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CRITICAL REVIEW
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Abstract 

Castleman disease (CD) describes a group of rare hematologic conditions involving lymphadenopathy with charac‑
teristic histopathology and a spectrum of clinical abnormalities. CD is divided into localized or unicentric CD (UCD) 
and multicentric CD (MCD) by imaging. MCD is further divided based on etiological driver into human herpesvirus-
8-associated MCD, POEMS-associated MCD, and idiopathic MCD. There is notable heterogeneity across MCD, but 
increased level of pro-inflammatory cytokines, particularly interleukin-6, is an established disease driver in a portion of 
patients. FDG-PET/CT can help determine UCD versus MCD, evaluate for neoplastic conditions that can mimic MCD 
clinico-pathologically, and monitor therapy responses. CD requires more robust characterization, earlier diagnosis, and 
an accurate tool for both monitoring and treatment response evaluation; FDG-PET/CT is particularly suited for this. 
Moving forward, future prospective studies should further characterize the use of FDG-PET/CT in CD and specifically 
explore the utility of global disease assessment and dual time point imaging.
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Key Points

•	 Castleman disease (CD) describes a group of rare 
hematologic disordersinvolving lymphadenopathy 
with characteristic histopathology and aspectrum of 
clinical abnormalities.

•	 FDG-PET/CT allows detection of inflammation at 
a molecular level in CDthat may proceed structural 
changes detected by CT and MRI.

•	 FDG-PET/CT can contribute to correct sub-classi-
fication of CD intounicentric CD (UCD) and multi-
centric CD (MCD).

Background
Castleman disease (CD), also known as angiofollicular 
lymph node hyperplasia and giant lymph node hyper-
plasia, is a hematologic disorder first reported by Benja-
min Castleman in 1954. CD is a rare disease diagnosed in 
6600–7700 individuals each year in the USA [1]. No data 
suggest a strong gender predilection [2]. All CD patients 
are present with lymphadenopathy that demonstrates 
characteristic histopathological changes and a spectrum 
of clinical abnormalities.

CD is sub-classified based on the number of enlarged 
lymph nodes. Unicentric CD (UCD) involves a single 
lymph node or a single region of nodes, while multicen-
tric CD (MCD) involves multiple lymphatic stations [3]. 
Available data suggest that UCD is more common than 
MCD [1]. UCD has been reported to occur in younger 
individuals than MCD, though epidemiologic data are 
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sparse, and both can occur in individuals of all ages [4, 
5]. Most cases of UCD are located in the mediastinum, 
but UCD can involve any lymph node region in the body 
[6–9]. In contrast, MCD involves lymphadenopathy 
in greater than one region and can occur in any region 
of the body. Additionally, MCD has a poorer prognosis 
than UCD. MCD is further divided into three subgroups: 
human herpesvirus 8 (HHV-8)-associated MCD; poly-
neuropathy, organomegaly, endocrinopathy, monoclonal 
gammopathy, skin changes (POEMS)-associated MCD; 
and idiopathic MCD (iMCD) [10]. The relative break-
down between HHV-8-associated MCD, POEMS-asso-
ciated MCD, and iMCD is not well characterized. These 
four groups vary considerably in clinical characteristics, 
preferred treatment, and clinical outcomes. Therefore, 
correct classification is vital at the time of diagnosis. In 
addition, many diseases are present with CD-like clin-
icopathology, including lymphoma, Kaposi sarcoma, 
immunoglobulin G4-related disease (IgG4-RD), and 
other benign and malignant tumors [11–14]. Further-
more, HHV-8-associated MCD is often seen in human 

immunodeficiency virus (HIV)-positive or otherwise 
immunosuppressed patients who are at increased risk for 
such CD-like diseases [4, 15, 16]. As such, the exclusion 
of pathologies that can mimic CD is critical. The features, 
prognosis, and management of each main subtypes of 
CD are summarized in Fig. 1 [17–22].

The standard investigative workup in Castleman dis-
ease usually begins with lymph node biopsy followed by 
radiological investigation with PET/CT preferred, com-
plete blood count, serum chemistry, markers of inflam-
mation, serum cytokine levels, viral serology for HHV-8 
and HIV, and protein electrophoresis, immunofixa-
tion, and quantitative immunoglobulins [23]. To further 
exclude other similarly presenting conditions, clinical 
findings must be considered and other laboratories can 
be ordered such as IgH gene arrangement study on the 
biopsied lymph node to rule out lymphoma and serology 
investigations for autoimmune disorders [23]. A formal 
diagnostic criteria have only been established for iMCD 
and are summarized in Table 1 [4]. Diagnosis of HHV-8 
associated MCD generally requires HHV-8 detection, 

Fig. 1  Summary of the main types of Castleman disease [17–22]. UCD, unicentric Castleman disease; MCD, multicentric Castleman disease; HHV-8, 
human herpesvirus-8; iMCD, idiopathic multicentric Castleman disease; POEMS, polyneuropathy, organomegaly, endocrinopathy, monoclonal 
protein, skin changes
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lymphadenopathy in multiple regions, and plasmablas-
tic histopathologic findings on lymph node biopsy [24]. 
POEMS-associated MCD is diagnosed if only one of 
two the mandatory major criteria of polyneuropathy and 
monoclonal plasma proliferative disorder needed for 
diagnosis of POEMS syndrome is present with lymph 
node biopsy diagnostic of CD [25].

Excessive cytokine production is believed to underlie 
CD pathogenesis. UCD and POEMS-associated MCD 
are believed to be caused by somatic mutations in mono-
clonal stromal and plasma cells, respectively, resulting in 
excessive cytokine release and subsequent clinical symp-
tomatology [26]. In HHV-8-associated MCD, uncon-
trolled infection with HHV-8 occurs due to host 
immunocompromise, leads to a viral interleukin (IL)-6 
driven cytokine storm, and correlates with symptom 
severity [27–30]. Finally, while the precise mechanism 
of iMCD is not known, elevated IL-6 associated with 
autoimmune mechanisms, ectopic cytokine secretion by 
tumor cells, and/or viral signaling by a non-HHV-8 virus 
have been proposed as possible etiologies [15]. IL-6 lev-
els directly parallel disease activity, and elevated serum 
IL-6 induces B-lymphocyte growth, secretion of vascular 

endothelial growth factor (VEGF), and inflammatory 
responses. Also, mice with retroviral transduction of IL-6 
coding sequence within hematopoietic stem cells develop 
an MCD-like syndrome [31]. As we discuss in the follow-
ing sections, the modulation of IL-6 and other inflam-
matory cytokines is effective in a large portion of iMCD 
patients.

Common presenting symptoms and laboratory 
abnormalities in CD
UCD may be clinically silent, and recent evidence sug-
gests that most UCD patients do not demonstrate any 
signs or symptoms beyond solitary lymphadenopathy 
[32]. That being said, UCD may predispose patients to 
malignancy [33, 34]. Laboratory findings, including com-
plete blood count and inflammatory markers, are typi-
cally unremarkable in UCD patients.

In contrast, the three subtypes of MCD (HHV-8-asso-
ciated MCD, POEMS-associated MCD, iMCD) present 
with diffuse lymphadenopathy, systemic inflammation, 
and organ dysfunction. These patients typically demon-
strate B symptoms (fever, chills, night sweats), cough, 

Table 1  From the iMCD consensus diagnostic criteria proposed from The International Working Group for iMCD [4]

*  Diagnosis requires both major criteria and at least 2 of 11 minor criteria with 1 laboratory criterion. Diseases that can mimic iMCD listed in the exclusion criteria must 
be ruled out

iMCD, idiopathic Castleman disease; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; IL-6, interleukin 6; VEGF, vascular endothelial growth factor; IgA, 
immunoglobulin A; IgE, immunoglobulin E; LDH, lactate dehydrogenase; B2M, Beta-2 microglobulin; HHV-8, human herpesvirus-8; EBV, Epstein–Barr virus; CMV, 
cytomegalovirus; POEMS, polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes)

Major criteria
 1. Lymph nodes with histopathologic features consistent with iMCD spectrum
 2. Enlarged lymph nodes (≥ 1 cm in short-axis diameter) in ≥ 2 lymph node regions

Minor criteria
Laboratory
 1. Elevated CRP or ESR
 2. Anemia
 3. Thrombocytopenia or thrombocytosis
 4. Hypoalbuminemia
 5. Renal dysfunction or proteinuria
 6. Polyclonal hypergammaglobulinemia
Clinical
 1. B symptoms
 2. Hepatomegaly or splenomegaly
 3. Fluid accumulation
 4. Eruptive cherry hemangiomatosis
 5. Violaceous papules
 6. Lymphocytic interstitial pneumonitis

Supporting features
 1. Elevated IL-6, VEGF, IgA, IgE, LDH, and/or B2M
 2. Reticulin fibrosis of bone marrow
 3. Disorders associated with iMCD: paraneoplastic pemphigus, bronchiolitis obliterans organizing pneumonia, autoimmune cytopenias, polyneuropa‑

thy, inflammatory myofibroblastic tumor

Exclusion criteria
 1. Infection: HHV-8, EBV, CMV, toxoplasmosis, HIV, active tuberculosis
 2. Autoimmune/autoinflammatory: systemic lupus erythematosus, rheumatoid arthritis, adult-onset Still disease, juvenile idiopathic arthritis, autoim‑

mune lymphoproliferative syndrome
 3. Malignancy: lymphoma, multiple myeloma, POEMS syndrome, primary lymph node plasmacytoma, follicular dendritic cell sarcoma
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thoracic or abdominal pain, dyspnea, weight loss, and 
hemoptysis [32]. Comorbid malignancies, including lym-
phoma in iMCD and Kaposi’s sarcoma in HHV-8-asso-
ciated MCD, have been found to occur [31, 33, 34]. In 
addition, patients with the three subtypes of MCD may 
demonstrate numerous laboratory abnormalities, includ-
ing anemia, leukocytosis, thrombocytopenia and throm-
bocytosis, elevated inflammatory markers (C-reactive 
protein, IL-6, and erythrocyte sedimentation rates), 
elevated IgG, hypoalbuminemia, renal dysfunction, and 
elevated liver enzymes [1, 31]. Of note, serological tests 
for hepatitis B virus, cryoglobulin, antinuclear antibody, 
and cytomegalovirus are usually negative [35]. Consensus 
diagnostic criteria exist for iMCD and for POEMS syn-
drome, which should both be evaluated in all potential 
MCD cases. The heterogeneity of CD presents a chal-
lenge, so both clinical and laboratory findings must be 
carefully considered in the diagnosis and workup for sus-
pected CD [4, 25].

Role of FDG‑PET/CT in the diagnosis of CD
18F-fluorodeoxyglucose-positron emission tomography/
computed tomography (FDG-PET/CT) can be used to 
assess the metabolic activity of the enlarged lymph nodes 
in CD. FDG is a radiolabeled glucose analog taken up 
preferentially by metabolically active cells, such as malig-
nant tumor cells or inflammatory cells [9]. Currently, 
FDG-PET/CT is recommended as an alternative to CT 
scan alone in the published iMCD treatment guidelines 
[36]. However, the potential for FDG-PET/CT in the 
diagnosis, treatment assessment, and follow-up of CD 
has not been fully demonstrated. With the ability to col-
lect structural and metabolic information, FDG-PET/CT 
can enhance the specificity and sensitivity in identifying 
affected lymph nodes in CD patients [11]. Specifically, 
contrast-enhanced PET/CT would provide joint func-
tionality of both contrast-enhanced CT and PET.

Currently, CT is routinely utilized in CD patients to 
identify and characterize lymph nodes by size, shape, and 
contrast enhancement pattern [7]. The lymphadenopathy 
in UCD, HHV-8-associated MCD, POEMS-associated 
MCD, and iMCD typically demonstrates marked and 
rapid contrast enhancement on CT [37]. HHV-8-asso-
ciated MCD, POEMS-associated MCD, and iMCD may 

additionally present with hepatosplenomegaly and other 
organ-specific imaging anomalies. Of note, thickening of 
the lung septa, bronchovascular bundles, and centrilobu-
lar nodules may present on CT as thin-walled cysts and 
ground-glass opacity [8, 9, 13].

A major limitation of CT is that it cannot sensitively 
detect the involvement of normal-sized lymph nodes, 
nor can it distinguish between reactive hyperplasia and 
pathological enlargement of lymph nodes. Additionally, 
CD can sometimes be misinterpreted via CT and mag-
netic resonance imaging (MRI) as other similarly appear-
ing autoimmune, malignant, or infectious disorders [3, 
4, 11, 14] (Table 2). For example, thoracic UCD may be 
interpreted as a thyroid mass, parathyroid adenoma, or 
hemangiomas [9].

Fused FDG-PET/CT takes into account the meta-
bolic characteristics of the structures [38]. This molecu-
lar imaging modality, thus, can detect abnormally high 
uptake in small lymph nodes that would be overlooked 
by purely structural imaging modalities and facilitate a 
correct and complete diagnosis. Also, FDG-PET/CT can 
identify lymph nodes and lesions that are more likely to 
yield a definitive diagnosis on biopsy [39]. Even in cases 
of UCD with only mild contrast enhancement on CT, 
focal lymphadenopathy can demonstrate increased FDG 
uptake. The majority of HHV-8-associated MCD patients 
also show increased FDG uptake in the bone marrow and 
the spleen [39]. In addition, lung parenchymal changes in 
iMCD may be confirmed by increased FDG uptake. That 
being said, many institutions may not implement breath-
holds for the pulmonary portion of the scans, potentially 
obscuring fine details of the lung parenchyma and lead-
ing to less accurate longitudinal measurement of small 
lung lesions due to respiratory motion artifact [40, 41]. In 
these cases, additional techniques to correct for respira-
tory motion artifacts, such as phase-aligned correction 
and gating algorithms, are warranted [42, 43].

The degree of FDG uptake may be different between 
UCD, HHV-8-associated MCD, POEMS-associated 
MCD, and iMCD. While one study reported a sig-
nificantly higher lymph nodes maximum standardized 
uptake value (SUVmax) in MCD versus UCD, another 
study noted no significant difference [44, 45]. Clini-
cal manifestations of CD have also been shown to be 

Table 2  Autoimmune, neoplastic, and infectious disorders with significant shared clinical, histologic, and immunologic 
features of Castleman disease (CD) [3, 4, 11, 14]

Types of disorders Disorders

Autoimmune Immunoglobulin G4-related disease, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), adult-onset Still Disease

Neoplastic Lymphoma, desmoid tumors, retroperitoneal sarcoma, paragangliomas, sarcomas, hemangiopericytoma, bronchial 
adenoma, neurofibroma, chest wall tumors, schwannoma

Infectious Human immunodeficiency Virus (HIV), Epstein–Barr virus (EBV), cytomegalovirus, tuberculosis, toxoplasmosis
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correlated with the degree of FDG uptake in a small 
study [38]. However, the use of SUV as the sole means 
of differentiation between subtypes has significant limi-
tations. SUV is specific to the technique and instrumen-
tation used, which is highly variable among institutions 
[46, 47]. Nevertheless, PET/CT scanners and the imag-
ing protocol adhered are increasingly standardized to 
international practice guidelines and the PET/CT sys-
tems including calibration and harmonized to a phantom 
reduce the variation of quantitation parameters [48, 49].

Although some evidence indicates that FDG-PET/CT 
may be utilized to differentiate between CD subtypes, as 
well as between CD and lymphoma as potential causes of 
lymphadenopathy, additional studies must be performed 
to corroborate these findings [34, 45, 50–52]. In addition, 
MCD patients are at increased risk for the development 
of lymphoma, which can confound FDG uptake findings 
[53]. A potential confounder for the use of FDG in the 
evaluation of lymphadenopathy is sarcoidosis, which can 
resemble lymphoma and CD both morphologically and 
metabolically, and may rarely coexist with CD [54]. Labo-
ratory findings may help differentiate other inflammatory 
conditions from CD; however, histopathological evalua-
tion through tissue biopsy is the recommended approach 
in evaluating unexplained lymphadenopathy [55].

Although excisional lymph node biopsy is the only 
way to definitively diagnose CD based on its histology, 
existing evidence suggests that FDG-PET/CT should be 
performed beforehand to help determine CD subtype, 
consider the possibility of lymphoma, and identify ideal 
lesions for biopsy [39, 45].

FDG‑PET/CT in treatment assessment 
and monitoring of CD
Treatment options for CD and responses differ by sub-
type. For UCD, complete surgical resection of the node is 
an effective and usually curative treatment. When com-
plete surgical excision cannot be performed, chemother-
apy and radiation therapy are alternative therapies that 
sometimes can be followed by resection [56, 57].

The first-line treatment for HHV-8-associated MCD 
involves rituximab, an anti-CD20 monoclonal anti-
body, with or without antivirals and liposomal doxoru-
bicin. Treatment of POEMS-associated MCD is directed 
against the underlying POEMS syndrome using immu-
nomodulators and autologous stem cell transplantation. 
iMCD is treated first-line with the anti-IL-6 immuno-
therapy siltuximab (the only FDA-approved treatment 
for iMCD), which may be combined with corticoster-
oids. iMCD refractory to siltuximab may be treated 
with rituximab, immunosuppressants (e.g., sirolimus, 
cyclosporine), immunomodulators (e.g., thalidomide, 
bortezomib), or multi-agent cytotoxic chemotherapy for 

severe disease [58]. With more insight into disease mech-
anisms and signal pathways involved in iMCD, new treat-
ment strategies are under investigation.

Beyond identifying lymphadenopathy, FDG-PET/CT 
can be utilized to monitor response to treatment [39, 59]. 
One report on CD used FDG-PET/CT to confirm a com-
plete anatomic and metabolic response to treatment and 
to enable early detection of treatment failure or relapse 
[60] (Figs. 2, 3).

The relapse of UCD after surgery is rare, and only a 
few cases have been reported [61, 62]. In contrast, HHV-
8-associated MCD, POEMS-associated MCD, and iMCD 
frequently relapse [18, 63]. In particular, iMCD is a het-
erogeneous disease and not all iMCD patients respond 
to treatment, including anti-IL-6 therapies. The only 
published treatment guidelines for iMCD recommend 
follow-up imaging by CT or PET/CT [64]. Therefore, the 
role of FDG-PET/CT as both a prognostic and a moni-
toring tool should be further investigated.

Following rituximab therapy in HIV-positive patients 
with HHV-8-associated MCD, the median time to the 
first MCD relapse was 30 months [18]. In addition, clin-
icopathological features present at diagnosis have been 
associated with subsequent relapse [18]. In HHV-8-asso-
ciated MCD, patients often have comorbid HIV infection, 
so the interpretation of FDG-PET/CT can be confounded 
by reactive changes secondary to viremia, concurrent 
infections, or lipodystrophy [39]. Other malignancies 
and inflammatory diseases may further complicate the 
monitoring of CD [65, 66]. Consequently, FDG-PET/CT 
should be interpreted together with clinical and labora-
tory information in the monitoring of disease activity in 
HHV-8-associated MCD, POEMS-associated MCD, and 
iMCD [67].

Future perspectives: dual time‑point (DTP) imaging 
and global disease assessment
Although FDG-PET/CT is effective in detecting and 
monitoring CD, some limitations and challenges are 
evident. Most significantly increased FDG uptake is not 
specific to CD, and several other disorders can mimic 
CD. As such, two nascent FDG-PET/CT techniques may 
prove to be useful in the assessment of CD: dual time-
point FDG-PET imaging (DTP) and global disease score 
(GDS).

DTP involves an extra acquisition of PET data at a 
delayed time-point (e.g., 3 h or more after FDG admin-
istration). Most cancers demonstrate maximum FDG 
uptake well beyond 60  min after FDG administration, 
while normal tissues and inflammatory lesions gener-
ally show a decline in FDG uptake with time. Thus, DTP 
imaging has been demonstrated improve discrimination 
between cancer and inflammatory lesions [68–70]. DTP 
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also provides additional information on disease biology 
[71]. Different types of malignant and inflammatory cells 
accumulate variable amounts of FDG due to variation 
in glucose-6-phosphatase. More aggressive and actively 
proliferating cancer cells express lower levels of glucose-
6-phosphatase and exhibit rising levels of FDG uptake 
over a longer period, whereas the opposite is applicable 
in less aggressive or less proliferative cancer cells and 
inflammatory cells [68]. Hence, differential kinetics of 
FDG uptake and clearance from inflammatory and tumor 
cells over time may allow us to distinguish between 
malignancy and inflammation. Moreover, acute infec-
tious and non-infectious inflammatory lesions behave 
differently from chronic lesions on delayed time-point 
imaging due to the different inflammatory cells involved. 
However, this methodology can be demanding to both 
implement and standardize within busy imaging depart-
ments [72]. In addition, clinician experience in interpret-
ing morphological features on imaging is strongly related 
to ability to differentiate malignancy from inflammatory 
mimics. For these reasons, we propose that this tech-
nique be expanded to include CD. Specifically, CD tends 
to demonstrate a symmetric pattern in the mediasti-
num and hilum [9]. The performance of qualitative over 
quantitative metrics in inflammatory conditions has also 
gained some recent interest [73]. Nonetheless, a more 
thorough exploration of DTP is needed to assess its effi-
cacy in differentiating between patterns of FDG uptake 
and clearance in active (acute) versus inactive (chronic) 
inflammatory lesions in CD, which could potentially help 

detect acute episodes of exacerbation and monitor the 
underlying chronic inflammatory state of CD.

Although CT with intravenous contrast may help 
with the localization of CD lesion, it cannot be used to 
quantify lesional activity or track it longitudinally. FDG-
PET/CT imaging has been utilized in a number of other 
pathologies to calculate global disease burden, which 
uses GDS metrics including total lesion glycolysis (TLG). 
TLG represents a volumetric measure of FDG uptake 
by multiplying metabolic lesion volume (MLV) and 
SUVmean values obtained by using a threshold to deline-
ate lesion activity relative to the background [74]. Single 
SUVmax measurements are often unreliable and unre-
producible, especially when glucose uptake is heteroge-
neous and the disease is systemic with multiple lesions; 
TLG, on the other hand, is a sensitive and specific value 
that gives insight into the stage and progression of a 
disease [75–77] (Figs.  4, 5). Global disease assessment 
could potentially make this method of tracking disease 
over time of treatment easy and standardized. That is, 
GDS reflects the total disease burden and metabolic 
activity at the time of the PET examination and can be 
followed longitudinally to monitor disease activity and 
treatment efficacy [46]. This methodology has previously 
been applied to lymphoma patients [78–80]. Moving for-
ward, an analogous approach should be applied toward 
MCD patients, especially iMCD. Despite the effective-
ness and an increased use of this methodology, it has still 
not been widely adopted and standardized in all insti-
tutions. Nevertheless, we believe that GDS will better 

Fig. 2  a displays the PET scan of a subject with multicentric Castleman disease (MCD) in the coronal view. Enlarged axillary and cervical lymph 
nodes and an enlarged spleen are seen in a, demonstrating the systemic nature of MCD. b–d display the CT, PET, and PET/CT cross-sectional scans 
of the subject’s thorax, respectively. d displays high uptake of lymph nodes in the right and left axillary regions as shown in a 
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track the progress CD, especially given its heterogeneous 
presentation.

Beyond this, GDS may be used to standardize the 
assessment of CD progression among individuals and 
to monitor response to novel therapies currently under 
investigation [81–83]. A recent study demonstrated that 
IL-6-blockade refractory iMCD is responsive to siroli-
mus, a mammalian target of rapamycin (mTOR) inhibi-
tor [58]. FDG-PET/CT is excellent in the early evaluation 
of signal transduction inhibitors like mTOR inhibitors for 
multiple other conditions as FDG-PET/CT detects early 
changes in tumor biology preceding tumor size regres-
sion, and treatment effects can be detected as early as 
24  h after onset of treatment [84–87]. Therefore, FDG-
PET/CT has the potential to become a powerful tool for 
future evaluation of biologic agents and other therapies 
for CD.

Conclusion
CD is a potentially fatal disease that may overlap with 
numerous hematologic, inflammatory, and neoplastic 
diseases. FDG-PET/CT is frequently performed to visu-
alize and localize lymph node enlargement in CD, but it 
has not been systematically applied in clinical practice. 
In the future, we believe that FDG-PET/CT and associ-
ated techniques will be useful in the diagnosis and cat-
egorization of CD, in differentiation between mimicking 
conditions, and monitoring of disease progression and 
response to treatment. Future prospective studies should 
be designed to assess and validate the role of this molecu-
lar imaging modality to aid in the characterization and 
management of this rare orphan disease.

Abbreviations
CD: Castleman disease; DTP: Dual time-point FDG-PET imaging; FDG-PET/
CT: 18F-fluorodeoxyglucose-positron emission tomography/computed 
tomography; MRI: Magnetic resonance imaging; GDS: Global disease score; 

Fig. 3  a–c consist of the CT, PET, and PET/CT scans, respectively, of a subject with multicentric Castleman Disease (MCD). High FDG uptake of 
lymph nodes can be visualized in the neck in b and c. d–f were taken 8 months after (a–c) and demonstrate decreased FDG-uptake in the same 
neck region, indicating that the subject’s Castleman disease treatment has been successful
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Fig. 4  FDG-PET images of a multicentric Castleman disease (MCD) subject over 8 months. a and b demonstrate cervical, axillary, and pelvic lesions, 
while c and d show decrease in FDG-uptake in accordance to treatment. Total lesion glycolysis (TLG) was calculated to be 934.7, 1001.7, 17.5, 
and 16.4 for a–d respectively. TLG was calculated by multiplying the metabolic volume with FDG uptake segmented by fixed threshold methods 
at 41% of maximum SUV in the volume of interest (VOI) [75] by the mean standardized uptake value (SUVmean) and them summing all the 
intensity-volume product values from all lesions

Fig. 5  A subject with multicentric Castleman disease (MCD) with lesions in the axillary, neck, and abdomen is shown over the course of 10 months. 
a indicated the initial lesions seen in PET before treatment. b was taken after 4 months from the initial scan, and a decrease of lesions in the axillary, 
neck, and abdomen is seen. However, the disease seemed to reappear in the axillary and cervical lesions despite treatment as visualized in c, which 
was taken 6 months after the scan for b. Total lesion glycolysis (TLG) was calculated to be 365.9, 204.5, and 601.6 for a–c, respectively. TLG was 
calculated by multiplying the metabolic volume with FDG uptake segmented by fixed threshold methods at 41% of maximum SUV in the volume 
of interest (VOI) [75] by the mean standardized uptake value (SUVmean) and then summing all the intensity-volume product values from all lesions
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HHV-8: Human herpesvirus-8; HIV: Human immunodeficiency virus; IgG4-RD: 
Immunoglobulin G4-related disease; IL: Interleukin; iMCD: Idiopathic MCD; 
MCD: Multicentric CD; mTOR: Mammalian target of rapamycin; MTV: Metabolic 
tumor volume; POEMS: Polyneuropathy, organomegaly, endocrinopathy, 
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