC-LUAD TCIA Adenocarci-
noma

Lung CT, MR, PT, CR, 
pathology

244 Y N N
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Table 4  (continued)

Dataset name Dataset 
collection

Pathology Region Modality Number 
of 
samples

CI A/S CR TCIA analysis 
results

TCGA-CESC TCIA Cervical 
squamous cell 
carcinoma and 
endocervical 
adenocarci-
noma

Cervix MR, pathology 54 Yb N N

TCGA-ESCA TCIA Esophageal 
carcinoma

Esophagus CT, pathology 16 Yb N N

TCGA-KICH TCIA Kidney chro-
mophobe

Kidney CT, MR, pathol-
ogy

15 Y N N

TCGA-KIRP TCIA Kidney renal 
papillary cell 
carcinoma

Renal CT, MR, PT, 
pathology

33 Y N N

TCGA-PRAD TCIA Prostate cancer Prostate CT, PT, MR, 
Pathology

14 Y N N

TCGA-READ TCIA Rectum 
adenocarci-
noma

Rectum CT, MR, pathol-
ogy

3 Y N N

TCGA-SARC​ TCIA Sarcomas Chest, abdo-
men, pelvis, 
leg, TSpine

CT, MR, pathol-
ogy

5 Y N N

TCGA-STAD TCIA Stomach 
adenocarci-
noma

Stomach CT, pathology 46 Yb N N

TCGA-THCA TCIA Thyroid cancer Thyroid CT, PT, pathol-
ogy

6 Y N N

LGG-1p19qDe-
letion

TCIA Low grade 
glioma

Brain MR 159 Yb Y (NIfTI) N

Lung Fused-
CT-Pathology

TCIA Lung cancer Lung CT, pathology 6 Yb N N

LungCT-Diag-
nosis

TCIA Lung cancer Lung CT 61 Yb Y (XLS), Ya 
(NIfTI)

N [80–82]

Prostate-
Diagnosis

TCIA Prostate cancer Prostate MR 92 Yb Y (.NRRD) N

PROSTATEx TCIA Prostate cancer Prostate MR 346 Yb Y (CSV) N

SPIE-AAPM 
Lung CT Chal-
lenge

TCIA Lung cancer Lung CT 70 Yb Y (XLS) N

Head-Neck-
Radiomics-
HN1

TCIA Head and 
neck cancer

Head–neck CT, PT, SEG 137 Yb Y*,YR N

NSCLC-Radi‑
omics

TCIA Lung cancer Lung CT, SEG 422 Yb Y*, Ya (NIfTI), 
YR

N [84–86]

NSCLC-Radi‑
omics-Inter‑
observer1

TCIA Non-small cell 
lung cancer

Lung CT, SEG 22 Yb Y*, YR N

TCGA-GBM TCIA Glioblastoma 
multiforme

Brain MR, CT, DX, 
pathology

262 Y Y*a, Ya (NIfTI, 
XML)

N [87–90]

TCGA-LGG TCIA Low-grade 
glioma

Brain MR, CT, 
pathology

199 Y Y*a, Ya (NIfTI) N [88–90]

Head-Neck-
PET-CT

TCIA Head and neck 
cancer

Head–neck PT, CT 298 Yb YR N

HNSCC TCIA Head and neck 
squamous cell 
carcinoma

Head–neck CT, PT, MR 627 Y YR N
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Table 4  (continued)

Dataset name Dataset 
collection

Pathology Region Modality Number 
of 
samples

CI A/S CR TCIA analysis 
results

HNSCC-3DCT-
RT

TCIA Head and neck 
squamous cell 
carcinoma

Head–neck CT, DICOM-RT, 
RTDOSE

31 Yb YR N

OPC-Radi-
omics

TCIA Oropharyngeal Head-and-
neck

CT, DICOM-RT, 
Clinical

606 Yb YR N

Soft-tissue-
Sarcoma

TCIA Soft-tissue 
sarcoma

Extremities FDG-PET/CT, 
MR

51 Y YR N

CPTAC-CCRCC​ TCIA Clear cell 
carcinoma

Kidney CT, MR, 
pathology

222 Y Y*a Y*a [83]

CPTAC-GBM TCIA Glioblastoma 
multiforme

Brain CT, CR, SC, 
MR, pathol‑
ogy

189 Y Y*a Y*a [83]

CPTAC-
HNSCC

TCIA Head and 
neck cancer

Head–neck CT, MR, SC, 
pathology

112 Y Y*a Y*a [83]

CPTAC-PDA TCIA Ductal adeno‑
carcinoma

Pancreas CT, MR, DX, 
PT, XA, CR, 
US, pathol‑
ogy

168 Y Y*a Y*a [83]

TCGA-BLCA TCIA Bladder 
endothelial 
carcinoma

Bladder CT, CR, MR, 
PT, DX, 
pathology

120 Y Y*a Y*a [83]

TCGA-COAD TCIA Colon adeno‑
carcinoma

Colon CT, pathology 25 Y Y*a Y*a [83]

TCGA-LUSC TCIA Lung squa‑
mous cell 
carcinoma

Lung CT, NM, PT, 
pathology

37 Y Y*a Y*a [83]

TCGA-UCEC TCIA Uterine 
corpus 
endometrial 
carcinoma

Uterus CT, CR, MR, 
PT, pathology

65 Y Y*a Y*a [83]

Breast-MRI-
NACT-Pilot

TCIA Breast cancer Breast MR, SEG 64 Yb Y* Y*a [91]

C4KC-KiTS TCIA Kidney cancer Kidney CT, SEG 210 Yb Y* N
ISPY1 (ACRIN 
6657)

TCIA Breast cancer Breast MR, SEG 222 Yb Y* Y*a [91]

NSCLC-
Radiogenom‑
ics

TCIA Non-small cell 
lung cancer

Chest PT, CT, SEG, 
SR

211 Yb Y (XML), Y*, 
Y*a

Y*a [83]

TCGA-HNSC TCIA Head and 
neck squa‑
mous cell 
carcinoma

Head-neck CT, MR, PT, 
Pathology

227 Y Y*a, YR Y*a [83]

LIDC-IDRI TCIA Lung cancer Chest CT, CR, DX 1010 Yb Y (XML), Y*a Y*a [78, 79, 92–95]

QIN-Head‑
Neck

TCIA Head and 
neck carcino‑
mas

Head-neck PT, CT, SR, 
SEG, RWV

156 Yb Y* Y*

CPTAC-UCEC TCIA Corpus 
endometrial 
carcinoma

Uterus CT, MR, PT, 
CR, DX, SR, 
pathology

250 Y Y*a Y* (incom‑
plete SR), Y*a

[83]

TCGA-KIRC TCIA Kidney renal 
clear cell 
carcinoma

Renal CT, MR, CR, 
pathology

267 Y Ya (XLS) Y*a [96]

TCGA-BRCA​ TCIA Breast cancer Breast MR, MG, 
pathology

139 Y Ya (XLS) Y*a [91, 97–102]

TCGA-LIHC TCIA Liver hepa‑
tocellular 
carcinoma

Liver MR, CT, PT, 
pathology

97 Y Ya (XML) Y*a [96]
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[70]. The remaining datasets [71–75] use the NIfTI for-
mat for CT scans and, when available, segmentation 
images.

Imaging software evaluation
Although the following software met the inclusion cri-
teria, CollectiveMinds (www.​cmrad.​com) was excluded 
since it resulted a Web platform for collaborative report-
ing, accessible only to licensed medical doctors and 
Papaya (http://​mango​viewer.​com/​papaya.​html) was 
excluded since it was based on the same API of Mango. 

Finally, ten software tools resulted from the quasi-sys-
tematic selection, as listed in Table 5.

All software tools proved to be suitable in basic opera-
tions such as loading, selecting, viewing and manipulat-
ing the raw images from the probe datasets.

The third and fourth columns of Table  5 show the 
results, in dichotomous representation, of the software 
evaluation with the respect to annotation/segmentation 
and structured report, respectively.

For each selected software tool, the aforementioned 
procedures were tested for both reading and writing 

Table 4  (continued)

Dataset name Dataset 
collection

Pathology Region Modality Number 
of 
samples

CI A/S CR TCIA analysis 
results

TCGA-LUAD TCIA Lung adeno‑
carcinoma

Chest CT, PT, NM, 
pathology

69 Y Ya (XLS) Y*a [96]

TCGA-OV TCIA Ovarian 
serous 
cystadenocar‑
cinoma

Ovary CT, MR, 
pathology

143 Y Ya (XLS) Y*a [96]

CPTAC-SAR TCIA Sarcomas Various (11 
locations)

CT, MR, PT, 
SR, pathology

94 Y N Y* (incom‑
plete SR)

Breast Diag‑
nosis

TCIA Breast cancer Breast MR, PT, CT, 
MG

88 Yb N Y (.XLS), Y*a [91]

COVID-19-AR TCIA COVID-19 Chest CT, CR, DX 105 Y N N

MIDRC-
RICORD-1a

TCIA COVID-19 Chest CT 110 Yb Y (.JSON) N

MIDRC-
RICORD-1b

TCIA COVID-19 Chest CT 117 Yb N N

MIDRC-
RICORD-1c

TCIA COVID-19 Chest CR, DX 361 Yb Y (.JSON) N

ELCAP Public 
Lung Image 
Database

NA Lung cancer Lung CT 50 N Y (.CSV) N

I2CVB Prostate NA Prostate cancer Prostate MR 12 Y N N

MIMBCD-UI 
UTA4

MIMBCD Breast cancer Breast US, MG, MRI 3 Y N N

MIMBCD-UI 
UTA7

MIMBCD Breast cancer Breast US, MG 6 Y Y (.JSON) N

MIMBCD-UI 
UTA10

MIMBCD Breast cancer Breast US, MG 6 Y Y (.JSON) N

eNKI_RS_TRT​ NKI_RS No Brain MRI 24 Y N N

TCIA, The Cancer Imaging Archive; CT, computed tomography; MR, magnetic resonance; PT (or PET), positron emission tomography; SR, structured report; CR, 
computed radiography; MG, mammography; DX, digital radiography; XA, X-ray angiography; SC, secondary capture; NM, nuclear medicine; OT, other modality; RWV, 
real-world value; CI, clinical info; No, number of cases; A/S, annotations/segmentations; CR, clinical report; JSON, JavaScript object notation; NIfTI, Neuroimaging 
Informatics Technology Initiative; CSV, comma separated value; XLS, excel spreadsheet; XML, extensible markup language; NRRD, nearly raw raster data; mhd, 
MetaImage; Y, yes; N, no; NA, not applicable

Lines with bold correspond to the finally selected datasets (n = 34)
* Additional information provided according to DICOM format (DICOM-SEG for annotations/segmentations and DICOM-SR for clinical reports)
a Annotations/segmentations and/or clinical reports provided by researchers who were not part of the group which originally submitted the related TCIA collection, 
with related references reported in “TCIA analysis results” column
b Clinical info supposed to be enough to reconstruct DICOM-SR (namely if related imaging series is provided and/or if the clinical information refers to a single 
imaging modality)
R Annotations/segmentations provided as DICOM-RT

http://www.cmrad.com
http://mangoviewer.com/papaya.html
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operations. The following results summarize the soft-
ware evaluation procedure:

•	 Four out of ten analyzed software tools were able to 
modify DICOM header by editing DICOM tag val-
ues.

•	 None of the selected software tools allows the writ-
ing of regions of interest in the DICOM-SEG format; 
at the same time, two software tools (PostDicom and 
3D Slicer) allow DICOM-SEG reading.

•	 Four software tools (Radiant, PostDicom and Horos 
Viewer) allow the reading of information encoded 
in the DICOM-SR format, and none of the analyzed 
software tools allows DICOM-SR writing.

Of note, 3D Slicer software allows both writing 
DICOM-SEG and reading DICOM-SR images by the 
use of “QuantitativeReporting” extension (https://​qiicr.​
gitbo​ok.​io/​quant​itati​verep​orting-​guide/).

In addition, only two software tools (Horos Viewer 
and MricROgl) allow the de-identification of DICOM 
folders in full compliance with the DICOM standard.

Discussion
In the era of big data, it is increasingly important to pay 
attention and care to data management in order to fully 
exploit the potential of modern analytical techniques. 
The definition and the proper use of standards certainly 
play a leading role in this perspective.

The DICOM standard has been described and evalu-
ated for a series of key actions involved in the radiological 

workflow. The results of our research first show that the 
DICOM format fully supports them, allowing to encap-
sulate in a single format much of the information neces-
sary for subsequent analytical phases.

Considering a typical radiomic workflow [98, 99], an 
artificial system can find appropriately de-identified 
data, information related to the patient’s clinical sta-
tus (DICOM-SR) and information on the localization of 
the region of interest within a single DICOM folder. For 
example, the details concerning the ROI (DICOM-SEG) 
can be useful to calculate the radiomic descriptors, thus 
favoring the aggregation of suitable data to develop reli-
able systems for classification or prediction of clinical 
outcomes.

It is interesting to note that although the DICOM for-
mat has considerable potential to foster big data analyt-
ics, it is only partially exploited in the sharing of imaging 
data for research purposes.

The results of the imaging database evaluation show 
that the DICOM-SR format is rarely used to contain clin-
ical information. It should be pointed out that all the 24 
datasets providing clinical reports released such informa-
tion in DICOM-SR format according to guidelines drawn 
up for challenge tasks or specific initiatives [83, 91, 92, 
96]. Moreover, regarding DICOM-SEG, one-third of the 
analyzed datasets use different and not fully standardized 
formats to share information on regions of interest. On 
this topic, the “DICOM4QI” initiative is worthy of note; 
it aims at evaluating interoperability of the image analy-
sis tools and workstations, applied to exchange of the 

Table 5  Evaluation of DICOM viewers included in the study

Y, yes; N, no; P, partial
* DICOM-SEG successfully loaded but misinterpreted by the software
** Including “QuantitativeReporting” extension (https://​qiicr.​gitbo​ok.​io/​quant​itati​verep​orting-​guide/)

Software DE-ID DICOM-SEG DICOM-SR License Release date Link

Reading Writing Reading Writing

RadiAnt N N* N Y N Free trial + commercial 29/04/2020 https://​www.​radia​ntvie​wer.​com/

ProSurgical3D N N N N N Free trial + commercial 25/06/2019 https://​www.​strat​ovan.​com/​
produ​cts/​pro-​surgi​cal-​3d

PostDicom N Y N Y N Free trial + commercial N/A https://​www.​postd​icom.​com/

Horos Viewer Y N N Y N LGPL-3.0 19/12/2019 https://​horos​proje​ct.​org/

3D Slicer P Y Y** Y** N BSD-style 22/05/2019 https://​www.​slicer.​org/

Mango P N N N N RII-UTHSCSA 24/03/2019 http://​ric.​uthsc​sa.​edu/​mango/

ITK-SNAP N N N N N GNU General Public License 12/06/2019 http://​www.​itksn​ap.​org/​pmwiki/​
pmwiki.​php

mEDinria N N N N N BSD 4-Clause 11/06/2020

mricROgl Y N N N N BSD 2-Clause 31/3/2020 https://​www.​nitrc.​org/​proje​cts/​
mricr​ogl

BrainVISA Anatomist N N N N N CeCILL License V 2 25/09/2018 http://​brain​visa.​info/​web/​index.​
html

https://qiicr.gitbook.io/quantitativereporting-guide/
https://qiicr.gitbook.io/quantitativereporting-guide/
https://qiicr.gitbook.io/quantitativereporting-guide/
https://www.radiantviewer.com/
https://www.stratovan.com/products/pro-surgical-3d
https://www.stratovan.com/products/pro-surgical-3d
https://www.postdicom.com/
https://horosproject.org/
https://www.slicer.org/
http://ric.uthscsa.edu/mango/
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://www.nitrc.org/projects/mricrogl
https://www.nitrc.org/projects/mricrogl
http://brainvisa.info/web/index.html
http://brainvisa.info/web/index.html
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quantitative image analysis results using DICOM stand-
ard [7, 9, 10].

The imaging software evaluation shows that the sup-
port provided by software to fully exploit the potential of 
the DICOM format is still considerably limited, reduc-
ing the possibility for researchers and clinicians to create 
and make available suitable DICOM datasets. Therefore, 
there is a need to spur the development of initiatives 
that increase the attention on radiological software not 
only for the visualization reporting, but also for prepar-
ing datasets suitable for big data analytics. Interesting 
and helpful initiatives, such as OHIF viewer initiative 
[103] and NCI Imaging Data Commons (IDC), should be 
highlighted. Although not included in the present study, 
the first aimed to deliver an extensible platform to sup-
port site-specific workflows and accommodate evolving 
research requirements, according to DICOM specifica-
tions. Instead, IDC highlighted the role of the DICOM 
format as a cornerstone for sharing data and harmoniz-
ing analyses [104].

The need to promote the DICOM standard is addition-
ally demonstrated by the analysis of the CT COVID-19 
datasets. Indeed, only the two most recent COVID-19 
collections released CT data in DICOM format. Although 
DICOM is the format used in the clinical acquisition rou-
tine, its limited adoption may indicate that the actual 
emergency conditions enhance the difficulty in finding 
adequate tools to manage the standard and, therefore, to 
promptly proceed to the de-identification, sharing and 
care of data. This difficulty may therefore lead research-
ers to use alternative formats easier to manage and dis-
seminate, such as textual tables and non-medical image 
data.

It is important to note that this work includes databases 
mainly oriented to oncological studies, although this was 
not a prerequisite. Indeed, neurological studies, in which 
diagnostic images play a decisive role [105–107], have not 
been evaluated due to the definition of ad hoc standards 
and tools to manage and share neuroimaging data. In this 
field, the dedicated standard named Brain Imaging Data 
Structure (BIDS) [108] has been developed to organize 
and describe neuroimaging data with the use of different 
file formats than DICOM (e.g., NIfTI, JSON, text files). 
Similar to the DICOM, the BIDS standard allows to man-
age both metadata and derived quantitative measure-
ments, opening to automated data analysis workflows.

It should be considered that, to enhance the feasibil-
ity of this work, narrow inclusion criteria that could 
not allow a comprehensive analysis were chosen and, 
therefore, it is not possible to exclude that some useful 
data have been neglected. For example, software tools 
and databases whose release requires the submission 

and approval of specific research projects were not 
considered.

Conclusions
In conclusion, this work provides an overview of the 
potential, not always exploited, of the DICOM format 
for capitalizing the radiological workflow from a big 
data perspective. The analysis of both the databases 
and the software shows that further efforts are needed 
by researchers, clinicians and companies to promote 
and facilitate the use of standards to increase the value 
of imaging data, according to FAIR principles.
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