
CRITICAL REVIEW Open Access

Diagnostic value of alternative techniques
to gadolinium-based contrast agents in MR
neuroimaging—a comprehensive overview
Anna Falk Delgado1,2*, Danielle Van Westen3, Markus Nilsson3, Linda Knutsson4,5, Pia C. Sundgren3,6,
Elna-Marie Larsson7 and Alberto Falk Delgado7

Abstract

Gadolinium-based contrast agents (GBCAs) increase lesion detection and improve disease characterization for many
cerebral pathologies investigated with MRI. These agents, introduced in the late 1980s, are in wide use today.
However, some non-ionic linear GBCAs have been associated with the development of nephrogenic systemic
fibrosis in patients with kidney failure. Gadolinium deposition has also been found in deep brain structures,
although it is of unclear clinical relevance. Hence, new guidelines from the International Society for Magnetic
Resonance in Medicine advocate cautious use of GBCA in clinical and research practice. Some linear GBCAs were
restricted from use by the European Medicines Agency (EMA) in 2017.
This review focuses on non-contrast-enhanced MRI techniques that can serve as alternatives for the use of GBCAs.
Clinical studies on the diagnostic performance of non-contrast-enhanced as well as contrast-enhanced MRI
methods, both well established and newly proposed, were included. Advantages and disadvantages together with
the diagnostic performance of each method are detailed. Non-contrast-enhanced MRIs discussed in this review are
arterial spin labeling (ASL), time of flight (TOF), phase contrast (PC), diffusion-weighted imaging (DWI), magnetic
resonance spectroscopy (MRS), susceptibility weighted imaging (SWI), and amide proton transfer (APT) imaging.
Ten common diseases were identified for which studies reported comparisons of non-contrast-enhanced and
contrast-enhanced MRI. These specific diseases include primary brain tumors, metastases, abscess, multiple sclerosis,
and vascular conditions such as aneurysm, arteriovenous malformation, arteriovenous fistula, intracranial carotid
artery occlusive disease, hemorrhagic, and ischemic stroke.
In general, non-contrast-enhanced techniques showed comparable diagnostic performance to contrast-enhanced
MRI for specific diagnostic questions. However, some diagnoses still require contrast-enhanced imaging for a
complete examination.
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Key points

� Gadolinium-based contrast agent injection should be
used cautiously in neuroimaging

� Non-contrast-enhanced MRI techniques can depict
specific relevant physiological processes

� MRI diffusion, arterial spin labeling, spectroscopy,
and amide proton transfer imaging are non-
contrast-enhanced MRI techniques that can be used
to answer specific clinical questions in neuroimaging

Background
Gadolinium-based contrast agents (GBCAs) in MRI
were introduced in clinical practice in the 1980s to
increase lesion detection and improve the disease
characterization for many cerebral and vascular path-
ologies investigated with MRI [1]. The effect of
GBCAs in MRI is rendering a higher signal on T1-
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weighted images due to shortening of T1 relaxation
time. In addition, GBCA was occasionally used for
patients unsuitable for iodine-based contrast agent in
CT examinations.
The use of GBCAs was initially considered safe with-

out reported acute adverse events or long-term risks.
However, after several reports on the association be-
tween nephrogenic systemic fibrosis and GBCA expos-
ure in patients with renal impairment, some linear
GBCAs were withdrawn from the market or their indica-
tion was restricted [2]. More restrictive use of GBCAs in
patients with renal impairment and the introduction of
more stable non-linear GBCA chelates have lowered the
incidence of nephrogenic systemic fibrosis [3, 4].
Recently, gadolinium deposition was been reported in

the deep gray matter of the brain [5, 6] and in the bone
[7]. Neither of these reports demonstrated any associ-
ation with clinical symptoms. Current recommendations
of the use of GBCA in clinical practice and research
now emphasize that GBCAs per standard practice
should only be used when absolutely necessary and that
GBCA can be used in research settings with appropriate
guidance of protocols and ethical review board approval
with informed patient consent [5]. Furthermore, contrast
enhancement adds to the cost of the MRI examination
due to the cost of the additional scan time and of the
contrast agent itself.
In the light of technological advances, additional

costs, and possible long-term risks of GBCAs, the
current role of GBCAs in neuroimaging can be dis-
cussed and re-evaluated. Only a limited number of
studies have been designed to compare the diagnostic
efficacy for non-contrast-enhanced MRI compared to
contrast-enhanced techniques [8–10]. The aim of this
paper is to review the potential use of non-contrast-en-
hanced MRI instead of contrast-enhanced MRI for spe-
cific diagnostic questions in neuroradiology. We
describe the mechanism and limitations of GBCA con-
trast enhancement as well as the techniques that may
serve as alternatives to GBCA contrast enhancement.
Briefly, the topic of dynamic contrast-enhanced MRI is
discussed. Then, we compare the diagnostic value and
clinical applicability of non-contrast-enhanced with
contrast-enhanced sequences in ten common diseases
affecting the brain and report relevant statistical mea-
sures regarding diagnostic performance. Disease cat-
egories were ordered by the level of evidence for the
ability of non-contrast-enhanced MRI to replace con-
trast-enhanced MRI in a clinical setting. The discussion
gives a critical appraisal of the main findings.

Search strategy
Eligible articles were searched for in PubMed until
September 2018. Search strings included a combination

of the following search terms: MRI, MR, AUC (area
under curve), sensitivity, specificity, diagnostic accuracy,
performance, gadolinium, contrast, enhanced, and
GBCA. Searches were conducted by two of the authors
(AnFD, AlFD).

GBCAs and contrast enhancement
It is unclear how GBCA is taken up and is eliminated
from the brain [11]. Tight junctions in the vessel endo-
thelium and other specific mechanisms exclusive for the
blood-brain barrier are supposed to prevent large mole-
cules such as those in GBCAs to enter the brain [12].
However, disease processes may break down the integ-
rity of the blood-brain barrier, and these processes are
predominantly inflammatory, infectious, or malignant
[13]. Hence, in such lesions, GBCAs will leak through
the blood vessels and result in increased signal on T1-
weighted images compared to normal unaffected brain.
However, since several different disease processes dis-
rupt the integrity of the tight junctions and lead to con-
trast enhancement, finding contrast enhancement on
brain MRI is unspecific and can sometimes be mislead-
ing in clinical decision-making.

Limitations of static contrast enhancement in
neuroimaging
While contrast enhancement in neuroimaging is used
clinically to increase sensitivity to detect an abnormality,
the specificity is often lower. For example, static contrast
enhancement alone cannot discriminate between which
are low-grade and high-grade tumors in adults and chil-
dren [14, 15], pseudoprogression and true intracranial
tumor progression after radiation therapy [16], and
pseudoresponse and true response after anti-angiogenic
or immunotherapy [17]. Correct definition of the treat-
ment response is important in order to select the opti-
mal treatment for the patient and avoid premature
cessation of an effective treatment [17]. Further exam-
ples are discrimination between a ring-enhancing metas-
tasis and glioblastoma [18], or abscess, or indication of
low tumor grade in vascularized oligodendroglial tumors
[19]. Another example is that contrast enhancement fails
to detect tumor cells infiltrating beyond the contrast-en-
hancing lesion and into the surrounding white matter,
like in high-grade gliomas [20]. Further, the diffusion
time of GBCA is not often considered in clinical prac-
tice, possibly hampering the detection of small lesions.
Variable sensitivity of different T1-weighted sequences
to the T1-shortening effects of GBCA is another reason
for variable detectability.
As contrast enhancement per se is unspecific for disease

categorization related to disruption of the blood-brain
barrier, time-resolved MRI techniques using GBCAs have
been developed [21]. For example, MRI perfusion or

Falk Delgado et al. Insights into Imaging           (2019) 10:84 Page 2 of 15



perfusion-related techniques such as dynamic susceptibil-
ity contrast (DSC) and dynamic contrast-enhanced (DCE)
MRI add specificity to contrast-enhanced MRI when
assessing tumor grade and treatment-related changes.
Non-contrast-enhanced MRI techniques that closely re-
semble these techniques are arterial spin labeling, time of
flight, and phase-contrast MRI enabling perfusion estima-
tion or vessel imaging.

Useful non-contrast-enhanced MRI techniques
While contrast-enhancement is important to increase
signal to background for small lesions, depict an im-
paired blood-brain barrier, accentuate vessel structures,
and estimate tissue perfusion, new non-contrast-en-
hanced MRI techniques must be able to offer reliable al-
ternatives to answer these clinical questions. There are
useful sequences without GBCA, which shall be intro-
duced here.

Arterial spin labeling
Arterial spin labeling (ASL) is a non-contrast-enhanced
technique that offers an estimation of brain perfusion
such as cerebral blood flow (CBF) [22, 23]. Since the
technique can depict tissue perfusion, it could replace
GBCA-based MRI perfusion techniques such as dynamic
susceptibility contrast (DSC) MRI and dynamic contrast-
enhanced (DCE) MRI. In vessel imaging, ASL is often
compared against digital subtraction angiography (DSA).
With this technique, water protons (spins) in the blood
are labeled magnetically by exposure to a radio-fre-
quency pulse. These are then transported by the blood
to the organ of interest and incorporated into the tissue
by water exchange between blood and the tissue. Im-
aging is performed twice, once with (labeling acquisi-
tion) and once without the labeling (control acquisition).
There are several variants of ASL pulse sequences. One
variant is when the RF labeling is performed continu-
ously (CASL) [24] and another where the labeling is ap-
plied on a large volume with one or two short RF pulses
(PASL) [23]. A hybrid version of these two variants is
the pseudocontinuous ASL (PCASL) where the continu-
ous labeling pulse in CASL is replaced by a series of
short pulses applied in the presence of a magnetic field
gradient [22]. This method is currently recommended in
the white paper by Alsop et al. [25]. For example, ASL
has been tested for depicting arteriovenous malforma-
tions [26] and in the response assessment of cerebral tu-
mors [27]. Main concerns with the technique include
loss of signal due to susceptibility artifacts, motion arti-
facts, and low signal-to-noise ratio [28].

Time of flight and phase-contrast MRI
Time of flight (TOF) MRI is a non-contrast-enhanced
angiographic imaging method that measures and depicts

the flow of blood inside a vessel compared to the sur-
rounding static tissue [29]. TOF images depict vessel
structures in 2D and 3D and can be used both for arter-
ies and veins. Hence, it is a method that could be used
instead of contrast-enhanced MR angiography (MRA).
In TOF imaging, T1 hyperintense lesions such as lip-
omas can be mistaken for a vascular structure such as
an aneurysm, although fat-saturated images and an
awareness of artifacts can help distinguish these condi-
tions [30]. Awareness should also be directed towards
thrombus shine through in TOF MR arteriography and
venography [31]. Source images as well as T1-weighted
images should be scrutinized in order to differentiate be-
tween high T1 signal in thrombosed areas and normal
flow [31].
Phase-contrast MRI is a non-contrast-enhanced se-

quence with a high rate of background suppression and
excellent visualization of cerebral veins and high spatial
resolution in 3D [32]. In phase-contrast MR venography,
only moving tissue contributes to the MRI signal and
static tissue gives no signal [32]. For example, TOF im-
aging can be of value when assessing for vessel patency
in suspected occlusion or stenosis. Potential misinterpre-
tations when assessing suspected dural sinus venous
thrombosis can be related to sinus hypoplasia or atresia
[31]. Interpretation also requires awareness of normal
sinus filling defects such as arachnoid granulations and
intrasinus septations [31].

Diffusion MRI
Diffusion MRI or diffusion-weighted imaging (DWI) is
a method that depicts the diffusion of protons in the
tissue. In DWI, tissues with hindered or restricted pro-
ton movement will appear bright with a low apparent
diffusion coefficient (ADC). DWI hence offers a depic-
tion of the tissue that contrast-enhanced techniques
cannot offer. More advanced diffusion-weighted tech-
niques will allow visualizing the movement of protons
along white matter tracts or estimation of perfusion
metrics that could offer a substitution to contrast-en-
hanced perfusion MRI.
Changes in tissue microstructure due to pathological

conditions can be quantified by diffusion MRI. In its
most basic form, diffusion MRI yields maps of the ap-
parent diffusion coefficient (ADC). In white matter, the
ADC is anisotropic and depends on the diffusion-encod-
ing direction due to the organized structure of mem-
branes in and around axons [33]. This is the basis of
diffusion tensor imaging and high angular resolution dif-
fusion imaging (HARDI) methods for tractography [34].
Methods that go beyond ADC quantification and
diffusion tensor imaging include diffusion kurtosis im-
aging (DKI) [35] and methods for microstructure im-
aging [36]. Such methods offer a more detailed

Falk Delgado et al. Insights into Imaging           (2019) 10:84 Page 3 of 15



characterization of the tissue. With encoding strategies
that go beyond the standard diffusion MR method, more
advanced techniques could become more specific for
quantification of tissue properties such as cell size, cell
count, cell membrane permeability, or cell shapes [36].
Diffusion MRI can also be used to acquire the perfu-

sion fraction, which is related to the cerebral blood
volume (CBV), by the so-called intravoxel incoherent
motion imaging [37, 38]. Since perfusion imaging has
shown to be a valuable tool in the medical investigations
of, for example, stroke and tumors, intravoxel incoherent
motion imaging is a potential diagnostic tool in these
areas [39–42].
The main disadvantage of conventional DWI is that it

is non-specific in terms of microstructure components,
and observed values of the ADC can be affected by,
for example, effects of flow apart from effects of dif-
fusion [43]. Further, reading a DWI image necessi-
tates a concurrent evaluation of ADC and/or T2-
weighted images to assess potential T2 shine-through
[43]. Finally, intravoxel incoherent motion (IVIM)
perfusion estimates remain controversial and sensitive
to echo time effects [44].

Magnetic resonance spectroscopy
MR spectroscopy (MRS) provides information about the
chemical composition of the tissue [45] and can be used
for differential diagnosis and monitoring of treatment ef-
fects. It enables assessment of brain metabolism and can
provide absolute metabolite concentrations, but in clin-
ical practice, relative amounts (ratios) of different metab-
olites are usually reported [46]. MRS does not provide
images of the brain, but rather a spectrum reflecting the
chemical composition of the tissue in the selected vol-
umes of interest. Currently, no contrast-enhanced MRI
technique can assess tissue properties as does MRS. Use-
ful areas for MRS are tumor characterization and treat-
ment assessment.
Obstacles related to the introduction of MRS into

clinical practice are related to the lack of standardization
in terms of data acquisition and post-processing [47].
Other issues that also contribute to perceived difficulties
with the technique include the placement of the MRS
voxel, sensitivity for artifacts and motion, acquisition
time, and post-processing of the data [47, 48].

Susceptibility weighted imaging
Susceptibility weighted imaging (SWI) can be used to
depict small areas in the brain causing inhomogeneity in
the magnetic field rendering susceptibility artifacts. The
possibility of depicting tiny structures with a high lesion-
to-background signal is a potential advantage similar to
that of contrast-enhanced T1-weighted images. Differ-
ences in magnetic susceptibility between deoxygenated

and oxygenated blood render a phase difference between
venous blood and surrounding tissue [49]. This difference
is exploited in susceptibility weighted imaging to depict
cerebral venous structures [49]. The method efficiently de-
tects cerebral microbleeds, iron deposition, and cerebral
calcifications [50].
Main disadvantages with this technique are the arti-

facts produced from subject motion or dental implants
[51] as well as the sensitivity to blood oxygenation level
[52].

Amide proton transfer imaging
Amide proton transfer (APT) imaging was developed as
a new contrast to assess the tissue pH and protein con-
tent by MRI [53]. Characterizing tissue properties based
on pH and protein content could be an alternative to
contrast-enhanced T1-weighted image depiction of im-
paired blood-brain barrier. The concept is based on the
use of exchangeable protons to amplify the MR signal
using a method called chemical exchange saturation
transfer [54]. In a process similar to ASL, but now just
inside the tissue, these exchangeable protons are first la-
beled using RF and transferred to water protons through
physical exchange [55]. Fast repetition of this process
leads to detection in MRI with sensitivity enhancements
by factors of a hundred or more. This allows imaging of
the signal from millimolar concentration of the ex-
changeable protons in these molecules with the molar
sensitivity of water protons. Examples of groups contain-
ing these exchangeable protons are hydroxyls, amides,
and amines. In APT-weighted (APTw) imaging, one uses
the amide protons in mobile proteins and peptides in
tissue as endogenous contrast. The signal intensity de-
pends on the exchange rate between the amide and
water protons and the number of amide protons. There-
fore, two applications have been developed where one is
sensitive to the change in exchange rate and the other
depends on the protein concentration. One useful area
for APT has been in brain tumor assessment. One disad-
vantage of APT in brain tumor imaging is the increased
signal in proteinaceous cysts or hemorrhage that can be
confounded with high-grade tumor if regular images are
not carefully scrutinized for cystic or hemorrhagic tumor
components [56]. Concerns have also been raised about
the presence of proteins leaking from the vascular bed in
the setting of a brain metastasis causing increased APT
in the perifocal edema of brain metastasis [18].

Specific clinical applications of non-contrast-
enhanced MRI
Cerebrovascular disease
Stroke
MRI is the most sensitive method to detect acute stroke
[57] and is often used for cases that are challenging to
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diagnose or in follow-up. Acute stroke imaging aims to
detect treatable causes of stroke and exclude mimick-
ers. Imaging must rule out bleeding, identify thrombus,
and differentiate non-salvageable tissue (infarct core)
from the penumbra, but should also strive to assess the
collateral circulation. DWI can aid in predicting out-
come after stroke in posterior circulation stroke [58],
and ASL-DWI mismatch has shown promise in identi-
fying salvageable tissue in acute stroke [59] with an
AUC of 0.76. ASL and DWI 24 h after stroke can be
used to predict functional outcome in acute stroke pa-
tients with an AUC of 0.85 [60]. Further, susceptibility
weighted imaging [61] or TOF [62] can be used to iden-
tify intraluminal thrombus or large vessel occlusion.
However, a recent study shows that contrast-enhanced
MRA shows higher accuracy (0.99) for detecting intra-
cranial arterial occlusion compared to TOF (0.89) [63].
In summary, non-contrast-enhanced MRI seems to be
able to replace contrast-enhanced techniques in clinical
practice.

AVM and AV fistulas
Vessel imaging can be used for non-contrast-enhanced
evaluation of AVM, AV fistulas, aneurysms, and steno-
occlusive diseases including moyamoya. Imaging evalu-
ates the disease processes before and after therapy and
identifies complications after therapy. Imaging must be
able to delineate the lesion and assess feeding and
draining vessels. Perfusion maps from ASL combined
with susceptibility weighted imaging (AUC = 0.97) have
shown to be superior to conventional MRI (AUC = 0.93)
and equal to digital subtraction angiography (DSA) in
the preoperative assessment of AVM [64]. Further devel-
opment of the ASL technique with super-selective ASL
angiography shows a similar capacity as TOF to evaluate
intracranial vessels and has shown promise in AVM
evaluation [65].
Perfusion maps from ASL have shown equal diagnostic

performance to DSA in the assessment of shunting in
AVM [66] and to pre-therapeutically identify nidus,
evaluating flow and AVM size reduction after therapy in
a pediatric population [26]. Post-therapeutic evaluation
of AVMs by ASL has also been described [67] with an
AUC of 0.97. In a study evaluating ASL compared to
DSA, results showed 100% sensitivity for ASL to evaluate
AV-shunting and venous drainage in a pediatric popula-
tion [68].
ASL angiography has shown high diagnostic perform-

ance for the evaluation of AV fistulas with excellent con-
formity between 4D ASL MR angiography and DSA in
the identification of the fistula site and the venous drain-
age with an agreement of 100% [69], as quantified by the
kappa value of 1.00 [70]. The kappa value is an index de-
scribing the agreement between two raters, and a

complete agreement is described by a kappa value of 1.
Perfusion maps from ASL are highly accurate in deter-
mining AVM Borden type and detect cortical venous
drainage [71] with a sensitivity of 91% compared to
DSA. Also, a 4D radial phase-contrast flow-tracking
cartographic procedure showed good to excellent agree-
ment between DSA and ASL [72] with kappa values of
0.92–1.00.
Aiming to improve contrast-enhanced MRA, time-re-

solved contrast-enhanced MR angiography has been de-
veloped and tested in patients with AV fistulas with
accurate delineation of the fistula architecture in seven
out of eight patients [73]. In summary, non-contrast-
enhanced MRI seems to be able at least in part to
replace contrast-enhanced techniques for vessel AV
imaging.

Aneurysm
Pre-therapeutic imaging and post-therapeutic longitu-
dinal follow-up must discern aneurysm size, location,
and grade of occlusion. TOF MRA is the most widely
used non-contrast-enhanced MR sequence for evalu-
ation of cerebral aneurysms. Reports show that the per-
formance of 3D TOF is equal to that of CT angiography
[74] with an AUC of 0.91 and comparable to contrast-
enhanced MRA [8] for assessing coiled aneurysms as oc-
cluded or patent. However, 3D TOF angiography
showed more artifacts and lower detection rate of re-
sidual aneurysm patency compared with contrast-en-
hanced MR angiography [8]. Pre-therapeutic 3D TOF
MRA was comparably accurate in detecting aneurysms
as CT angiography with an AUC (alternative free-re-
sponse ROC model) of 0.91 compared to DSA [74] and
comparably good at describing aneurysm morphology.
Interestingly, computer-aided design can help general
radiologists to achieve a high aneurysm detection rate
using 3D TOF MRA as shown by Hirai et al. in 2005
[75]. In summary, non-contrast-enhanced MRI seems to
be able to replace contrast-enhanced MRI for untreated
aneurysms but not for treated aneurysms.

Intracranial steno-occlusive carotid disease
Cerebral perfusion can be assessed using ASL as men-
tioned previously. Steno-occlusive carotid disease hin-
ders the passage of blood proximal to the occlusion to
enter a direct route to the brain. Imaging must be able
to depict the cranial perfusion. The severity of symptoms
is dependent on the existence of collateral circulation
for example via the circle of Willis distal to the occlusion
site and can be estimated by territorial ASL and TOF
combined with comparable diagnostic quality to DSA
[76] with kappa values of 0.70–0.72. 4D MRA ASL [77]
or TOF alone [78] can estimate collateral flow in carotid
artery steno-occlusive disease in a majority of patients
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and provide results comparable to DSA with intermodal-
ity agreement of kappa = 0.61 [77]. Since none of the in-
cluded studies could show an excellent agreement
between modalities, probably, non-contrast-enhanced
MRI is not able to fully replace contrast-enhanced im-
aging for intracranial steno-occlusive carotid disease.

Moyamoya
Cerebral perfusion in non-atherosclerotic carotid sten-
osis (moyamoya disease) can be evaluated with ASL
[79–82]. Specifically, ASL angiography can visualize
cerebral vessels and moyamoya vessels in non-operated
hemispheres and stage moyamoya with an accuracy of
86–100% compared to DSA [79]. ASL can identify
changes in CBF in patients with moyamoya disease
treated after revascularization (kappa = 0.77 for collateral
grading compared with DSA), but does not allow for re-
liable anastomosis patency (kappa = 0.57), which is better
appreciated by DSA [82]. In summary, non-contrast
MRI seems to be able to replace contrast-enhanced MRI
in the pre-therapeutic stage but not postoperatively.

Vasculitis
Imaging in patients with vasculitis must be able to de-
pict direct signs of vasculitis in the affected vessel as
well as tissue-based complications of vasculitis such as
hemorrhage and stroke. Although contrast-enhanced
MRA can show direct signs of cerebral artery vasculitis
by contrast enhancement in the vessel wall, notably the
American College of Radiology Appropriateness Cri-
teria for cerebrovascular disease show the same diag-
nostic rating for MRA head without GBCA as for head
MRA with GBCA [83]. Importantly, DSA is still consid-
ered the imaging gold standard, and hence, non-con-
trast MRI seems to only partly be able to replace
contrast-enhanced techniques.

Cerebral venous thrombosis
Imaging in cerebral venous thrombosis must be able to
identify the clot and the lack of flow in the affected
venous structure as well as potential parenchymal ef-
fects of venous stasis. The clinical presentation of CVT
is variable, and thus, pre-imaging clinical suspicion of
cerebral venous thrombosis is difficult [84]. MRI can
detect secondary ischemic and hemorrhagic areas as
well as localizing and describing the extent of the
thrombosis without the use of GBCA through 3DT1
turbo spin echo (sensitivity and specificity 97–100%)
and 2D-TOF (sensitivity and specificity 85–93%) [85].
Previous data show that contrast-enhanced imaging
(AUC = 0.99) is superior to non-contrast-enhanced 2D-
TOF MR venography (AUC = 0.88–0.89) to detect cere-
bral venous thrombosis [9]. This has also been con-
firmed by one more recent study [86]. However, in a

recent study evaluating non-contrast-enhanced MRI
techniques, 3D phase-contrast MR venography shows
high diagnostic accuracy (sensitivity 100%, specificity
71%), especially when combining with non-contrast-en-
hanced CT and conventional non-contrast-enhanced
MRI [87]. Non-contrast-enhanced MRI seems to be
able to partly replace contrast-enhanced techniques in
cerebral venous thrombosis, especially when combining
with non-contrast-enhanced CT.
Table 1 summarizes the diagnostic performance in the

studies described above.

Multiple sclerosis
Multiple sclerosis is the classical indication to use GBCA
in neuroimaging [88, 89]. Contrast-enhanced MRI de-
creases time to diagnosis and helps to identify and
characterize multiple sclerosis mimics at first clinical
presentation [90]. However, the presumption that all pa-
tients with multiple sclerosis should undergo contrast-
enhanced MRI has started to change recently. Follow-up
imaging of definite disease does not per se require
GBCA administration, although GBCA can be used to
re-evaluate the original diagnosis or as new baseline be-
fore therapeutic changes [91]. Previous studies showed a
modest correlation between contrast enhancement and
clinical outcome [92]. For example, the relapse rate is
not influenced by MRI enhancement status when taking
other covariates into account such as disease duration
[92] and the relapse is not predicted by the presence of
gadolinium-enhancing lesions on MRI [93].
Furthermore, several studies have been able to predict

contrast enhancement by analysis of non-contrast-en-
hanced T1- and T2-weighted images MRI [94, 95] with
an AUC of 0.72–0.83, by quantification of fractional an-
isotropy from diffusion tensor imaging [96] with an
AUC of 0.93, and by texture analysis of T2-weighted im-
ages [97]. Magnetization transfer ratio quantification can
also differentiate between contrast-enhancing and non-
contrast-enhancing lesions in patients with multiple
sclerosis, likely representing the affection of the disease
on the BBB integrity [98].
Non-contrast-enhanced MRI of T2 lesion load and

cerebral atrophy show a strong correlation (R2 = 0.74)
with clinical status [99], and T2 lesion volume only has a
moderate correlation with clinical disability at long term
follow-up [100]. Newer volumetric quantitative tech-
niques have shown promise in assessing radiological dis-
ease status [101], but they still lack clear correlation to
the clinical status of the patients. It can also be noted
that patients presenting with multiple sclerosis are
relatively young and subject to repeated examinations,
which strengthens the case for reducing the use of
GBCA in this patient group. Non-contrast-enhanced
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MRI seems to be able to replace contrast-enhanced MRI
for longitudinal follow-up of patients but not at first
presentation. Table 2 summarizes the diagnostic per-
formance in the studies described above.

Primary and secondary brain tumor
Tumor extent and detection
Brain tumor detection and characterization is an area
where contrast-enhanced MRI is frequently used [102,
103]. However, since these first report on the application
of contrast-enhanced MRI, techniques for non-contrast-
enhanced MRI have evolved. As tumor localization and
extent are two essential issues in pre-operative brain
tumor imaging, non-contrast-enhanced MRI should be
able to detect and localize primary brain tumors. This
can be achieved by for example T2 FLAIR imaging
showing high signal intensity in low-grade gliomas [104].

In high-grade gliomas, increased signal on T2 FLAIR
can encompass tumor edema with tumor cells [105]. Im-
aging-histology correlation data show that primary ma-
lignant brain tumors rarely have surrounding edema
without interspersed tumor cells outside the contrast-
enhanced area [20]. Compared to contrast-enhanced
MRI, diffusion imaging can better depict the perifocal
tumor density and effects on surrounding white matter
tracts [106, 107]. Further issues in brain tumor imaging
relate to the characterization of tumor type and malig-
nancy grade. It is known that the contrast enhancement
is an imperfect marker of malignancy grade [15]. In
comparison to primary brain tumors, cerebral metasta-
ses can be multiple and small with potential increased
lesion detection rate by the use of GBCAs [108].
Although it may be feasible to exclude the use of

GBCA without limiting the ability to detect primary

Table 1 Diagnostic accuracy measures in non-contrast-enhanced MRI techniques and contrast-enhanced techniques in
cerebrovascular disease

Clinical question Diagnostic performance non-CE Diagnostic performance CE gold standard
or DSA gold standard

Author (year)

Detect cerebral venous thrombosis AUC 0.89 (± 0.03 SD) 2D-TOF MR
venography

AUC 0.99 CE T1 3D MP-RAGE Liang et al.
(2001)

Detect cerebral venous thrombosis 80% sensitivity, 65% specificity CE MRV reference standard Bernard (2017)

Detect cerebral venous thrombosis Accuracy 92.7% conv non-contrast-
enhanced sequences

Accuracy 98.3 CE T1 3D GRE Sari (2015)

Detect cerebral venous thrombosis Sensitivity/specificity100%/71% 3D
PC-MR venography

DSA gold standard Ozturk et al.
(2018)

Detect intracranial arteriovenous shunting in
AVM

AUC 0.97 (95% CI 0.90–1.00) CBF
ASL/SWI

AUC 0.93 (95% CI 0.87–0.97) conv MRI
including CE T1 and CE MRA, DSA reference
standard

Hodel et al.
(2017)

Nidus localization in AVM Sensitivity 100% CBF ASL DSA gold standard Blauwblomme
et al. (2015)

Evaluation of AVM obliteration AUC 0.94 CBF ASL DSA gold standard Kodera et al.
(2017)

Detect arteriovenous shunting and venous
drainage in children with AVM

Sensitivity 100% CBF ASL DSA gold standard Nabavizadeh
et al. (2014)

Identify fistula site and venous drainage in AV
fistula

Kappa 1.00 four-dimensional MR
angiography ASL

DSA gold standard Iryo et al.
(2014)

Detect and localize AV fistula Sensitivity 91% (95% CI 69–98) CBF
ASL

DSA gold standard Amukotuwa et
al. (2016)

Characterize dural AV fistula: define shunt
location/feeding artery/draining vein/Cognard
classification

Kappa interreader agreement 1.00/
0.92/1.00/1.00 flow-tracking
cartography

DSA gold standard Edjlali et al.
(2014)

Detect intracranial aneurysms AUC 0.91 TOF MRA AUC 0.91 CT angiography/DSA gold
standard

Hiratsuka et al.
(2008)

Moyamoya Suzuji stage Accuracy > 86 (0.86–1 range) ASL-
4D MRA

DSA gold standard Uchino et al.
(2015)

Predictor of 24-h DWI lesion in non-reperfused
ischemic stroke

AUC 0.76 (95% CI 0.63–0.85) CBF
ASL

AUC 0.79 (95% CI 73–84) Tmax DSC Bivard et al.
(2014)

Detect arterial occlusion in stroke Accuracy TOF MRA 0.89 Accuracy CE MRA 0.99 Dhundass et
al. (2019)

ASL arterial spin labeling, AUC area under curve, AV arteriovenous, AVM arteriovenous malformation, CBF cerebral blood flow, CE contrast-enhanced, conv
conventional, CT computed tomography, DSA digital subtraction angiography, DSC dynamic susceptibility weighted, DWI diffusion-weighted imaging, MRA
magnetic resonance angiography, MRV magnetic resonance venography, PC phase contrast, SWI susceptibility weighted imaging, TOF time of flight
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brain tumors, imaging of secondary brain tumors cannot
be performed without GBCA. One study reported that
20% of cerebral metastasis were undetected on pre-con-
trast echo-planar imaging FLAIR [109]. The use of con-
trast-enhanced T2 FLAIR has shown higher sensitivity
(100%) compared with early phase 3DT1 GRE (76%)
[110]. Contrast-enhanced MRI is compulsory for the de-
tection of small metastases. However, even though
GBCA is used (contrast-enhanced T1), leptomeningeal
metastasis confirmed by cerebrospinal fluid analysis may
not be detected [111]. In summary, non-contrast-en-
hanced MRI seems not to be able to replace contrast-en-
hanced MRI in patients with metastatic disease.

Differentiation of brain tumors
A few recent studies demonstrated that support vector
machine-based classifiers using histogram features of the
ADC from diffusion MRI (AUC = 0.97) could better dis-
criminate between different types of posterior fossa tu-
mors in children than contrast-enhanced T1 or T2
images (AUC = 0.84) [112]. Texture features from con-
ventional non-contrast-enhanced MRI showed sufficient
accuracy to separate childhood tumors into the correct
classes (accuracy 71–92%), which is higher than the clin-
ical radiological reading of the cases (47% correct diag-
nosis) [113].
Non-contrast-enhanced MRI can also differentiate

between cerebral lymphoma and GBM by the use of
ADC [114] with an AUC of 0.94. This can also be
achieved by ASL [115] with an AUC of 0.91 and an
accuracy of 95%. MRS can discriminate between metas-
tases and CNS lymphoma/GBM with equal diagnostic
performance (AUC = 0.96) as perfusion MRI with con-
trast agent injection (AUC = 0.97) [116]. Further, ASL
[117], T2 relaxometry [118], DKI [119], and APTw im-
aging [18] can discriminate between cerebral metastasis
and GBM with sufficient diagnostic performance
(AUC = 0.84, 0.86, 1.00, and 0.91, respectively). Aiming
to increase the specificity of contrast-enhanced

imaging, one can use perfusion weighting such as dy-
namic susceptibility contrast MRI. This will allow dis-
crimination between glioblastoma, metastasis, and
primary central nervous system lymphoma with accur-
acy between 0.94 and 0.99 [120].

Tumor grade discrimination
High-grade primary brain tumors are not always con-
trast enhancing. In fact, up to 18% of high-grade gliomas
can be non-enhancing [15]. Magnetic resonance spec-
troscopy (MRS) (AUC 0.90) and APTw (AUC = 0.82)
have shown higher diagnostic performance to grade
brain tumors in low- or high-grade, than conventional
MRI including contrast-enhanced T1-weighted images
(AUC = 0.65) [121]. One meta-analysis pooling 83 arti-
cles showed the value of using Cho/Cr and Cho/NAA as
well as contrast-enhanced dynamic perfusion-weighted
imaging to differentiate between high-grade and low-
grade gliomas [122]. APTw imaging has shown compar-
able discriminatory potential to DSC MRI between low-
and high-grade brain tumors [123] with an AUC of
0.85–0.86 for ASL compared to 0.80–0.82 for DSC. Fur-
ther, both ASL [10], DKI [124], and intravoxel incoher-
ent motion imaging [125] can discriminate between low-
and high-grade gliomas (AUC = 0.93-0.96).

Follow-up after treatment
In the follow-up of patients treated with surgery and/or
radiochemotherapy for brain tumor, the updated Re-
sponse Assessment in Neuro-Oncology criteria (RANO)
consider not only contrast enhancement but also pro-
gression of T2 FLAIR changes [17, 126].
Pseudoprogression and pseudoresponse are two en-

tities that are challenging for the neuroradiologist when
evaluating post-therapeutic intracranial tumors on con-
trast-enhanced MRI [17, 126]. Non-contrast-enhanced
MRI that has shown promise in depicting and discrimin-
ating between treatment-related changes and tumor pro-
gression includes ASL (AUC = 0.84) [27], APTw [127,
128], intravoxel incoherent motion imaging (AUC =

Table 2 Diagnostic accuracy measures in non-contrast-enhanced MRI techniques and contrast-enhanced techniques in multiple
sclerosis

Clinical question Diagnostic performance non-CE Diagnostic performance CE
gold standard

Author (year)

Predict contrast enhancement in
multiple sclerosis

AUC 0.83 (95% CI 0.80–0.87) non-enhanced conv MRI and
logistic regression model fitting

CE T1 reference standard Shinohara et al.
(2012)

Predict contrast enhancement in
multiple sclerosis

AUC 0.72 T2 burden of disease CE T1 reference standard Barkhof et al.
(2005)

Predict contrast enhancement in
multiple sclerosis

AUC 0.93 (95% CI 0.87–0.99) T2W, SDC, QSM CE T1 reference standard Gupta et al.
(2018)

Predict contrast enhancement in
multiple sclerosis

T2-weighted texture parameters 86% sensitivity, 84% specificity CE T1 reference standard Michoux et al.
(2015)

AUC area under curve, CE contrast-enhanced, conv conventional, GBCA gadolinium-based contrast agent, SDC statistical detection of change, QSM quantitative
susceptibility mapping
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0.94-0.95) [37], diffusion tensor imaging (AUC = 0.84)
[129], and MRS (AUC = 0.91) [130]. One recent study
showed how quantitative T1 mapping (without GBCA)
could be used to monitor GBM during bevacizumab
treatment [131]. Another study utilizing non-contrast-
enhanced texture analysis showed high diagnostic per-
formance to differentiate between recurrent tumor and
treatment-related changes [132] with an AUC of 0.79
compared to 0.57 for contrast-enhanced T1-weighted
imaging. MRS has shown promise in discriminating be-
tween tumor recurrence and treatment-related changes
by measuring elevated choline [133–136]. More surpris-
ingly, in patients with diffuse intrinsic pontine glioma,
ASL post-radiotherapy shows high CBF in patients with
pseudoprogression [137]. Identifying signs of pseudopro-
gression is of importance since the misinterpretation of
contrast-enhancement as a progressive disease might
lead to discontinuation of therapy [17]. Notably, the use
of GBCA in the follow-up of initially non-contrast-en-
hanced tumors or tumors that lack known potential to

malignify can be questioned. The specificity of contrast-
enhanced imaging can be increased by perfusion weight-
ing such as dynamic susceptibility contrast MRI. A meta-
analysis from 2018 showed a sensitivity of 82% and a spe-
cificity of 95% to discriminate between true progression
and pseudoprogression by DSC [138]. In summary, non-
contrast-enhanced MRI seems to at least in part be able to
replace contrast-enhanced MRI techniques in the diagno-
sis and follow-up of primary brain tumors.
Table 3 summarizes the above-described diagnostic

performance.

Cerebral abscess and infectious meningitis
Intracranial and cerebral infections are classical indica-
tions for contrast-enhanced MRI. However, abscesses
and necrotic tumors can have the same appearance and
present as ring-enhancing lesions on contrast-enhanced
T1-weighted images [139]. Hence, the exclusive use of
contrast-enhanced T1 sequences or contrast-enhanced
CT will not help in determining the etiology of the lesion.

Table 3 Diagnostic accuracy measures in non-contrast-enhanced MRI techniques and contrast-enhanced techniques in brain tumor
imaging

Clinical question Diagnostic performance non-CE Diagnostic performance CE gold
standard

Author (year)

Astrocytic tumor grading AUC 0.96 (95% CI 0.84–1.0) CBF ASL AUC 0.98 (95% CI 0.87–1.00) CBF
DSC

Morana et al.
(2018)

Glioma grading AUC 0.82 (95% CI 0.62–1.00) APTw mean, AUC
0.90 (95% CI 0.73–1.00) Cho/Cr MRS

AUC 0.65 (0.47–0.84) CE T1 Sakata et al. (2017)

Glioma grading AUC 0.85–0.86 (95% CI 0.74–0.92 and 95% CI
0.75–0.94) APTw90

AUC 0.80–0.82 (95% CI 0.64–0.89
and 0.67–0.90) nCBV90 DSC

Park et al. (2015)

Pediatric posterior fossa grading AUC 0.97 ADC (classification rate) DWI AUC 0.84 CE T1 (classification rate) Rodriguéz
Gutierrez et al.
(2014)

Discriminate between CNS lymphoma
and GBM

AUC 0.94 ADC DWI Equal rate of CE T1 contrast
enhancement between groups

Ko et al. (2016)

Discriminate between CNS lymphoma
and GBM

Accuracy 0.91 (95% CI 0.84–0.95) CBF ASL Accuracy 93–95% conv MRI
including CE T1

You et al. (2018)

Discriminate between metastases and
CNS lymphoma/GBM

AUC 0.96 Lac/Cr MRS AUC 0.97 PSRmax DSC Vallée et al. (2018)

Progression vs pseudoprogression in
GBM

AUC 0.84 (95% CI 0.72–0.96) linear anisotropy
DTI

AUC 0.77 (95% CI 0.63–0.92)
rCBVmax DSC

Wang et al. (2016)

Progression vs pseudoprogression in glial
tumors and brain metastases

AUC 0.79 (95% CI 0.77–0.81) T2FLAIR AUC 0.57 (± 0.08) CE T1 Tiwari et al. (2016)

Progression vs pseudoprogression in
glioma

AUC 0.82 CBF ASL AUC 0.84 nrCBV DSC Wang et al. (2018)

Progression vs pseudoprogression in
metastases

AUC 0.94-0.95 (95% CI 0.87–0.98 and 0.88-0.98)
IVIM

AUC 0.91–0.93 (95% CI 0.83–0.96
and 0.86–0.98) DSC + DWI

Kim et al. (2014)

Progression vs pseudoprogression in
GBM

AUC 0.89 APTw90 AUC 0.77 and 0.80 CBV DSC Park et al. (2016)

Detection of cerebral metastasis Sensitivity 0.80% FLAIR-EPI Sensitivity 100% SE-T1W Tomura et al.
(2007)

ADC apparent diffusion coefficient, ASL arterial spin labeling, AUC area under curve, CBF cerebral blood flow, CE contrast-enhanced, CNS central nervous system,
conv conventional, DSC dynamic susceptibility weighted, DTI diffusion tensor imaging, DWI diffusion-weighted imaging, FLAIR fluid attenuated inversion recovery,
GBM glioblastoma, IVIM intravoxel incoherent motion, MRS magnetic resonance spectroscopy, nrCBV normalized relative cerebral blood volume, PSR percentage of
signal recovery, rCBVmax maximum relative cerebral blood volume
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However, bacterial cerebral abscess can be differentiated
from a necrotic or cystic brain tumor by DWI
(AUC = 0.96) [140] with higher diagnostic perform-
ance than morphological T1 and T2 images; this has
also been reported by other groups [139] (AUC for
DWI = 1.00) as shown in Table 4. DWI has replaced
MRS as the method of choice for differentiating be-
tween abscesses and necrotic tumors such as glio-
blastomas and metastases. However, the use of DWI
in more uncommon non-pyogenic abscesses is less
valid and unable to correctly classify the lesion.
Although historically not considered a radiological

diagnosis, detection of meningitis has shown higher
sensitivity on contrast-enhanced T2 FLAIR images
(100% sensitivity) compared to non-contrast-enhanced
T2 FLAIR (33% sensitivity) or contrast-enhanced T1
(50% sensitivity) [141]. Another study showed a higher
sensitivity to detect meningitis by contrast-enhanced T2
FLAIR (75% sensitivity) compared to non-contrast-en-
hanced 3DT2FLAIR (25% sensitivity) [142]. In ventricular
infection, DWI can assess the presence of intraventricular
pus [86, 143]. Except for meningitis, non-contrast-en-
hanced MRI using DWI seems to be able to replace con-
trast-enhanced MRI for the detection of cerebral abscess.
In fact, for abscess detection, DWI seems superior to con-
trast-enhanced techniques.

Discussion
In this review, we have summarized data on how non-
contrast-enhanced MRI can detect and characterize
pathology in, at least, ten specific diseases with a diag-
nostic performance comparable with contrast-enhanced
MRI for specific clinical questions. Although we agree
that GBCA can increase lesion detection (sensitivity),
the specificity in lesion characterization by contrast-en-
hanced MRI is often low compared to other more ad-
vanced MR sequences. In fact, the high sensitivity and
the low specificity can mislead clinical decisions [15–20].
Contrast agent injection—to achieve a high lesion-to-
background contrast—is relatively less important in MRI
compared to CT with inherent much higher soft tissue
contrast.

In general, the data summarized in this review showed
the lowest diagnostic performance for static GBCA MRI
such as contrast-enhanced T1 but higher performance
for dynamic GBCA MRI such as DSC perfusion. This
highlights the importance of depicting physiological
properties of GBCA injection such as perfusion of the
tissue to increase diagnostic accuracy in clinical practice.
Although new clinical guidelines [5, 144–148] increase

the awareness of GBCA usage, we believe there is still a
long way to go before GBCA can be fully replaced by
other imaging techniques. In fact, there are many dis-
eases and situations where an MRI scan cannot be reli-
ably assessed based on non-contrast-enhanced imaging
alone. Examples based on this review are detection of
meningitis, cerebral metastasis, and dural sinus venous
thrombosis. The main reason to use GBCA is to increase
the sensitivity in detecting a disease, since a missed
disease can lead to the wrong or no treatment. Further-
more, this review predominately included articles
focused on specific sequences and not full clinical proto-
cols. Even though specific non-contrast-enhanced se-
quences were found to have the capacity to aid clinical
diagnosis, in reality, a routine clinical MRI protocol in-
cludes several imaging sequences and contrast-enhanced
imaging is still one important part. We also have to be
aware that first reports on new techniques are often
more positive than later published studies [149] and that
these new techniques have downsides such as prolonged
scan time, motion sensitivity, and lack of availability. In
patients with short estimated survival, the potential
long-term risk of GBCA can be overlooked. The use of
GBCA might be more important in primary brain im-
aging at first clinical presentation and less needed for
follow-up scanning especially when dealing with children
that get repeated scanning at young age or patients with
chronic diseases like multiple sclerosis. Clinical examples
where non-contrast-enhanced MRI can be used instead
of contrast-enhanced MRI already today are in the
evaluation of, for example, dural sinus venous throm-
bosis in pregnant women [150]. Other clinical examples
include patients with intracranial pathology that also
have kidney failure or in premature infants.

Table 4 Diagnostic accuracy measures in non-contrast-enhanced MRI techniques and contrast-enhanced techniques in brain
infection

Clinical question Diagnostic performance non-
CE

Diagnostic performance CE gold standard Author (year)

Abscess detection Specificity 100% ADC CE T1 and T2 signal intensity could not distinguish between
groups

Nadal et al. (2003)

Detecting infectious
meningitis

Sensitivity 33% T2 FLAIR Sensitivity 100% T2 FLAIR Splendiani et al.
(2005)

Detecting infectious
meningitis

Sensitivity 25% 3DT2FLAIR Sensitivity 75% CE 3DT2FLAIR Fukuoka et al. (2010)

ADC apparent diffusion coefficient, AUC area under curve, CE contrast-enhanced, FLAIR fluid attenuated inversion recovery

Falk Delgado et al. Insights into Imaging           (2019) 10:84 Page 10 of 15



This review highlights that non-contrast-enhanced
MRI techniques can be used in several diseases affecting
the brain, but many diseases have not been covered in
this review. In addition, there are few published studies
focusing on the comparison of non-contrast-enhanced
and contrast-enhanced MRI and there is still a lack of
evidence to include or exclude GBCAs from clinical rou-
tine protocols for many diseases.
We suggest that to further evaluate the use of GBCA

in routine clinical protocols for different brain disease,
single or multicenter studies should be performed evalu-
ating a random sample of neuroimaging cases investi-
gated with both non-contrast-enhanced and contrast-
enhanced MRI. Multiple independent reviewers should
be used to further clarify when GBCA is most valuable
with regard to the level of clinical confidence for diag-
nosing and characterizing lesions.
Further, the cost benefit and patient benefit must be

considered when deciding on protocol optimization as
well as the potential associated risks. There are several
advantages when not injecting GBCA, for example,
lower the indication for an intravenous line which facili-
tates the logistics for the patients with no need for
serum creatinine blood sample before MRI scanning, re-
duced cost of contrast media, reduced preparation time
for scanning, and reduced risk of adverse events.
One last caveat is how imaging really affects the out-

come of the patients. In general, there is a shortage of
radiological studies validating their findings towards de-
fined clinical endpoints such as symptoms or survival.
Further studies should direct the attention towards the
added benefit for patient outcome using GBCAs.

Conclusion
This review presents non-contrast-enhanced alternatives
in MR neuroimaging for ten specific diseases and de-
scribes the advantages and disadvantages of ASL, TOF,
phase contrast, DWI, MRS, SWI, and APT imaging to-
gether with data on diagnostic performance compared to
contrast-enhanced alternatives.
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