
Iglesias et al. Insights Imaging          (2021) 12:117  
https://doi.org/10.1186/s13244-021-01052-z

EDUCATIONAL REVIEW

A primer on deep learning and convolutional 
neural networks for clinicians
Lara Lloret Iglesias1*  , Pablo Sanz Bellón2,3  , Amaia Pérez del Barrio2,3  ,  
Pablo Menéndez Fernández‑Miranda2,3  , David Rodríguez González1  , José A. Vega4,5, 
Andrés A. González Mandly2,3 and José A. Parra Blanco2,3 

Abstract 

Deep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural 
networks has drastically improved the learning capabilities of computer vision applications, being able to directly con‑
sider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive 
momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks 
predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an 
intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.
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Introduction
Artificial intelligence (AI) is defined as the intelligence 
demonstrated by machines, in contrast to the natural 
intelligence displayed by humans. Despite the hype that 
is currently encountering, it is not something as new as 
one may imagine. Most of the people consider that the 
historical article written by Turing in 1950 [1] established 
the beginning of this new field by asking a simple ques-
tion: Can machines think? AI includes what was later 
called Machine Learning, but the first AI algorithms did 
not actually learn. The first AI computer programs were 
based on the so-called symbolic AI. This first approach 
consisted on programming a set of rules large enough to 
manipulate knowledge and reached its height of popu-
larity during the boom of expert systems in the eighties. 
Symbolic AI was probed to work fine for logic problems 
where the rules were clear, such as chess playing, but 
were useless for more diffuse and perceptual problems 
such as the recognition and manipulation of images, 

voice, language. This is where the learning approach 
comes into play.

The learning approach
The concept of machine learning arose from the need of 
answering certain questions that were not covered by the 
symbolic AI, where all the rules to solve certain problem 
should be coded by some expert. Some of these open 
issues were:

•	 Can a computer program go beyond what we know 
how to code?

•	 Can a computer program learn just by looking at the 
data?

•	 Can a computer program even surprise us?

The main idea behind Machine Learning is to let the 
computer learn directly by exposing it to a large number 
of examples of a given situation or class. The Machine 
Learning algorithm will then automatically develop a 
model that can deduce and generalize the examples it 
was exposed to and make predictions from it for totally 
new cases. This allows to develop systems capable of 
tasks so diverse as predicting house prices by looking at 
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the historical behavior of the real-estate market (regres-
sion problem) or a system that is able to learn how to 
distinguish two different varieties of glioblastoma that 
it has never seen before just by looking at many differ-
ent samples of magnetic resonance images (MRI) of both 
categories (classification problem). At the end of the day, 
this is similar to the way in which we humans learn: by 
exposition to many examples allowing us to generalize a 
certain concept. In the context of medical imaging, there 
are currently two main different types of learning: super-
vised learning and unsupervised learning. In the super-
vised learning approach, the learning algorithm receives 
as input a series of data tagged with the correct answer 
or label. This means that, in the case of the glioblastoma 
classification, the machine learning system would have 
access to several MRI of each of the two glioblastomas 
types with a label for each of them indicating to which 
category it belongs. One can easily see the improve-
ment with respect to the symbolic AI: in the symbolic 
AI approach, some expert should have found and coded 
the rules allowing to distinguish the two different types 
of tumors. This often implies having a well-established 
metric on how to distinguish the categories to be pre-
dicted, something that is usually not the case in computer 
vision problems. Actually, most of the mechanisms used 
by humans to perform daily actions, such as recogniz-
ing faces or even speaking or understanding the context 
of a sentence, would be very difficult to wrap up into 
some coded rules. The paradigm shift between classical 
programming or symbolic AI and the machine learning 
approach can be easily understood by looking at Fig. 1.

In the unsupervised learning approach, the learning 
algorithm does not receive the labels. Instead, it only 
receives some input data and the algorithm alone will 
work on its own to extract the information needed to 
solve the problem under study. One of the most common 

tasks to be solved with an unsupervised approach is the 
clustering. It consists in grouping a set of objects in such 
a way that objects in the same group (called a cluster) are 
more similar, according to a certain metric, to each other 
than to those in other groups. For the glioblastoma case 
previously mentioned, this would imply to just give the 
algorithm as input a set of brain MRI without any fur-
ther indication and let the system learn whether there are 
some meaningful features allowing to separate the data-
set into categories. This can be an easy task if we want to 
separate very obvious categories such as images of green 
circles from images of red circles, but can become really 
complicated for more multidimensional tasks. Some of 
the advantages of the unsupervised learning approach is 
that it could allow us to really learn new things about the 
problem. For instance, it may find three different tumor 
categories instead of two, potentially allowing us to dis-
cover nuances in brain cancer diagnosis that escaped the 
human experience. Besides, it is much easier to find unla-
belled data than finding some expert willing to tag a big 
dataset for training a supervised algorithm. On the other 
hand, the main disadvantage of the unsupervised learn-
ing is that, nowadays, the algorithms are still less accurate 
and trustworthy than the supervised methods.

It is important to note that, even if we have focused on 
supervised and unsupervised learning, there are other 
learning approaches less used for now in the medical 
context, but still worth mentioning:

•	 The semi-supervised learning approach combines 
both supervised and unsupervised learning. In this 
case, the algorithm can learn from a mixture of 
labelled and unlabelled data. This approach includes 
a range of possible techniques that are outside the 
scope of this paper.

Fig. 1  Classical programming vs supervised learning approach



Page 3 of 11Iglesias et al. Insights Imaging          (2021) 12:117 	

•	 The reinforcement learning approach is concerned 
with how software agents should take actions in an 
environment by maximizing some portion of a cer-
tain cumulative reward. These are goal-oriented 
algorithms, which learn how to attain a complex 
objective (goal) or how to maximize along a particu-
lar dimension over many steps. For example, they 
can maximize the points won in a game over many 
moves. This approach is widely used in robotics now-
adays.

In this section, the different types of learning avail-
able for machine learning algorithms have been summa-
rized. For the examples in this article, we will be focused 
on classification problems using the supervised learning 
approach since it is the most widely used nowadays in 
medicine as it has proved its success for many different 
applications.

How computers see images
In order to understand how machine learning algorithms 
and, more specifically Convolutional Neural networks, 
work with images, one needs to understand how comput-
ers actually see these images. Figure 2 shows the matrix 
representation of a black and white image [2]. Since this 
is a 8 bits image, the pixels can take values from 0 to 
255 (28 = 256) depending on the tonality of gray. For the 
images in color, the matrix representation would be the 
same, but instead of a single matrix, there will be three 
matrices corresponding to the red, green and blue color 
whose values will also range from 0 to 255. The mix of 
these three color channels will form the final image as 
can be seen in Fig. 3.

Now that we know how computers represent images, 
let us do a small exercise. Let us take for instance the left 
image in Fig. 4. Imagine you need to separate the green 
points from the blue points. This would be what we 
have previously defined as a classification problem. Just 
by looking at the image any person would imagine the 
straight line separating both categories. But, what hap-
pens if you are told to give the equation of this straight 
line? Since there are no graduated axes and probably you 
have not done this exercise in quite a longtime, probably 
it will take you a couple of minutes to figure out which is 
the answer. Let us now imagine that we rotate and trans-
late the axes as in the central image in Fig. 4. For more 
clarity, the right image in Fig. 4 shows the new x axis par-
allel to the text. The problem has not changed. Just the 
representation of the data has changed by performing a 
linear transformation. If we are asked now to separate 
green points and blue points, we would not even need 
10 s: points with x > 0 are blue, and points with x < 0 are 
green. What has happened here? By changing the repre-
sentation of the data, we have transformed a slightly dif-
ficult problem into a much easier problem to solve. This 
concept of representation change is paramount when 
understanding how Machine Learning and Deep Learn-
ing algorithms work. Since we have already seen that, 
for a computer, an image is just a set of values forming 
a matrix, we can easily understand that there is no much 
difference between the two-dimensional example in 
Fig.  4 and a multidimensional image matrix. Thus, our 
goal in an image-based classification problem would be 
to find alternative representations of the raw image val-
ues until we find a new way of looking at the data where 
the problem becomes easier. The two-dimensional prob-
lem in Fig. 4 was very easy to solve by eye, but in real live 

Fig. 2  Matrix representation of a 8-bits black and white image. The values range from 0 to 255
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problems are much more complicated. This means that 
we would like to have some way for efficiently and sys-
tematically finding and testing new representations until 
we find the optimal one. This process of automatically 
searching for the optimal solution (or representation) for 
our problem is exactly what the Machine Learning algo-
rithms do.

Neural networks
Artificial neural networks offer a way of achieving a sys-
tematic search for the optimal solution to the problem 
to be solved. Their elementary units, the neurons, are 
slightly inspired by the biological neurons: an artificial 
neuron receives one or more inputs (corresponding to 
postsynaptic potentials of the biological neurons den-
drites in the biological analogy) and sums them to pro-
duce an output (or activation, representing a neuron’s 

Fig. 3  The three color channels (red, green, blue) of a retina image for diabetic retinopathy detection

Fig. 4  Solving a two-dimensional classification problem by eye by changing the data representation
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action potential which is transmitted along its axon). 
Each input is separately weighted, and their sum is 
passed through a nonlinear function known as activation 
function. Without the activation function, the neural net-
work could only solve linear problems. These functions 
work similarly to the threshold potentials needed to reg-
ulate and propagate signaling in the nervous system. The 
choice of these activation functions is one of the hyper-
parameters in a learning algorithm, which means that it 
is up to us to decide which one to use. Figure 5 shows the 
structure of an artificial neuron.

The W matrix and the b or bias factor are first applied 
to the input data x in order to perform a linear transfor-
mation (rotation + translation, respectively) similarly 
as in the 2D example in Sect.  3. The σ in this case is a 
particular and widely used activation function called sig-
moid. The shape of the sigmoid function can be seen in 
Fig. 6. The sigmoid gives smoother output values than a 
simple step function, is differentiable and presents a very 
nice property: its derivative depends on the function 
itself.

We will later see that this is a desirable feature for an 
activation function.

Learning process
Let us now see how the learning process works. For most 
of its range, the sigmoid function will return values close 
to 1 or close to 0. This makes this function very appro-
priate for binary problems, like in the case of the clas-
sification problem in Fig. 4. The output of the activation 
function can then be taken as the answer to the prob-
lem: an output value of 0 can correspond to blue and a 
value of 1 to green, or the other way around: it does not 

σ
′

(x) = σ(x) ∗ (1− σ(x))

matter as long as we keep the criteria consistent. We can 
take each of the data points in Fig. 4 and pass it through 
the neuron. In this case, the input is bidimensional cor-
responding to the x and y coordinates of each of the data 
points, i.e., the input value is X = (xinput, yinput). Taking 
one set of values from our input dataset through one 
single neuron (also called forward propagation), the full 
expression is shown in Fig.  7. where the W matrix and 
the bias b correspond, in this first iteration, to some ran-
dom values. The L is the so-called loss function. This is a 
function accounting for how well we are performing. It 
depends on a (the prediction) and y (the true label of the 
data points, i.e.: 0 in the case of blue and 1 in the case of 
green). This is where the labels in the supervised learning 
approach come into play. In order to learn with a super-
vised algorithm, we need to know beforehand the cate-
gory of our data points. The L should be small when we 
are performing well (i.e., predicting properly the category 
of each data point) and should be big when we are not 
doing a good job. This means that, for an optimal solu-
tion, the loss function should be as small as possible. This 
transforms our learning problem into a minimization 
problem. We need to minimize the loss function.

This minimization process is what we call learning. 
One can decide which is the loss function depending 
on the problem to be solved, for instance, as an exam-
ple, the loss function can just be the mean squared error 
between the prediction a and the real label y. The mean 
squared error is calculated as the average of the squared 

Fig. 5  Structure of a single neuron in an artificial neural network

Fig. 6  Sigmoid function

Fig. 7  Forward propagation of a single neuron
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differences between the predicted and actual values or 
labels, i.e., Σ(ai − yi)2. The result is always positive, and 
a perfect algorithm will give a value of 0. The squar-
ing means that larger mistakes result in more error than 
smaller mistakes, i.e., the model is punished for making 
larger mistakes. Another possible choice for loss function 
is the cross-entropy function, widely used for classifica-
tion problems. For the educational purpose of this docu-
ment, understanding the mean squared error would be 
enough.

After the first pass through the neuron with random 
values for W and b, the second iteration will not be ran-
dom at all. We want to learn which are the values of W 
and b so that L is as small as possible. For this, we will 
calculate the derivatives and update the values of W and 
b according to the direction of the minimum. This can be 
better understood taking a look at Fig. 8 where a hypo-
thetical curve of L versus W is plotted. After the first 
iteration of our neuron, the W value can be either greater 
or smaller than the W minimizing the L function (Wmin). 
For this particular problem, if the W value is smaller 
than Wmin (point 1 in Fig. 8), the slope at that point, and 
hence, the derivative dL/dW, would be negative. In the 
same way, if the W value is greater than Wmin (point 1 in 
Fig. 8), the derivative at that point would be positive. This 
means that, in both cases, if we subtract the derivative 
from the initial random value of W, we would be going in 
the direction of the Wmin as indicated by the red arrows 
in Fig. 8.

The same is valid also for the value of b. After the first 
iteration, the values of W and b can be updated by the 
formula in Fig.  9. The computation of the gradient of 
the loss function with respect to the weights of the net-
work (W and b) is called backpropagation. The term α in 
Fig. 9 is known as the learning rate. The derivative gives 
the direction of the step in the direction of the mini-
mum, and the learning rate gives the magnitude of the 
step. α is another of the model hyperparameters. In the 
case of α, we must take into account that if it is too large, 
we may take steps that are too big and we may miss the 
minimum. If the learning rate is too small, the learning 

process will be too slow since we will be approaching the 
minimum with tiny steps.

The process will be then repeated with all the points in 
Fig. 4, updating for each iteration the values of W and b 
so that they come always closer to the ones that minimize 
the loss function, optimizing thus the performance of the 
algorithm.

Multilayer neural networks
For very simple problems, one single neuron can be 
enough. Usually in a real-life problem, one needs more 
than one data representation change in order to solve it. 
This is where the term network comes into play. For com-
plicated problems, one would need many different repre-
sentations of the data, that will be combined among them 
to create further representations, that will in turn com-
bine, etc., in order to reach the optimal representation 
allowing to solve the image classification problem or any 
other problem one may want Machine Learning to solve. 
This stack of combined representations can be nicely vis-
ualized with the shape of a network. Figure 10 shows one 
of these neural networks, where each of the connected 
nodes represents one neuron as the one showed in “Con-
volutional Neural Networks” section. We call this type of 
networks fully connected neural networks since all the 
neurons in one layer are connected with all the neurons 
in the following layer. The layer of a neural network is 
a collection of neurons operating together at a specific 
depth within a neural network. The input layer contains 
the raw data. The hidden layers are the ones between 
input layers and output layers. The number of hidden lay-
ers is another model hyperparameter to be chosen during 

Fig. 8  Minimization of a parable. The random W value at point 1 
presents a negative slope while at point 2 presents a positive slope

Fig. 9  Derivative calculation using the chain rule and update of the 
W and b parameters in the direction of the minimum

Fig. 10  Neural network with 5 hidden layers



Page 7 of 11Iglesias et al. Insights Imaging          (2021) 12:117 	

optimization. Figure 10 represents a neural network with 
5 hidden layers.

The optimization process described in the previous 
section, where a function is minimized by iteratively 
moving in the direction of steepest descent as defined by 
the negative of the gradient, is called gradient descent.

The learning process described for a single neuron 
would be the same in a neural network with several lay-
ers. The expressions are similar to the ones in Fig. 9, the 
fact of having many layers will be reflected in the amount 
of terms in the different expressions when applying the 
chain rule to calculate the gradient, but the procedure 
will be similar as in the case of just one neuron.

We have based our example in a 2D problem for clarity 
purposes, but everything explained here can be trivially 
generalized to a N-dimensional dataset.

Some additional comments
It can be observed that all the expressions in this section 
are written in matrix form. This is one of the advantages 
of the gradient descent method: it allows to compress 
the equations with a very simple notation. Besides, many 
programming languages work optimally with matrices, 
speeding dramatically the calculations with respect to 
looping over all the variables at every iteration. Also, as it 
was previously mentioned, choosing activation functions 
whose derivative depends on the function itself allows to 
have the value of the derivative calculated when perform-
ing the backpropagation (explained in “Learning process” 
section), since it was already obtained in the forward 
propagation step. This greatly improves the computa-
tional performance of the learning algorithm.

On the other hand, an appropriate choice of the model 
hyperparameters plays a key role in the success of a neural 
network model. The learning rate, the type of activation 
functions and the number of hidden layers have already 
been mentioned as some of the main ones. Another 
hyperparameter that is worth mentioning is the number 
of epochs which indicates the number of times that the 
learning algorithm will work through the entire train-
ing dataset. Datasets are usually grouped into batches, 
especially when the amount of data is very large. During 
the learning process, the value of the model weights is 
updated every time the algorithm works through each of 
the data batches. The amount of data from the original 
dataset in each of the batches is also a hyperparameter to 
be set by the machine learning practitioner.

Why the deep in deep learning?
The depth of a neural network is its number of neuron 
layers. Deep Learning refers to the fact of having many 
more layers than in the so-called Machine Learning 

algorithms together with all the issues arose from it. The 
philosophy is the same for both cases but, having more 
layers usually implies further problems. We summarize 
here three of the most common issues in Deep Learning:

•	 Vanishing gradient: the sigmoid activation function 
presents derivatives very close to zero for most of its 
range. This is not important when having a few lay-
ers, but for very deep neural networks, the product 
of many values too close to zero can result in a neural 
network that is unable to learn. This is easy to under-
stand taking a look at the expressions in Fig.  9 and 
imagining what happens if the da/dz factor is very 
small. For Deep Learning algorithms, specific acti-
vation functions are used, such as ReLU [3] or leaky 
ReLU (see Fig. 11), where the derivatives values (and 
hence the gradients) are greater than for a sigmoid. 
Each problem is different, but a rule of thumb can 
be to use ReLU (or leaky ReLU) for the hidden lay-
ers and use the sigmoid only for the last layer when 
working on a binary classification problem.

•	 Overfitting problems: Overfitting occurs when a 
good fit is achieved on the training data, while the 
model does not generalize well on new, unseen data. 
This means that the model has learned patterns 
specific to the training data, which are irrelevant to 
other new or different data. This can also happen in 
Machine Learning algorithms, but are more of an 
issue for Deep Learning models due to the larger 
amount of neurons. It can be easily understood 
thinking about the number of neurons as if it were 
the degree of a polynomial: the greater the degree, 
the easier it is to find a curve passing by all the N 
points. But if we add a new point to the dataset, most 
probably the perfect N-points fit would fail on the 
N + 1 point, meaning that the model is not general 
enough for this specific problem. Several regulariza-
tion methods have been developed to avoid the over-
fitting, such as dropout, data augmentation or L1/L2 
regularization. The dropout technique consists of 
randomly dropping out nodes during the training to 
avoid the over specialization of some neurons. The 

Fig. 11  ReLU and leaky ReLU activation functions
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data augmentation technique is used to increase the 
amount of data by adding slightly modified copies of 
already existing data or newly created synthetic data 
from existing data, so that the algorithm does not see 
the same data twice. When working with images, the 
modifications can be geometric transformations, flip-
ping, color modification, cropping, rotation, noise 
injection, random erasing, etc.

	 The L1/L2 regularization techniques consist of add-
ing a penalty term to the loss function: the absolute 
value of the magnitude of the network weights for L1 
and the squared magnitude for L2.

	 When minimizing this modified loss function, the 
penalty term (that is always positive since it is either 
a magnitude or its squared value) will advantage net-
work weights as small as possible while still trying to 
optimize the network performance. This will help the 
neural network to regularize itself, since it will favor 
simpler models. This can be understood again in 
terms of a fit to a polynomial: trying to have smaller 
polynomial coefficients will lead to a simpler model 
that will not try to perfectly fit every single outlier in 
the training dataset, but to give a more general result 
that will potentially have a better performance when 
exposed to new data.

	 In any case, the generalization to new data is still one 
of the major problems of AI, especially in the medical 
context where datasets are sometimes not as large, 
varied and balanced as desirable.

•	 Convergence problems: a fast convergence of the 
gradient descent algorithm to the minimum is not 
guaranteed. The optimization algorithm to be used 
is another hyperparameter and a correct choice can 
mean the difference between good results in minutes, 
hours, or days. Several optimization algorithms have 
been developed to improve the convergence prob-
lems, such as the Adam optimization [4]. This algo-

rithm uses the squared gradients to scale the learning 
rate and it takes advantage of adaptive momentum by 
using the moving average of the gradient instead of 
gradient itself.

Convolutional neural networks
Until now, we have described how the learning algo-
rithms work on general N-dimensional data points, but 
all what has been explained previously can be applied 
to images. The computational structure of images was 
described in Sect. 3, and it was already explained that, at 
the end of the day, images are just matrices and can be 
treated in the same way as we have shown in the previ-
ous sections. Nevertheless, to deal with images we must 
introduce Convolutional Neural Networks. This type 
of Neural Networks has established the state of the art 
in computer vision since 2012, when they beat all their 
competitors at the ImageNet Large Scale Visual Recogni-
tion Challenge in 2012 [5].

The convolutional neural networks employ a special-
ized kind of linear operation called convolution. Con-
volutional networks are simply neural networks that use 
convolution in place of general matrix multiplication in 
at least one of their layers. Figure  12 shows the general 
architecture of a ConvNet where multiple filters are taken 
to slice through the image and map them one by one 
learning different portions of an input image. One can 
imagine a small filter sliding left to right across the image 
from top to bottom and that moving filter is looking for, 
say, some vertical edge. Each time a match is found, it is 
mapped out onto an output image called feature map.

An example of a filter can be seen in Fig. 13. The image 
on the left shows the pixel representation of a vertical line 
filter and the image on the right shows its visualization.

During the sliding through the input images in the 
neural network, the filter pixel values are multiplied by 

Fig. 12  General convolutional neural network architecture
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the pixel values of the image section. If the image pre-
sents some feature similar to the vertical line at that 
particular position, the result of the multiplication will 
be a high value scalar while, if the shape at that point 
is completely different from a vertical line, the result-
ing scalar will be of smaller value. The feature map is 
then a matrix formed by all these scalars, giving infor-
mation on the presence and on the location of the par-
ticular feature: if the original input image had a vertical 
straight line on the top left corner, the corresponding 
feature map matrix will present greater values on that 
same corner. This means that, each feature map is the 
mapping of a certain feature in the original image (see 
Fig. 14). Hence, the convolutional part of a neural net-
work creates a new representation of the original image 
by extracting and separating the main relevant features 
of it. By main relevant features, we mean here the opti-
mal features for solving a certain problem such as how 

to distinguish the two different varieties of glioblas-
toma mentioned in Sect.  2 or the classification of the 
objects that a self-driven car has in front of it.

Since usually various dozens of filters are needed to 
solve an image classification problem and each filter gen-
erates a corresponding feature map that is given as input 
to the following layer in the neural network, the prob-
lem’s size can scale very quickly.

To alleviate this effect, there are several methods to 
reduce the dimensionality of the feature maps. One of the 
most widely used is the so-called max-pooling.

It consists on going through the feature map, usually 
with a sliding window of 2 × 2, taking the maximal pixel 
value on that square. A graphical illustration of this can 
be seen in Fig. 15.

Another well-known type of pooling is the average 
pooling which, instead of taking the maximal value, takes 
the average of all the values in the feature map.

For the convolutional neural networks, the filter values 
are the ones to be learnt (the W and b following our ter-
minology). As for the fully connected neural networks, 
the first iteration will have random filters, and all the 

Fig. 13  Pixel representation of a vertical line filter (left) and its visualization (right)

Fig. 14  Extraction of features from the original image by using 
sliding filters

Fig. 15  Max-pooling applied to a feature map, reducing its 
dimensionality
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optimization process will take place by applying the gra-
dient descent method until it reaches the optimal set of 
filters.

After the convolutional part where the features are 
extracted, these features are given as input to a fully 
connected network that will perform the classification 
as explained in previous sections. The fact that the fea-
tures of interest are learnt during the optimization rep-
resents another great step forward with respect to more 
classical algorithms in computer vision, where some 
expert should first extract by hand the features under 
consideration for solving the problem (feature engi-
neering) and then give them as input to the classifica-
tion algorithm.

An interesting fact that makes the convolutional neu-
ral networks so competitive when dealing with images 
is that they are translation invariant. This means that if 
one shifts an image a bit, it would have a similar activa-
tion map as the image before shifting. This is because 
the convolution is a feature detector, independently of 
the position of the feature. The translation invariance 
of the convolutional neural networks allows to learn 
using only very few parameters with respect to classical 
methods.

Transfer learning
The traditional supervised learning approach breaks 
down when we do not have sufficient labelled data for 
the task we care about to train a reliable model. This is 
often the case when dealing with medical images. Trans-
fer learning is the capacity of learning a new task through 
the transfer of knowledge from a related task that has 
already been learned. This can be achieved thanks to the 
hierarchical way in which the neuronal networks learn. 
The first layers in a model working to classify images will 
learn very general visual features such as intersections, 
straight lines, simple curves, dots. These basic image 
components are common to any type of picture we will 
be working with. As one goes deeper into the layers of 
the model, the algorithm will extract more complex fea-
tures that are also more specific of the particular problem 
being studied.

This means that we can train a model to perform image 
classification using a big dataset (typically ImageNet [6]) 
and then re-use it to perform another task where we do 
not have that many data. For doing so, the first layers 
of the neural network can be left frozen during the new 
training, i.e., the filter weights will not change. The small 
dataset will then be only used to learn the filter weights 
on the last layers who are in charge of the problem spe-
cific features extraction. This allows to make a better 
exploitation of small datasets, fully using the relevant 

information to extract the most meaningful features and 
transferring the most general parts of the model from a 
different problem where more data are available. This 
technique is widely used nowadays in the medical field. 
As an example, an extensive review of its use for the dia-
betic retinopathy case can be found at [7].

Limitations
There is no doubt that deep learning has managed to 
achieve a very important scientific milestone in many 
different areas, including medicine. But these new tech-
niques still present some limitations to be widely used 
in the clinical practice. One of the problems come from 
the variability of the data itself (e.g., contrast, resolution, 
signal to noise) which make the Deep Learning models 
suffer from a poor generalization when the training data 
come from different machines (different vendor, model, 
etc.) with different acquisition parametrization or any 
underlying component that can cause the data distribu-
tion to shift. These over-parametrized models have a high 
tendency to rely on superfluous correlations and are very 
sensitive to any shift caused by external factors such as 
different scanner or acquisition protocols.

This generalization gap can be partially mitigated 
through some techniques. Some of them have already 
been introduced in this article, and some of them are 
still being widely explored. The easiest one relies on 
the fact that all deep learning methods perform better 
when there is more data to train the model. This is also 
a problem in medicine, since it is not easy for single sites 
to generate a large amount of data and manual labels. 
Working in multi-center initiatives and crowd sourc-
ing can be an efficient approach to achieve such useful 
resources. Other approaches that will have a great impact 
in this kind of problem rely on generative models. One of 
the disadvantages is that the most prominent generative 
models such as generative adversarial networks (GANs) 
[8] usually require a large amount of data, and it can take 
non-desirable shortcuts to model the underlying distri-
bution. Recent likelihood-based models [9] showed some 
improvements; however, it is still very difficult to model 
such high dimensional distributions. Another approach, 
also concerning unlabelled data, is the use of semi-super-
vised learning methods, that can yield improvements 
even when working with small datasets. A possible way 
to minimize the problem of creating a great amount of 
manual annotations is to use active learning, where the 
most uncertain predictions are selected for manual cor-
rection before re-training the model.

Another big issue is the lack of model interpretability 
and explainability of the deep learning models. This is 
common to all areas, but in some of them, such as medi-
cine and health care, not addressing such challenge might 
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seriously limit the chances of adoption, in real practice, 
of computer-based systems that rely on these complex 
nonlinear models. Currently, many techniques tackling 
this very important issue are being explored and great 
advances are being achieved in this direction [10].

Finally, it is necessary to address one of the main prob-
lems that is transversal to all the other mentioned issues: 
the feedback loop between the deep learning practitioner 
and the health professional is paramount to be able to 
make real advances and to build robust models both from 
a mathematical and from a medical point of view. Pro-
jects with a multidisciplinary approach, containing peo-
ple from different domains, are thus essential to make the 
most of these very powerful techniques and to be able to 
use them confidently in a clinical routine.

Conclusions
This document summarizes for non-deep learning 
experts and clinicians in particular, the main aspects to 
understand how neural networks work, placing empha-
sis on the convolutional neural networks that represent 
the state-of-the-art algorithms for image analysis. The 
concepts of automatic learning and data representation 
have been reviewed together with the functioning of the 
neurons in a neural network and the main advantages 
and problems, emphasizing that deep learning is not just 
a multilayered machine learning approach, but it also has 
to do with the consequent improvement and optimiza-
tion of the learning algorithms to make neural networks 
more robust. The intention of this work was to introduce 
the basics and set a strong foundation for clinicians on 
the topic so that they can continue building on top of it 
with more advanced concepts.
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