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T‑staging pulmonary oncology 
from radiological reports using natural language 
processing: translating into a multi‑language 
setting
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Abstract 

Background:  In the era of datafication, it is important that medical data are accurate and structured for multiple 
applications. Especially data for oncological staging need to be accurate to stage and treat a patient, as well as 
population-level surveillance and outcome assessment. To support data extraction from free-text radiological reports, 
Dutch natural language processing (NLP) algorithm was built to quantify T-stage of pulmonary tumors according to 
the tumor node metastasis (TNM) classification. This structuring tool was translated and validated on English radio-
logical free-text reports. A rule-based algorithm to classify T-stage was trained and validated on, respectively, 200 and 
225 English free-text radiological reports from diagnostic computed tomography (CT) obtained for staging of patients 
with lung cancer. The automated T-stage extracted by the algorithm from the report was compared to manual stag-
ing. A graphical user interface was built for training purposes to visualize the results of the algorithm by highlighting 
the extracted concepts and its modifying context.

Results:  Accuracy of the T-stage classifier was 0.89 in the validation set, 0.84 when considering the T-substages, 
and 0.76 when only considering tumor size. Results were comparable with the Dutch results (respectively, 0.88, 0.89 
and 0.79). Most errors were made due to ambiguity issues that could not be solved by the rule-based nature of the 
algorithm.

Conclusions:  NLP can be successfully applied for staging lung cancer from free-text radiological reports in differ-
ent languages. Focused introduction of machine learning should be introduced in a hybrid approach to improve 
performance.
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Key points

•	 Oncological staging from free-text radiology reports 
with NLP is feasible.

•	 NLP algorithms can be successfully translated and 
implemented from Dutch to English.
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Background
Radiological reports contain an extensive amount of his-
torical information about the patient and their current 
disease status over a prolonged period of time [1]. Ide-
ally, information from such reports should be available 
as structured data that can easily be communicated and 
reused. Instead, these reports are generally at best semi-
structured free-text reports, which takes a human reader 
to interpret. Natural language processing (NLP) tech-
niques provide solutions for the extraction of structured 
data from unstructured text and has been applied to 
many healthcare purposes and may help to extract struc-
tured information from radiology reports [2].

Specific NLP algorithms already exist to find tumor-
specific information in radiological reports to extract, 
for instance, cancer outcomes [3–6]. Next to extract-
ing tumor endpoints and follow-up from radiologi-
cal reports, NLP algorithms can also be used to extract 
tumor staging from free text. An example is a Dutch 
rule-based NLP algorithm that can extract the T-stage 
for lung cancer according to the tumor node metastasis 
(TNM) oncology classification system from the free-text 
radiological reports of chest computed tomography (CT) 
scans [7, 8]. Lung cancer is the most common oncologi-
cal cause of death, with imaging playing a great part in its 
diagnosis and staging [9]. Therefore, improvements in the 
reporting and staging process may be valuable. Specifi-
cally, it may speed up workflow and enhance the quality 
and accuracy of the radiological report, as well as com-
munication between health professionals.

The Dutch algorithm analyzes the radiological report 
and extracts tumor stage with an accuracy score of 0.83–
0.87. In addition, this algorithm can also be used for (re)
staging historical data, which may be useful, for instance, 
in cases that have been classified with an older version 
of the TNM classification system or adjustments with 
newly available data. An NLP algorithm can therefore 
function as an important solution to increase the value 
of the radiological report. Implementation of this NLP 
algorithm can also act as a method to extract and convert 
unstructured free-text information into stored structured 
information from radiological reports. This is important, 
because structured stored data can be processed more 
easily than free text for clinical or research purposes [10]. 
This is of particular interest when realizing that over the 
past years a shift toward structured reporting has been 
promoted by the Radiological Society of North America 
(RSNA) and the European Society of Radiology (ESR). 
The goal of this is to increase the value of the radiological 
report and allow for better content datafication [11, 12]. 
Moreover, the ESR published guidelines for radiologists 
on reporting and good practice, which highlights the 
need for better reporting, also promoting the potential 

of (multilingual) structured reporting [13, 14]. Also, sev-
eral surveys of radiologists show a global shift toward the 
use of structured reporting in radiology [15, 16], as many 
radiologists appreciate the benefits of structured report-
ing, such as report clarity, communication and data 
mineability [17, 18]. Although the NLP approach does 
not use a strict structured reporting format like a point-
and-click system, drop-down menu or template to insert 
structured data elements, it does analyze the old-fash-
ioned free-text report to create structured data during 
or after the reporting process. Thereby, this NLP algo-
rithm can also be used on old free-text reports to extract 
T-stage according to the current standards and can help 
quality assessments of oncological registries.

This algorithm is only capable of processing Dutch 
staging CT reports and is therefore only proven to be 
effective in Dutch. With the translation of used regular 
expressions, it may be possible to translate the algorithm 
into other languages, like English. In addition, to increase 
understanding of the algorithm and to utilize its full 
potential, building a graphical user interface (GUI) might 
increase the usability and clinical utility of the algorithm. 
The hypothesis of this study is that the Dutch algorithm 
can be translated into English to allow for analysis of 
English free-text radiological reports.

This paper presents the process of translation, imple-
mentation and validation of the Dutch pulmonary 
T-stage algorithm to report written in English with the 
use of a GUI.

Methods
Corpus description
After institutional review board approval at the par-
ticipating medical center, an existing retrospective lung 
cancer clinical database of patients treated at the institu-
tion was used to search for radiological reports of diag-
nostic CT or positron emission tomography-computed 
tomography (PET-CT) scans, performed at initial can-
cer staging. Inclusion totaled 425 radiological reports 
of patients with primary pulmonary oncology of which 
the full report of the staging examination was available. 
Cases were excluded in case of (1) follow-up and restag-
ing reports (second opinions), (2) cases with two pri-
mary tumors or (3) incomplete reports (no full text and/
or primary staging report available). The first 200 reports 
formed a training set; the remainder of the cases com-
posed a validation set (n = 225). Tumor and report char-
acteristics of both groups are shown in Table 1.

Determining T‑stage
The radiology reports were created using a speech rec-
ognition device and contained free text concerning at 
least the lungs. Three different report formats that could 
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be discerned were all included: a strictly radiological CT 
report, a PET-CT report in which radiological informa-
tion was blended with the nuclear diagnostic information 
and a more structured PET-CT format in which the two 
types of information were separated in the report. Most 
reports used subheadings for the body part lung, like 
Thorax or Chest. Also, other body parts were described 
in most of the reports and consisted of different com-
binations of the following elements: History, Compari-
son, Technique, Findings (CT and/or PET-CT), Head, 
Neck, Chest, Mediastinum, Abdomen, Pelvis, Bones and 
Musculoskeletal.

Because TNM stage was not separately mentioned in 
these clinical reports, the T-stage was classified manu-
ally retrospectively from the report, according to the 
AJCC 8th edition TNM classification [7]. The authors 
agreed on annotation guidelines for proper labeling, 
and the T-stage was only scored if it was stated as being 
certain (Additional file 1: Appendix 1 Annotation guide-
lines). In ambiguous cases, final T-stage was determined 
after reaching consensus between two authors.

Modifications for use in English
The training set was used to identify the specific struc-
ture and the indentation of the reports. Furthermore, the 
used subheadings had to be identified in the training set 
to correctly whitelist or blacklist specific sections of the 
report. To find proper English synonyms, the Dutch reg-
ular expressions, containing all synonyms and variants 
which are linked to the Systematized NOmenclature of 
human MEDicine-Computed Tomography (SNOMED-
CT) terms [19], were translated and used as a starting 
point. These Dutch regular expressions were used to 

build an English Regular Expression (RegEx) per concept, 
which included the accompanying SNOMED-CT label to 
assure for proper ontology-based standardized classifica-
tion. The used synonyms in English and their accompa-
nying RegEx and ontology-based SNOMED-CT terms 
can be found in Additional file  1: Appendix  2  Concept 
Synonyms.

Algorithm structure
This study used the same lung cancer T-stage algorithm 
structure as Dutch language-based algorithm, in which 
processing was subdivided in a preprocessing and a pro-
cessing step to consecutively clean and process the radio-
logical report [8]. Three similar items from the T-staging 
method had to be extracted (size, presence and involve-
ment) before the T-stage classifier was able to stage the 
full T-stage (Fig.  1). Open-source part-of-speech (POS) 
tagging, NLP software library spaCy and pyContextNLP 
were used for number extraction, sentence segmentation 
and context validation [20, 21]. In addition to the Dutch 
algorithm, a blacklist had to be added to ignore sentences 
containing (mass) sizes in organs or body parts other 
than the lung, as some PET-CT scans covered more than 
only the thorax.

Analysis
Analysis of the data was performed in order to assess 
the separate accuracy scores of the training and valida-
tion set for the T-stage (e.g., T1–T4) and the T-substage 
(e.g., T1a, T1b, T1c). In addition, T-stage, in which only 
size was used for classification, was calculated and com-
pared with the Dutch results. Recall (i.e., sensitivity), pre-
cision (i.e., specificity), and F1 measure (i.e., combined 
metric for precision and recall) for the T-stage classifier 
have been calculated for all substages in the training and 
validation set. To further differentiate outcomes, the total 
number of errors were grouped by category into context, 
concepts, standardization, complexity ambiguity, pre-
processing and reporter.

Graphical user interface
For this study a GUI, called MedStruct, was built to 
train and visualize the results of the algorithm by high-
lighting the extracted concepts and its modifying con-
text (Fig.  2) [22]. This was especially useful for finding 
proper synonyms as well as for analyzing and adjusting 
errors during training. To enable this GUI, the algorithm 
has been re-implemented into five reusable NLP pipe-
line microservices without changing the approach of the 
algorithm nor the algorithm itself (Fig. 3). The total pipe-
line now consists of a preprocessing component, spaCy, 
pyContextNLP, measurement extractor and the T-stage 

Table 1  Cohort composition of the training and validation sets

Included report statistics by T-substage for the training and validation sets

Training (n = 200) Validation 
(n = 225)

TNM substage

T1a 4 6

T1b 27 31

T1c 42 42

T2 6 3

T2a 32 44

T2b 27 23

T3 33 41

T4 29 35

Report format

CT 106 120

PET 77 88

PET-CT 17 17
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classifier. A web application has been created in which 
the report can be inserted or edited. The T-stage classifi-
cation is automatically extracted, and the result is imme-
diately displayed.

The GUI highlights concepts and modifiers found in 
the report and displays the location, size, presence and 
involvement items on which the T-stage is based. Items 
can be adjusted using implemented drop-down menus.

Results
Algorithm performance
The manually annotated T-stages and the report for-
mats of the included reports were equally distributed in 
the training and validation set (Table 1). Only substages 
T1a and T2 have lower F1-scores in both the training and 
validation sets compared to the other stages. This might 
be due to the fact that these are underrepresented in this 
cohort.

The T-stage classifier accuracy was 0.89 for both 
the training and validation sets, 0.87 and 0.84 when 

considering the T-substages and 0.78 and 0.76 when only 
using tumor size for classification (Table 2).

The accuracy rates of the Dutch algorithm are added in 
the same table, showing the same outcomes in, respec-
tively, the training (n = 47) and validation sets (n = 100). 
A confusion matrix is shown in Fig.  4, where actual 
T-stage (true label) is compared with the predicted 
T-stage (predicted label). In addition, the recall (i.e., sen-
sitivity), precision (i.e., specificity), and F1 measure (i.e., 
combined metric for precision and recall) for the T-stage 
classifier are shown in Table 3.

In Table 4, errors made in the training set and valida-
tion set have been grouped into specific categories. In 
total, 27 (13.5%) errors were made in the training set and 
35 (15.6%) errors in the validation set. Most errors were 
scored in the ambiguity category for the training (48.1%) 
as well as the validation set (51.4%).

Fig. 1  T-stage classifier. Schematic overview of T-stage classification. In the preprocessing step, raw data of the report are prepared for the actual 
processing. In the processing step, the following subtasks are performed: tumor size extraction, a T-stage presence check of abnormalities and 
involvement [8]
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Fig. 2  Graphical user interface MedStruct. Two screenshots of the graphical user interface MedStruct with the original report on the left side and its 
T-stage on the right side, combined with the items size, present and involvement. Also, N (nodal stage) and M (metastatic disease) are mentioned 
for future use. By using drop-down menus stages can be adjusted (upper). Annotated report at the left side and a feedback form at the right (lower) 
[22]
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Graphical user interface
By using this tool (Fig.  2), the report and the tumor-
specific concepts are shown in a structured layout. 
Items that are present, missing or incorrectly stated can 
now be visualized. For instance, when tumor size or its 
unit is missing, size is not mentioned in the user inter-
face and final T-stage will not be extracted properly. 
To increase its functionality, providing feedback and 
correcting errors, it is possible to adjust the proposed 
T-stage by changing the concepts found using drop-
down menus overruling the algorithm. In addition, this 
adjusted report can be saved anonymously and can be 
used as feedback to further improve the algorithms’ 
future accuracy. As such, this tool can also function 
as a corpus builder when reports are being created. A 

consequence of the language-independent output for-
mat of our algorithm is that the Dutch algorithm is also 
available in the same GUI. The language can be set by 
clicking on a button.

Discussion
This study was performed to transfer and externally vali-
date the Dutch rule-based pulmonary tumor T-stage NLP 
algorithm in an English cohort with the use of a GUI. 
Accuracy scores in this English study were similar to the 
scores found in the Dutch cohort. The results confirm 
that the used strategy according to size, involvement and 
presence is viable and can also be implemented in a dif-
ferent language other than Dutch. The approach to find 
appropriate synonyms according to the Dutch outcomes 
(i.e., synonyms and found SNOMED-CT terms) was suf-
ficient to get started. Adjusting the synonyms, without 
changing the algorithm itself, was enough to increase its 
accuracy. This again shows that the rule-based approach 
is very promising and can be implemented with a fairly 
high accuracy. Especially when taking into account that 
collecting data, and training and validation of the algo-
rithm were done in roughly four weeks.

When looking at the separate F1 scores, outcomes are 
slightly higher in the training set, but still have over-
all decent scores. The confusion matrices show that this 
algorithm tends to slightly overstage lower T-stages (up 
to T2a) and slightly understage the higher T-stages (from 
T2b onwards). This can be partly explained by the fact 

Fig. 3  MedStruct pipeline. Schematic overview of the MedStruct pipeline, in which five different microservices are present: preprocessing, spaCy, 
pyContextNLP, measurement extractor and T-stage classifier. The report can be processed either from an Excel file or direct from the graphical 
user interface (GUI). All components use an intermediate JavaScript Object Notation (JSON) annotation format to chain the pipeline components 
and can be consumed over REpresentational State Transfer (REST) or chained using a message broker. The use of a JSON annotation format 
simplifies reusability of the different components, enables mixing programming languages, prevents for duplicate processing and guarantees 
token alignment between components. This implementation saves annotations at token level instead of sentence level, which enables precise 
highlighting of annotations in a GUI. Detected tumor and lymph nodes are stored as objects in a list, allowing for detection of concurrent 
mentions. Documents can now be processed individually with the same rule-based algorithm

Table 2  T-stage classifier accuracy

Accuracy scores of training set and validation sets in the English cohort and 
the Dutch cohort. In the Dutch group, the outcomes with the new processing 
structure are recalculated at the substage level

English Dutch

Training 
(n = 200)

Validation 
(n = 225)

Training 
(n = 47)

Validation 
(n = 100)

Accuracy T-substage 0.87 0.84 0.79 0.88

Accuracy T-stage 0.89 0.89 0.81 0.89

Tumor size-based 
T-stage

0.78 0.76 0.70 0.79
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that it is more plausible to overstage a lower T-stage and 
understage a higher T-stage. However, as described in the 
following sections, this is most likely the result of diffi-
culties experienced with the overall reporting differences 
and can be further explained with highlighting the errors 
made by category, improving the algorithm and the use of 
a graphical user interface.

Overall reporting differences
One of the most important things was to find differences 
in reporting manner between the Dutch and English set-
ting. Therefore, it was necessary to analyze the reports 
on a fundamental basis to find differences in reporting 
manner and used vocabulary in addition to the local used 

subheadings and layout. Because this cohort also used 
PET-CT scans in addition to CT scans, subheadings had 
to be added and the processing format had to be adjusted.

When looking at the reporting manner and the vocabu-
lary used, the description of lymph node locations was 
found to be different in English as they are described in 
words (e.g., subcarinal) and not by numbers (e.g., level 
7) as commonly done in Dutch reports. Another impor-
tant finding was that the word ‘involvement’ and its con-
jugations (‘involv’-ing) were not exactly interchangeable, 
because involving has a more ambiguous meaning in 
English than the Dutch word for involvement (‘ingroei’—
extension), which is very specific.

Furthermore, Dutch reports mention involvement 
when involvement is certain or suspected with a high 
level of certainty. Possible but less certain involvement 
is commonly not mentioned. The included English 
reports use more frequently terms to describe possible 
invasion without stating the exact certainty of the inva-
sion with words such as ‘extending towards,’ ‘abutting’ 
or ‘in close relation to the tumor’. As the algorithm was 
trained on matching the specific concept for invasion and 
the invaded concept, outcomes were more often falsely 
matched, in turn leading to false-positive results.

Errors made by category
Data selection
In this category especially the blacklist in the valida-
tion set was not sufficient enough, which resulted in five 

Fig. 4  Confusion matrices of the T-stage classification training set 
(upper) and validation set (lower)

Table 3  Precision, recall and F1-scores T-substage

Precision, recall and F1-scores T-substage for the training set and validation set

Precision Recall F1 score

Training

T1a 0.50 0.50 0.50

T1b 0.92 0.89 0.91

T1c 0.90 0.86 0.88

T2 0.67 1.00 0.80

T2a 0.85 0.91 0.88

T2b 1.00 0.89 0.94

T3 0.82 0.85 0.84

T4 0.83 0.83 0.83

Validation

T1a 1.0 0.50 0.67

T1b 0.83 0.65 0.73

T1c 0.82 0.88 0.85

T2 0.60 1.00 0.75

T2a 0.83 0.89 0.86

T2b 0.88 0.91 0.89

T3 0.90 0.88 0.89

T4 0.84 0.89 0.87
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entities that were falsely classified as tumor, but were 
benign lesions (for instance a benign kidney cyst with 
a size). As a consequence, these benign entities and its 
sizes were falsely seen as a tumor, resulting in an overes-
timation of the actual tumor size.

Context matching
Errors made in this category were due to a mismatch 
between the concept and the context. This happened for 
instance when a report lacked tumor dimensions, but 
instead was called ‘large’. Because tumor size is needed 
for the algorithm to appreciate something as a mass, this 
mass was missed. Another difficulty was to find sufficient 
synonyms for the ambiguous term atelectasis, which 
can be referring to either a post-obstructive atelectasis, 
which is a concept for the item presence in T2 tumors, 
or a regular seen non-tumoral gravity-related atelecta-
sis. Specific atelectasis-related adjectives (basal, bilateral, 
subsegmental, etc.) were used to exclude gravity-related 
atelectasis, as was done in the Dutch approach. However, 
this could not prevent some mismatches and overstaging 
of T1 tumors.

Concept matching
Most errors are related to this category with several sub-
categories, of which ambiguity is the largest contributor. 
Errors in this category were mainly due to difficulties 
in differentiating a lymph node from a tumor mass and 

difficulties in finding its proper location. This is especially 
true for the hilar region. For instance, a lymph node can 
be described as ‘a (lymphnodal) subcarinal mass’ and a 
tumor as ‘a (peri)hilar node,’ making its exact location, 
and whether this is a primary tumor, less clear. Inserting 
more specific synonyms for involvement (i.e., involve-
ment in(to)) and specific terms for lymph node and mass 
location (i.e., subcarinal lymph node) increased accuracy, 
but could not be solve this problem entirely. This was in 
Dutch reports a lesser problem because lymph node lev-
els are mostly mentioned by level number.

The error type missing/misuse concept synonyms is 
of particular interest because it shows difficulties caused 
by the rule-based algorithm approach best. One error 
in this subcategory was made because there was a size 
at an involvement concept (visceral pleura) that there-
fore could not be blacklisted (e.g., ‘pleural thickening 
of 8,6 cm’). Also the opposite errors existed in cases, in 
which a cystic pulmonary tumor was missed because 
the word cyst was blacklisted to not falsely match a 
renal cyst. In addition, it was not possible to differentiate 
osseous destruction caused by the primary tumor from 
destruction caused by a vertebral metastasis. The com-
plexity subcategory and errors made by the measurement 
extractor have similar difficulties in which it is difficult to 
match a different tumor in the same lobe of the ipsilateral 
lung or match a tumor size when the size is written in an 
uncommon format.

Table 4  T-stage errors by category

T-stage errors by category for training and validation sets

Error group Error type Description Training 
(n = 200)

Validation 
(n = 225)

Data selection Sectionizer Detects information in wrong subheadings 1 3

Missing blacklist synonyms Falsely matched/falsely not excluded 0 5

Context Context missing Context not matched because of missing modifier 1 0

Context mismatch Context mismatch, wrong modifier detected 1 3

Concept matching Measurement extractor e.g., using abbreviations (e.g., (AP) × (TVR) × (SI)) 1 2

Complexity T4 multiple lobes 2 1

Ambiguity Confusion between node and mass (specific site: hilar) 4 7

Nonspecific 4 9

Missing concepts synonyms Lobulated 1 0

Cystic 2 0

Pleural thickening 1 0

Spinal metastasis 1 0

Costal involvement 0 1

Supraclavicular extension 0 1

Reporter Wrong input Different sizes for the same tumor, no unit (mm/cm) pre-
sent, size for tumor and atelectasis

7 2

Satellite node 1 1

Total errors 27 35
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Reporter
This category included errors which can be explained 
by stating wrong tumor size, or mentioning it twice, or 
incorrectly reporting the presence of a satellite nodule. 
As the algorithm demands a unit for every size with its 
size is correlated to the stated lobe, it is possible that a 
tumor without a unit is missed, a tumor with two differ-
ent sizes is overestimated and a satellite nodule in a dif-
ferent lobe is missed. As such, correctly stated input is of 
great importance.

Improving the algorithm
The described rule-based algorithm is promising, but this 
approach is a trade-off between missing a lung tumor and 
finding a false mass. The rule-based nature of the use of 
the sectionizer and regular expressions is not extensive 
enough to exclude the ambiguities, nor to find sections 
when those were not present in the training set. Further-
more, the context analysis does not search for depend-
ency relations, resulting in mismatches between concept 
and context. In addition, the rule-based approach does 
not seem extensive enough, as the T-stage based on only 
tumor size has an accuracy of, respectively, 0.78 and 0.76 
in the training and validation sets. The additional set of 
rules improves the outcome only by 0.08–0.09.

Although NLP can be successfully applied in free-text 
reports, its accuracy will benefit from increasing levels 
of structure and standardization in the report. In addi-
tion, machine learning is thought to increase the accu-
racy score by finding more related synonyms based on a 
larger amount of data. This can be achieved by using, for 
instance, word embeddings. This allows for more exten-
sive analysis of the context, because specific concepts are 
often embedded by the same set of modifiers.

Although machine learning may be a promising addi-
tion, it requires much more annotated data for training 
purposes. Availability of these large amounts of specific 
data is sometimes an issue, especially at the beginning 
of a new measurement method or a new edition of the 
TNM staging. In addition, extracting and labeling large 
amounts of data are expensive and time-consuming. 
Therefore, it is important to learn from this base-
line study and explore where exactly implementation 
of machine learning or deep learning methods could 
increase outcomes. Focusing on finding accurate syno-
nyms (e.g., gravity-dependent atelectasis/non-oncolog-
ical atelectasis), distinguishing tumor from lymph node 
and accurate matching of contextual information to the 
right concepts might be a way to improve the algorithm. 
This hybrid approach could increase outcomes more effi-
ciently, without the need to annotate a vast amount of 
data. This could result in lower costs and speeds up the 
availability of these algorithms. In addition, less specific 

data can be used to train the algorithm because only the 
experienced difficulties need to be trained. For instance, 
non-oncological atelectasis is also mentioned in non-
oncological CT or PET-CT scans.

Clinical significance and future perspectives
Future work should focus on improving the algorithm, 
but research can also be aimed at how such algorithms 
can help with restaging tumor classifications across stag-
ing editions or how a classification GUI can be imple-
mented in clinical practice.

In this study, the GUI is only used for finding, analyz-
ing and adjusting errors during training. However, this 
tool can also be implemented for (live) staging during 
the reporting process. When connected to the direc-
tory in which reports are made, (live) staging aids the 
reporter in increasing accuracy, completeness and qual-
ity of the report by making sure that specific concepts 
are mentioned in the free-text report by looking at the 
(already filled in) structured format. The GUI can notify 
the reporter with a pop-up screen that pivotal informa-
tion is missing. In this study, 8 and 3 reporter related 
errors were found in, respectively, the training and vali-
dation set. These could be prevented when information 
was checked before finishing the report. The use of this 
algorithm with the GUI could have increased the report 
accuracy (i.e., quality of the report) by 1.5–4.0%. As such, 
the GUI might lead to better reports and perhaps also 
nudge the radiologist to more structured and standard-
ized reporting as they see the direct effect of that in the 
GUI.

Moreover, the potential of these types of algorithms 
will be further enhanced when they are used in less dif-
ficult settings, like automatic extraction of the TIRADS 
(Thyroid Imaging Reporting And Database System) clas-
sification of thyroid nodules as described in thyroid ultra-
sounds. Automatically stating the Bosniak classification 
on CT scans used to describe cystic renal masses may 
be another example. When we can also combine artifi-
cial intelligence (AI)-based automated image extraction 
information tools (e.g., tumor size extractor), it might be 
possible to prefill the radiological report and assist the 
reporter and the algorithm further.

A different opportunity of NLP is to extract certain 
endpoints, such as the presence of a specific disease or 
important or incidental findings. This can be used to 
(semi)automatically warn the referring specialist or plan 
a follow-up appointment.

As such, applying these algorithms in clinical prac-
tice can be complementary to structured reporting in 
radiology. It automatically checks the free-text report 
for specific items and converts these items into a struc-
tured format, without extensively changing or interfering 
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the way of reporting. This is especially of importance in 
times of datafication and increased need for data stand-
ardization as promoted by the ESR and RSNA. It shows 
that also NLP or rule-based algorithms can reinforce 
the radiologist and their reports, further supporting the 
reporting process.

Limitations
A limitation of using a rule-based approach building this 
T-stage algorithm is that specific boundaries had to be 
determined if those were not specified by the TNM. For 
instance, it was necessary to specify the size of the node 
in the ipsilateral side of the main tumor in a different lobe 
for T4 stage (> 1 cm) and the size for a different tumor in 
a different lobe (> 1 cm).

Another limitation was that we had to determine 
the strictness of the algorithm and more specifically on 
concepts such as involvement or presence. It is debat-
able whether only obvious invasion should be accounted 
for an involved concept or whether terms like ‘likely’ 
or ‘probably’ should be added to the invaded concepts. 
However, the presented rule-based algorithm can be con-
figured. Furthermore, the obtained T-stage by this algo-
rithm is a radiological T-stage. This may be different from 
the final T-stage, which generally also requires additional 
clinical information.

Lastly, the T-stage scoring process was done by one 
author (J.M.N.). In case of uncertainty and/or ambigu-
ity, a second author (J.W.) was consulted, after which 
consensus was reached between two authors. Although 
future validation studies should also look at aspects of 
interrater variability, the primary goal of the current 
study is to explore whether the Dutch algorithm could be 
useful when translated into English.

Conclusions
NLP is a promising tool that can be used in extracting 
specific information from radiological reports concern-
ing T-stage in pulmonary oncology. The used Dutch 
algorithm could be successfully translated and validated 
in an English dataset, and this will likely be feasible for 
other languages as well. Focused implementation of more 
machine learning strategies and the use of a graphical 
user interface should lead to higher accuracy, as an effect 
of better report quality.
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