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Fully automated pelvic bone segmentation 
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Abstract 

Background:  Accurate segmentation of pelvic bones is an initial step to achieve accurate detection and localisation 
of pelvic bone metastases. This study presents a deep learning-based approach for automated segmentation of nor-
mal pelvic bony structures in multiparametric magnetic resonance imaging (mpMRI) using a 3D convolutional neural 
network (CNN).

Methods:  This retrospective study included 264 pelvic mpMRI data obtained between 2018 and 2019. The manual 
annotations of pelvic bony structures (which included lumbar vertebra, sacrococcyx, ilium, acetabulum, femoral head, 
femoral neck, ischium, and pubis) on diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) 
images were used to create reference standards. A 3D U-Net CNN was employed for automatic pelvic bone segmen-
tation. Additionally, 60 mpMRI data from 2020 were included and used to evaluate the model externally.

Results:  The CNN achieved a high Dice similarity coefficient (DSC) average in both testing (0.80 [DWI images] and 
0.85 [ADC images]) and external (0.79 [DWI images] and 0.84 [ADC images]) validation sets. Pelvic bone volumes 
measured with manual and CNN-predicted segmentations were highly correlated (R2 value of 0.84–0.97) and in close 
agreement (mean bias of 2.6–4.5 cm3). A SCORE system was designed to qualitatively evaluate the model for which 
both testing and external validation sets achieved high scores in terms of both qualitative evaluation and concord-
ance between two readers (ICC = 0.904; 95% confidence interval: 0.871–0.929).

Conclusions:  A deep learning-based method can achieve automated pelvic bone segmentation on DWI and ADC 
images with suitable quantitative and qualitative performance.

Keywords:  Pelvic bones, Segmentation, Multiparametric magnetic resonance imaging, Convolutional neural 
network, Deep learning
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Keypoints

•	 3D U-Net exhibits good performance for segmenta-
tion of normal pelvic bones.

•	 A SCORE system was designed for the qualitative 
evaluation of segmentation.

•	 It lays a foundation for the detection of pelvic bony 
metastases.

Background
Multiparametric magnetic resonance imaging (mpMRI) 
has previously demonstrated high sensitivity and speci-
ficity in diagnosing pelvic bone metastases [1]. As a 
well-recognised and widely used sequence in onco-
logic imaging, diffusion-weighted imaging (DWI) has 
been reported to be able to offer both qualitative (signal 
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intensity) and quantitative (apparent diffusion coeffi-
cient [ADC] maps) information for lesion detection and 
characterisation [2–4]. Adverse bone events, such as 
pathological fracture and spinal cord compression, were 
often led by bone metastases [5, 6]. Therefore, timely and 
accurate detection of bone metastases on DWI and ADC 
images is of great significance in guiding patient care and 
assessing therapeutic benefits.

When radiologists interpret pelvic magnetic resonance 
imaging (MRI) images, bone metastasis location should 
first be determined, followed by size and ADC meas-
urement of the metastatic foci. Thus, the initial step to 
achieve accurate bone metastases detection on DWI and 
ADC images requires accurate skeleton segmentation 
with their semantic labels. It is the first step in developing 
an automated method for quantifying skeletal metastatic 
tumour burden. Deep learning techniques lead the trans-
formation of manual segmentation into automated seg-
mentation [7–9]. For example, fully convolutional neural 
networks (CNNs) such as the U-Net model proposed by 
Ronneberger et al. [10] and the V-Net model proposed by 
Milletari et al. [11] have significantly increased the poten-
tial of automated image analysis to an unprecedented 
level.

Previously, several studies have reported CNNs for seg-
mentation of normal bone structures on CT images and 
bone scans [12, 13], however, only a few studies of auto-
matic segmentation of normal bone structures on MR 
images are available. Quantitative evaluation is a routine 
method for segmentation models, while qualitative eval-
uation has a better correlation with clinical practice [14]. 
Quantitative and qualitative evaluations are complemen-
tary, and together evaluate the segmentation model more 
completely [15]. The purpose of this study is to develop 
a 3D U-Net model to automatically segment different 
pelvic bony structures on DWI and ADC images—lum-
bar vertebra, sacrococcyx, ilium, acetabulum, femoral 
head, femoral neck, ischium, and pubis, which represent 
the most frequent sites of bone metastases for prostate 
cancer [16], and test its feasibility quantitively and quali-
tatively. This research may provide essential localisa-
tion information for subsequent research on pelvic bone 
metastases.

Materials and methods
This retrospective study was performed with permission 
from the local Institutional Ethical Committee. The need 
for written informed consent was waived.

Patients enrollment
For algorithm development, we retrospectively col-
lected 288 patients who performed pelvic mpMRI scans 
for suspected prostate cancer at our institution between 

August 2018 and August 2019. The inclusion crite-
ria included the following: (1) no sign of obvious bone 
structure abnormality, (2) DWI images with low (0  s/
mm2) and high (800 or 1000 s/mm2) b values and ADC 
maps accordingly reconstructed, and (3) good image 
quality without obvious artefacts. The exclusion crite-
ria included those with: (1) pelvic surgical history, and 
(2) bone diseases that occurred within the pelvis such as 
primary bone tumour and necrosis. In total, 264 patients 
remained enrolled for this study, with patients excluded 
for various reasons including poor image quality (n = 7), 
those with primary bone diseases such as degeneration, 
hemangioma and sarcoma (n = 13), and those with a pel-
vic surgical history (n = 4). Retrospectively, a further 60 
consecutive pelvic mpMRI data were collected between 
January 2020 and March 2020 from our institution that 
satisfied the above inclusion criteria in order to provide 
external validation (5 patients were excluded due to poor 
image quality) (Fig.  1). All mpMRI data were de-identi-
fied before inclusion.

mpMRI data
A consecutive cohort of pelvic mpMRI data from our 
hospital was retrospectively collected to develop and 
test the algorithm used in this study. Details of the imag-
ing parameters and techniques of the DWI sequence are 
summarised in Table 1. The ADC maps were calculated 
from two b values (0, 800 or 1000 s/mm2) using the cor-
responding scanner software.

Algorithm development
The neural network model developed for the segmenta-
tion of pelvic bone structures on axial DWI and ADC 
images is a 3D U-Net [17], which replaced all the 2D 
operations of U-Net architecture with 3D counterparts 
(Additional file  1). Considering the 3D nature of bones, 
pelvic bone segmentation may be better performed using 
3D U-Net, where 3D segmentation can utilise the inher-
ent dependency between the spatial location of multiple 
slices [18] in contrast to 2D CNN which ignores 3D con-
tinuity of segmented bones between slices.

The developed CNN takes the combination of 264 DWI 
images (b = 800 or 1000  s/mm2) and 264 ADC images 
acquired from three vendors as input, and each image 
sequence was an independent input data. The CNN 
model was developed with one input channel. The 264 
patients were randomly divided into either the training 
(n = 208), validation (n = 28) or testing (n = 28) sets with 
a ratio of 8:1:1. The independent dataset in the external 
validation set (n = 60) was used to evaluate further the 
performance and generalizability of the 3D U-Net model.

The training set was used to fit the classifier weights, 
and the validation set was used to tune the classifier 
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architecture. The testing set was used to assess the fully 
specified classifier performance, and the external set was 
used to externally evaluate the model using data collected 
from various times (Fig. 1).

The original sizes of DWI images (acquired from three 
vendors) were 24 × 180 × 156 (z, y, x); 25 × 256 × 256; 
24 × 224 × 224. All the input images were unified and 
resized to 64 × 256 × 256 (z, y, x) before training in 
order to maintain the optimal image features. All of the 
images were normalised of pixel intensity to [0, 1]. The 
CNN was coded by Python3.6, Pytorch 0.4.1, Opencv, 
Numpy, SimpleITK, and trained on the GPU NVIDIA 
Tesla P100 16G. A total of 300 epochs of training were 
performed. The Adam Optimizer was employed to 
minimise loss with a learning rate of 0.0001, a batch of 
size 2, and a binary cross-entropy loss function. Other 

hyperparameters tuning (such as weight initialisation and 
dropout for regularisation) were randomly searched and 
automatically executed in the validation set during U-Net 
development.

Manual annotation
Under the supervision of a board-certified radiology 
expert (with more than 15 years of reading experience), 
a radiology resident with three years of reading experi-
ence evaluated all mpMRI examinations and, section by 
section, manually labelled the pelvic bones (containing 
bone marrow and cortex) on DWI images with high b 
values. The labels were created with the following val-
ues: 1 = lumbar vertebra, 2 = sacrococcyx, 3 = ilium, 
4 = acetabulum, 5 = femoral head, 6 = femoral neck, 
7 = ischium, and 8 = pubis. A connected domain (CD) 

Fig. 1  The workflow of patient enrollment and distribution
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is defined as the part of a label area with a continu-
ous structure in 3D space, and one label may contain 
multiple CDs. As shown in Fig.  2, a lumbar vertebral 
label is a single CD, while the ilium label contains two 
CDs (one on the left, and one on the right). Therefore, 
there are 14 CDs in the complete reconstructed pelvic 
bone, including one lumbar vertebra, one sacrococcyx, 
two ilia, two acetabula, two femoral head, two femoral 
necks, two ischia and two pubes.

Since DWI and ADC images were co-registered by the 
scanner (ADC maps were calculated from DWI images), 
the manually segmented labels on DWI images could be 
matched to the ADC maps. The supervisor reviewed all 
labels on ADC images that copied from DWI images and 
made corrections wherever necessary. Images were man-
ually annotated with an image segmentation software 
(ITK-SNAP 3.6; Penn Image Computing and Science 
Laboratory, Philadelphia, Pa).

Quantitative evaluation
The Dice Similarity Coefficient (DSC) between CNN-
predicted and manual segmentation was computed to 
evaluate the segmentation accuracy of DWI images and 
ADC maps quantitatively. The DSC was defined as the 
volume of overlap between the CNN-predicted and man-
ual segmentation, given by:

where P and M are the volume of voxels in the predicted 
segmentation and manual annotation, respectively, and 
P ∩ M is the volume of voxels that are consistent between 
the two methods. The DSC ranged between 0 and 1, 
with higher values indicating a better segmentation 
performance.

DSC =
2× (P ∩M)

P +M

Table 1  Imaging system and typical parameters

# The data in algorithm development were collected between August 2018 and August 2019
* The data in external set were collected between January 2020 and March 2020

MR Vendor Algorithm Development# (N = 264) External 
Set* 
(N = 60)

Typical parameters (DWI sequence)

Training 
set 
(N = 208)

Validation 
set 
(N = 28)

Testing 
set 
(N = 28)

3.0 T Discovery (Ge healthcare, Milwaukee, WI) N = 157 N = 20 N = 20 N = 41 B value: 0, 800 s/mm2;
Imaging matrix:256 × 256;
Echo time: 60 ms;
Repetition time: 3000 ms;
Field of view: 360 mm;
Section thickness: 4 mm
Number of slices: 25

3.0 T Intera (Philips Medical Systems, Best, the Nether-
lands)

N = 37 N = 5 N = 5 N = 11 B value: 0, 1000 s/mm2;
Imaging matrix: 240 × 240;
Echo time:78 ms;
Repetition time: 4959 ms;
Field of view: 360 mm;
Section thickness:7 mm
Number of slices: 28

1.5 T Avanto (Siemens Medical Solutions, Erlangen, 
Germany)

N = 14 N = 3 N = 3 N = 8 B value: 0, 800 s/mm2;
Imaging matrix: 156 × 180;
Echo time:54 ms;
Repetition time: 3300 ms;
Field of view: 360 mm;
Section thickness: 7 mm
Number of slices: 24

Fig. 2  Reconstruction of manual segmentations of pelvic bones. A 
multiclass label was created for the patients; 1 = lumbar vertebra, 
2 = sacrococcyx, 3 = ilium, 4 = acetabulum, 5 = femoral head, 
6 = femoral neck, 7 = ischium, 8 = pubis
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The volume calculation also quantified the accuracy of 
bone segmentation. The Bland–Altman method was used 
to assess the volume difference between CNN-predicted 
and manual segmentations.

Qualitative evaluation
A qualitative SCORE system established in this work 
was used to evaluate the CNN-predicted results at the 
CD level, which focuses on evaluating whether the pre-
dicted results meet the requirements for clinical appli-
cation. The evaluation criteria of DWI images and ADC 
maps at the CD level are shown in Fig. 3. Given the dif-
ferent usage of DWI and ADC images in evaluating bone 
metastases (i.e. DWI images for the qualitative diagno-
sis, ADC maps for quantitative measurement) [2, 3], the 

evaluation criteria are slightly different. For example, if 
the location of the predicted CD overlaps the manually 
annotated CD (i.e. Condition A), and the range of the 
predicted CD is larger than the manual CD (A1), which 
is clinically acceptable segmentation on DWI images for 
which does not affect the detection and localisation of 
lesions. While if the range of the predicted CD is smaller 
than the manual CD (A2), that is clinically acceptable for 
ADC images, eliminating the interference of other tissues 
to ADC measurements.

The score of a single CD is between 0–10, where CDs 
with the same label were used to calculate the average 
label score, and the score at the patient level is the aver-
age value of all labels. A radiology expert (with more than 
15  years of reading experience) assessed the predicted 

Fig. 3  The SCORE system and evaluation criteria on DWI images and ADC maps. According to the diagram of the SCORE system, the evaluation 
of the predicted segmentations on DWI images and ADC maps included three steps: firstly to calculate the DSC value of each label predicted 
by the model, then to judge whether the location of the predicted CD of the label overlaps the manually segmented CD, and finally to calculate 
the average scores of the labels according to the number of the predicted CDs that do not overlap with manual CD. Condition A means that the 
location of the predicted CD overlaps manual CD, and the range of the predicted CD is larger than (A1) or less than (A2) the manual CD, or partially 
overlaps with the manual CD (A3). CD connected domain, DSC dice similarity coefficient
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results according to the SCORE system. A resident (with 
three years of reading experience) also qualitatively eval-
uated the segmentation performance of the model to 
compare the consistency between readers.

Statistical analysis
One-way analysis of variance was performed to compare 
age and prostate-specific antigen (PSA) level (total PSA 
[T-PSA], free PSA [F-PSA], F/T-PSA) among four data 
sets (the training set, validation set, testing set and exter-
nal validation set). A Kruskal–Wallis test was applied for 
the comparisons of these metrics among different ven-
dors. Comparisons of DSCs between testing and external 
validation sets were performed using the Student’s t-test. 
One-way analysis of variance was applied to compare 
DSC values among different vendors, and the least sig-
nificant difference (LSD) was used for post hoc multiple 
comparisons. To compare manual versus CNN-predicted 
bone volume, linear regression and Bland–Altman analy-
ses were performed on both testing and external valida-
tion sets. The Student’s t-test was also used to compare 
the mean scores between DWI and ADC images. SCORE 
results between two readers were assessed using the sin-
gle-measure intraclass correlation coefficient (ICC), with 
ICC > 0.75 considered an excellent concordance. A two-
sided p < 0.05 was considered statistically significant.

Results
Patient demographics
The demographics of patients are presented in Table  2 
and Additional file 2. There was no significant difference 
in age and PSA level (T-PSA, F-PSA, F/T-PSA) among 
the four data sets (Table 2, p > 0.05) and the three vendors 
(Additional file 2: Table S1, p > 0.05).

The different field-of-views among different MR scan-
ners may result in an unequal number of labels and CDs 
in each dataset, where some patients may lack the section 

of pubis or lumbar vertebra. The distribution of different 
CDs among the datasets can be seen in Fig.  4, where it 
shows that all CDs of the bones had roughly equal distri-
bution among the four datasets, confirming the network’s 
results are not biased.

Segmentation accuracy of pelvic bones
DWI and ADC images were independently inputted 
to train the model. Also, both the DWI and ADC were 
predicted independently to get their segmentation. As 
shown in Table 3, the model achieved good segmentation 
accuracy of pelvic bones in both testing and external vali-
dation sets, attaining average DSC values of 0.80 ± 0.05 
and 0.79 ± 0.06 on DWI images and 0.85 ± 0.04 and 
0.84 ± 0.04 on ADC images. The average DSC values 
from ADC images were higher than those of DWI images 
(testing set: tDWI vs ADC = − 4.238, PDWI vs ADC < 0.001; 
external validation set: tDWI vs ADC = − 5.490, PDWI vs 

ADC < 0.001).
Additionally, the DSC values among different vendors 

on external validation sets for DWI and ADC images 
were compared. As shown in Table  4, the images from 
vendor 1 (3.0  T Discovery) attained significantly higher 
DSC averages than vendor 2 (1.5 T Intera) and vendor 3 
(1.5 T Avanto) (DWI images: FV1 vs V2 vs V3 = 22.405, PV1 vs 

V2 vs V3 < 0.001; ADC images: FV1 vs V2 vs V3 = 13.420, PV1 vs 

V2 vs V3 < 0.001).
Figure 5 shows the predicted section examples of eight 

bony structures (lumbar vertebra, sacrococcyx, ilium, 
acetabulum, femoral head, femoral neck, ischium and 
pubis) from DWI and ADC images in the external vali-
dation set (Fig. 5a, c) and the corresponding overlapping 
images with manual segmentations (Fig. 5b, d).

Volume calculation of pelvic bones
The overall bone volume between CNN-predicted and 
manual segmentation strongly correlated (DWI images 

Table 2  Demographics of patients among different dataset

SD standard deviation, PSA prostate specific antigen, T-PSA total PSA, F-PSA free PSA
# The data in algorithm development were collected between August 2018 and August 2019
* The data in external validation were collected between January 2020 and March 2020

Characteristic Algorithm development# (N = 264) External Set* (N = 60) F Value P value

Training set Validation set Testing set

No. of patients 208 28 28 60 – –

Age (mean, years) (SD) 67.13 (9.75) 67.03 (9.93) 67.21 (9.35) 65.38 (13.07) 0.458 0.712

PSA (median, ng/ml)

 T-PSA (range) 10.34 (0.15, 156.00) 9.01 (0.77, 128.3) 8.96 (0.82, 27.99) 8.14 (1.38, 50.00) 1.349 0.259

 F-PSA (range) 1.32 (0.09, 23.46) 1.08 (0.46, 9.05) 1.32 (0.34, 3.53) 1.43 (0.33, 13.20) 0.342 0.795

 F/T-PSA (range) 0.13 (0.02, 0.36) 0.13 (0.05, 0.26) 0.16 (0.05, 0.24) 0.14 (0.05, 0.65) 2.077 0.104
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in testing set: R2 = 0.94, Fig. 6a; DWI images in external 
validation set: R2 = 0.85, Fig.  6c; ADC images in testing 
set: R2 = 0.97, Fig. 6e; ADC images in external validation 
set: R2 = 0.94, Fig. 6g). When compared with the manual 
method, the automated CNN method slightly overes-
timated bone volume on both DWI images (testing set: 
mean bias = 4.5  cm3, 95% limits of agreement [LoA] 
were − 8.3 cm3 and 17.3 cm3, Fig. 6b; external validation 
set: mean bias = 2.6  cm3, 95% LoA were − 20.6  cm3 and 
25.9  cm3, Fig.  6d) and ADC images (testing set: mean 

bias = 4.3 cm3, 95% LoA were − 4.0  cm3 and 12.6 cm3, 
Fig. 6f; external validation set: mean bias = 4.2 cm3, 95% 
LoA were − 9.7 cm3 and 18.1 cm3, Fig. 6h). The detailed 
volume difference between CNN-predicted and manual 
segmentations of pelvic bones is provided in Additional 
file 3.

SCORE results of pelvic bones
To identify if the qualitative segmentation results of the 
developed 3D U-Net model meet the requirement for 

Fig. 4  The distribution of different connected domains. The distribution of the connected domains among four data sets shows that all bones had 
roughly equal distribution in different data sets

Table 3  The DSC values of 3D U-Net in pelvic bones segmentation on DWI and ADC images

Unless otherwise specified, data are mean DSC value ± standard deviations. DSC: Dice similarity coefficient
# The data in training set were collected between August 2018 and August 2019
* The data in external set were collected between January 2020 and March 2020
$ Average indicates the mean value of all the pelvic bones

Pelvic bones DWI images ADC images

Testing Set# (N = 28) External Set* (N = 60) t value p value Testing set (N = 28) External set (N = 60) t value p value

Lumbar vertebra 0.83 ± 0.06 0.81 ± 0.10 1.220 0.226 0.87 ± 0.05 0.83 ± 0.07 2.564 0.012

Sacrococcyx 0.84 ± 0.04 0.84 ± 0.07 1.193 0.236 0.86 ± 0.04 0.85 ± 0.05 0.667 0.507

Ilium 0.82 ± 0.06 0.80 ± 0.10 1.275 0.206 0.87 ± 0.04 0.86 ± 0.03 0.549 0.584

Acetabulum 0.77 ± 0.07 0.77 ± 0.08 -0.007 0.994 0.82 ± 0.08 0.82 ± 0.08 0.256 0.799

Femoral head 0.85 ± 0.06 0.84 ± 0.07 0.841 0.403 0.89 ± 0.06 0.87 ± 0.06 1.437 0.154

Femoral neck 0.84 ± 0.06 0.82 ± 0.08 1.402 0.165 0.89 ± 0.04 0.87 ± 0.08 1.660 0.101

Ischium 0.81 ± 0.07 0.77 ± 0.10 1.819 0.072 0.85 ± 0.07 0.84 ± 0.06 0.894 0.374

Pubis 0.68 ± 0.08 0.65 ± 0.11 0.922 0.359 0.77 ± 0.06 0.76 ± 0.08 0.694 0.490

Average$ 0.80 ± 0.05 0.79 ± 0.06 1.452 0.150 0.85 ± 0.04 0.84 ± 0.04 1.788 0.077
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clinical application, two readers scored every single CD 
on DWI and ADC images on testing and external vali-
dation sets (Fig. 7). A summary of the average scores at 
the patient level is provided in Table  5. The relatively 

high scores and excellent concordance between the two 
readers (ICC = 0.904, 95% confidence interval: 0.871–
0.929) confirmed the feasibility of using the CNN 
clinically.

Table 4  The DSC values of 3D U-Net in pelvic bones segmentation on external validation set grouped by vendors

Unless otherwise specified, data are mean DSC value ± standard deviations. DSC: Dice similarity coefficient
# V1 indicates Vendor 1: 3.0 T Discovery; $V2 indicates Vendor 2: 1.5 T Intera; &V3 indicates Vendor 3: 1.5 T Avanto
* indicates a significantly high DSC value

Pelvic bones DWI images ADC images

V1# (n = 41) V2$ (n = 11) V3& (n = 8) F value p value V1# (n = 41) V2$ (n = 11) V3& (n = 8) F value p value

Lumbar vertebra 0.82 ± 0.10* 0.76 ± 0.13 0.76 ± 0.06 2.307 0.109 0.85 ± 0.07 0.80 ± 0.06 0.80 ± 0.08 2.756 0.073

Sacrococcyx 0.84 ± 0.05* 0.81 ± 0.05* 0.73 ± 0.11 12.582 0.000 0.87 ± 0.04* 0.83 ± 0.05 0.83 ± 0.05 4.111 0.021

Ilium 0.82 ± 0.04* 0.78 ± 0.03 0.71 ± 0.07 27.470 0.000 0.87 ± 0.03* 0.87 ± 0.03* 0.81 ± 0.03 15.708 0.001

Acetabulum 0.80 ± 0.06* 0.71 ± 0.08 0.69 ± 0.08 13.876 0.000 0.84 ± 0.07* 0.82 ± 0.07* 0.70 ± 0.12 10.273 0.001

Femoral head 0.86 ± 0.06* 0.81 ± 0.06* 0.79 ± 0.10 4.053 0.023 0.88 ± 0.06* 0.88 ± 0.07* 0.82 ± 0.05 2.703 0.076

Femoral neck 0.84 ± 0.06* 0.82 ± 0.07* 0.74 ± 0.13 5.828 0.005 0.87 ± 0.08 0.88 ± 0.06 0.84 ± 0.03 0.870 0.425

Ischium 0.80 ± 0.10* 0.70 ± 0.08 0.70 ± 0.07 6.877 0.002 0.85 ± 0.06* 0.82 ± 0.04 0.78 ± 0.08 6.315 0.003

Pubis 0.69 ± 0.09* 0.61 ± 0.14 0.60 ± 0.11 6.212 0.004 0.77 ± 0.09* 0.78 ± 0.04* 0.67 ± 0.05 6.299 0.003

Average$ 0.81 ± 0.04* 0.75 ± 0.05 0.71 ± 0.07 22.405 0.001 0.85 ± 0.04* 0.83 ± 0.03 0.78 ± 0.04 13.420 0.001

Fig. 5  Examples of the comparison between CNN-predicted and manual segmentations. a Section examples of eight bones on DWI image; b The 
corresponding overlapping images between manual segmentation (white background) and CNN-predicted segmentation; c Section examples 
of eight bones on ADC image; d The corresponding overlapping images between manual segmentation (white background) and CNN-predicted 
segmentation
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Fig. 6  Agreement of bone volume assessments between CNN-predicted and manual segmentations. a, c Linear regression and (b, d) Bland–
Altman analysis of bone volume assessments from DWI images. e, g Linear regression and (f, h) Bland–Altman analysis of bone volume estimates 
from ADC images
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Discussion
In this study, a 3D U-Net model was trained to seg-
ment normal bony structures on pelvic DWI and ADC 
images to provide localisation information for subse-
quent detection of pelvic bone metastases. This method 
has been successfully used for segmentation of the lung 
lobes on Computed Tomography (CT) scans—a task that 
solves similar challenges related to the localisation of 
lung tumours [18]. In this research, the 3D U-Net model 
achieved good segmentation performance on pelvic 
bones with high average DSC values on testing and exter-
nal validation sets. The quantitative volume comparison 
between CNN-predicted and manual segmentations was 
highly correlated and in close agreement.

Both quantitative and qualitative evaluations were done 
to determine the value of the 3D U-Net model for clinical 
applications. Generally, quantitative evaluation indica-
tors are horizontally comparable among different tech-
nical studies [19–21]. However, the specified qualitative 
evaluation is more important when faced with different 

clinical problems raised in clinical research, which yields 
the difference between basic and clinical research in this 
field. Taking the evaluation of this semantic segmentation 
(multiple areas of pelvic bones) as an example, the quan-
titative evaluation indicators include DSC values and vol-
ume comparisons between CNN-predicted and manual 
segmentations. However, considering the different usage 
of DWI and ADC images on bone metastases evaluation, 
identical quantitative results on DWI and ADC images 
may result in different evaluation criteria and clinical 
acceptability [2, 22, 23]. Besides, on ADC maps, the DSC 
of lumbar vertebra in the testing set was significantly 
larger than in the external set (t = 2.564, p = 0.012), while 
the difference has no clinical significance since the DSC 
values were large enough (both with > 0.80).

Undefined performance metrics adapted to clinical 
requirements represent one of the barriers to the clinical 
evaluation and adoption of fully automated segmenta-
tion methods [24]. At present, the majority of qualitative 
evaluations of automated medical image segmentations 

Fig. 7  SCORE results on DWI and ADC images. a The range of the CNN-predicted segmentations of sacrococcyx (yellow label) and ilium (deep 
blue label) was slightly more extensive than the manual segmentations (white background), attaining DSC values of 0.92 and 0.88, respectively. 
According to the SCORE system, 10 on the DWI image and 8 on the ADC image were obtained. b The range of the CNN-predicted segmentation 
of lumbar vertebra (light blue label) was slightly smaller than manual segmentation (white background) with a DSC value of 0.82. According to the 
SCORE system, 8 on the DWI image and 10 on the ADC image were obtained

Table 5  The summary of patient scores on DWI and ADC images

Unless otherwise specified, data are mean ± standard deviations
# Reader 1 refers to a radiology expert with more than 15 years of reading experience
* Reader 2 refers to a radiology resident with 3 years of reading experience

Dataset Sequences Reader 1# Reader 2*

Mean scores t value p value Mean scores t value p value

Testing Set DWI 7.94 ± 1.04 − 1.168 0.248 7.82 ± 1.10 − 1.587 0.118

ADC 8.22 ± 0.78 8.20 ± 0.83

External validation DWI 8.03 ± 0.71 − 1.684 0.095 8.10 ± 0.69 − 1.291 0.199

ADC 8.26 ± 0.77 8.23 ± 0.72
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are mainly based on visual observation [25–27], and 
the lack of standardised criteria on visual observations 
can introduce some degree of variability and inconsist-
ency between intra- and inter-readers. It is therefore 
vital to ensure uniformity on the qualitative evaluation 
standard. In this study, a SCORE system was formulated 
to promote standardisation in the qualitative evalua-
tion of pelvic bone segmentation on DWI and ADC 
images, potentially diminishing estimation variability and 
increasing precision.

DWI was primarily used to detect bone metastases. 
When the prediction range is slightly more extensive 
than the manual segmentation (i.e., A1) on DWI, it is 
still acceptable for lesion detection. The ADC map was 
mainly used to measure ADC values. The ROI used for 
the ADC value measurement should be contained within 
bone structures. Therefore, the slightly smaller range of 
CNN prediction than the manual segmentation (i.e., A2) 
can meet the demand of ADC value measurement.

Notably, these results present a trend that the ADC 
images outperformed the DWI images in terms of the 
average DSC value in both the testing (PDWI vs ADC < 0.001) 
and external validation sets (PDWI vs ADC < 0.001), while 
the SCORE results showed no significant difference 
between DWI images and ADC images (p > 0.05). We 
believe this is due to greater variation in signal intensity 
of DWI images than in ADC images among the differ-
ent MR units, resulting in a lower DSC value. However, 
considering the clinical usage of DWI images for lesion 
localisation, the lower DSC value due to overestimation 
is not necessarily a flaw according to the SCORE system 
thus allowing for bias. The segmentation performance on 
DWI and ADC images acquired from vendor 1 was better 
than vendors 2 and 3 (DWI images: PV1 vs V2 vs V3 < 0.001; 
ADC images: PV1 vs V2 vs V3 < 0.001), which may be due to 
more data from vendor 1 were acquired in the clinical 
practice and collected during model development. These 
results remind us that multiple and multi-vendor data 
are necessary for segmentation algorithm development 
instead of single-vendor algorithms that are not suitable 
for real clinical applications.

Comprehensive clinical research based on deep learn-
ing is usually divided into multiple sequential steps, with 
each step employing deep learning or traditional image 
processing methods [28, 29]. Regarding the segmenta-
tion of kidney stones on CT images, the kidney is firstly 
segmented by the deep learning method, after which 
the high-density stone is identified using the traditional 
threshold segmentation method [30]. The division of the 
complex clinical tasks can not only improve the accept-
ability of the model but can also save training resources, 

which highlights the value of the clinicians participat-
ing in model training. This research focused on one of 
the sequential tasks to detect pelvic bone metastases 
using the deep learning method, aiming to achieve the 
localisation of pelvic bones. An algorithm for detecting 
bone metastases is to subsequently develop and, finally, 
achieve automation of both detection and localisation of 
pelvic bone metastases.

Substantial diversities across mpMRI images (differ-
ent patients and vendors) make automated segmentation 
challenging for real clinical applications. In this study, a 
3D U-Net model was supplied with MR data collected 
from three independent vendors with various param-
eters. The performance demonstrated the high robust-
ness of the model to different technical parameters and 
scanner types, which would greatly benefit patients who 
undergo different scans in MRI examinations during rou-
tine clinical care. Moreover, to simulate clinical applica-
tion scenarios, independent and consecutive MR datasets 
were collected from different periods as a source for 
external validation and to evaluate the generalizability of 
this CNN.

There are several limitations to this research. Like all 
supervised learning techniques, this method relies heav-
ily on manual annotation which gives rise to user vari-
ability. No images with metastasis have been included in 
the dataset, and this CNN was not tested on pelvic bone 
structures containing metastatic lesions. Thus its per-
formance in the segmentation of such cases still needs 
to be verified, and the generalisation of the model to the 
presence of these lesions need further confirmation. The 
SCORE system for qualitative evaluation of segmenta-
tion established by a radiology expert at our institution 
may be subjective and limited, and may necessitate a con-
sensus from several experts from multiple institutions 
for actual clinical research. Furthermore, the 3D U-Net 
model was only trained and validated with retrospec-
tive data, while prospective evaluation still needs to be 
conducted, particularly on benign bone abnormalities 
and common imaging artifacts. Multicentre data may be 
required before the algorithm can be deployed in a clini-
cal workflow.

Conclusions
In conclusion, the presented 3D U-Net CNN can achieve 
automated and accurate segmentation of pelvic bones 
without metastases on DWI and ADC images acquired 
from different MR vendors. This work presents a prom-
ising step toward a highly desired automated mpMRI-
based imaging methodology to detect skeletal metastases.
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