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Abstract
Objectives To assess the value of new magnetic resonance
imaging (MRI) techniques in cervical cancer.
Methods We searched PubMed and MEDLINE and reviewed
articles published from 1990 to 2016 to identify studies that
used MRI techniques, such as diffusion weighted imaging
(DWI), intravoxel incoherent motion (IVIM) and dynamic
contrast enhancement (DCE) MRI, to assess parametric inva-
sion, to detect lymph node metastases, tumour subtype and
grading, and to detect and predict tumour recurrence.
Results Seventy-nine studies were included. The additional
use of DWI improved the accuracy and sensitivity of the eval-
uation of parametrial extension. Most studies reported im-
proved detection of nodal metastases. Functional MRI tech-
niques have the potential to assess tumour subtypes and tu-
mour grade differentiation, and they showed additional value
in detecting and predicting treatment response. Limitations
included a lack of technical standardisation, which limits
reproducibility.
Conclusions New advanced MRI techniques allow improved
analysis of tumour biology and the tumour microenvironment.
They can improve TNM staging and show promise for tumour
classification and for assessing the risk of tumour recurrence.
They may be helpful for developing optimised and
personalised therapy for patients with cervical cancer.

Teaching points
• Conventional MRI plays a key role in the evaluation of
cervical cancer.

• DWI improves tumour delineation and detection of nodal
metastases in cervical cancer.

• AdvancedMRI techniques show promise regarding histolog-
ical grading and subtype differentiation.

• Tumour ADC is a potential biomarker for response to
treatment.
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Introduction

Cervical cancer remains the fourth most common cancer in
women worldwide [1], showing particularly high incidence in
countries with low socioeconomic status. There is wide regional
variation in the use of imaging modalities, and magnetic reso-
nance imaging (MRI) in particular, in the work-up of cervical
cancer. Accordingly, the FIGO classification [2], which is the
internationally recognised staging system for cervical cancer,
relies solely on clinical examination in assessing tumour stage.
However, the current FIGO classification acknowledges the use
of imaging methods as an adjunct for cervical cancer staging,
and a number of studies have shown that imaging, especially
MRI, is superior to clinical examination alone for correctly eval-
uating cervical carcinoma stage [3–7]. This is of particular im-
portance in regard to the identification of parametrial invasion
and the correct assessment of tumour size, given their important
implications for the choice of treatment, i.e. fertility-sparing sur-
gery versus neoadjuvant chemotherapy [8, 9].

Lymph node status is not part of the FIGO classification
system; however, lymph node metastases are an important
independent adverse prognostic factor [10]. The depth of
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stromal tumour invasion is associated with an increased risk
for lymph node metastases [11]. Surgical lymph node dissec-
tion remains the Bgold standard^ for the diagnosis of lymph
node metastases, but it may be associated with postoperative
complication rates of up to 17% [12] and with unwanted side
effects such as lymphoceles and wound infections. Therefore,
preoperative assessment of lymph node stage using imaging
may have great clinical importance.

Histological subtype and grade of differentiation may also
determine the course of the disease, the therapeutic outcome
and patient survival [10, 13]. Squamous cell carcinomas repre-
sent themajority of cervical cancer cases (ca. 69%) compared to
adenocarcinomas (ca. 25%) [14, 15]. Whether clinical outcome
differs between squamous cell carcinomas and adenocarci-
nomas still remains controversial. However, rare tumour sub-
types like neuroendocrine tumours have an unfavourable prog-
nosis [16]. Low-grade tumours are associated with favourable
outcomes and lower tumour recurrence rates compared to high-
grade tumours [17]. Although histopathological samples can be
acquired easily by biopsy prior to surgery, tumour heterogeneity
may lead to sampling errors in large tumours [18, 19].

Where available, conventional MRI is the preferred imag-
ing modality for evaluating the local extent of cervical cancer
due to its excellent soft tissue contrast [20, 21]. Recently de-
veloped MRI techniques, namely diffusion weighted imaging
(DWI) [22] and dynamic contrast enhanced MRI (DCE-
MRI)—also termed multiparametric MRI—are already part
of the standard MR work-up for other tumour entities [23].
These techniques also show promise as complementary tech-
niques for the assessment of cervical cancer, as they allow the
assessment of the tumour microenvironment rather than solely
relying on conventional anatomical measurements (e.g. tu-
mour size, infiltration of surrounding structures, etc.).

There is increasing interest and research effort focused on
these new techniques. This systematic review summarises the
current status of knowledge on the value of multiparametric
MRI for the non-invasive assessment of parametrial invasion,
lymph node status, tumour grading/subtype differentiation
and response to chemotherapy, which are considered the most
important clinical features for selecting a personalised thera-
peutic approach for an individual patient.

Materials and methods

We adhered to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) Guidelines. A sys-
tematic literature search of PubMed and MEDLINE was con-
ducted using the following search criteria: BMRI cervical
cancer^, BDWI cervical cancer^, BDCE cervical cancer^ and
BIVIM cervical cancer .̂ The search was conducted on
October 4, 2016, and it retrieved 2,393, 81, 66 and 6 refer-
ences, respectively, for these searches. Only articles in English

published in 1990–2016 were included. All articles were
screened for relevance using the title and abstract. All study
designs were eligible for inclusion. Studies on animals, dupli-
cate studies and case reviews were excluded.

The resulting studies were reviewed independently by two
authors (E.D. and A.M.H.). In the event of a disagreement
about study inclusion, the two authors reached a consensus
decision about inclusion after discussing whether the criteria
for inclusion were fulfilled.

The primary eligibility criteria were that the articles report-
ed on studies that examined the use of DWI, DCE-MRI or
intravoxel incoherent motion (IVIM) for detecting parametrial
invasion and lymph node metastases, determining tumour
subtype and grading, and predicting tumour recurrence and
therapeutic response.

The following data were extracted from full text articles: the
study characteristics, including study design, year of publication,
MRI sequences, histopathological findings and outcome(s). The
final list of publications included 79 original research articles.

Conventional MRI for staging cervical cancer

MRI has no role in evaluating stage IA cervical cancer, because
microscopic disease cannot be reliably detected [20]. However,
MRI is the preferred imaging method for tumours of stage
higher than IB2, since it allows a highly accurate assessment
of the extent of tumour infiltration. MRI is superior to clinical
staging for evaluating tumour size and location [3–7], and it
improves the accuracy of FIGO staging by up to 96% [7].

The standard MRI protocol (Table 1) for cervical cancer in-
cludes T2-weighted imaging of the pelvis in different planes [20].
Axial and coronal planes are acquired obliquely, orientated to the
plane of the cervical canal (Fig. 1). This allows for amore precise
evaluation of tumour borders and parametrial invasion. T1- and
T2-weighted sequences covering the whole abdomen and pelvis
should be added to exclude identifiable lymph node metastases.

Advanced MRI techniques

DWI and DCE-MRI have emerged as promising tools for
characterising uterine malignancies [20, 24]. DWI is based
on the principles of Brownian movement of water molecules,
and it gives information about tissue structure on a microscop-
ic level [24, 25]. Since solid tumours generally exhibit an
increased cell count, the diffusion of water molecules is re-
stricted in tumour tissue. In contrast, diffusion is less restrict-
ed, for example, in areas of tumour necrosis, where water
molecules canmovemore freely. To quantify these differences
in tissues, special MRI pulse sequences are applied to measure
the movement of the water molecules. Additionally, an appar-
ent diffusion coefficient (ADC) map can be constructed,

472 Insights Imaging (2017) 8:471–481



which allows for an easy visual assessment of the tumour (Fig.
2). In the literature, low ADC values have been shown to
correlate with tumour aggressiveness in various tumour enti-
ties, such as prostate cancer [23, 26].

IVIM is an extension of DWI that allows the assess-
ment of perfusion characteristics in tumourous tissue by
visualising the microscopic motions of water molecules
[27]. This allows the determination of several different
parameters, namely: D, the true molecular diffusion coef-
ficient; D*, the perfusion-related fast diffusion coefficient,
which correlates with blood flow; and f, the perfusion
fraction, which is linked to the blood volume within tissue
[18, 27–29]. Neither DWI nor IVIM require the adminis-
tration of contrast agents and can therefore be used in
patients with renal insufficiency [24].

DCE-MRI is a dynamic examination technique that depicts
changes in signal intensity over time after injection of a stan-
dard paramagnetic contrast agent. DCE-MRI is used to char-
acterise tumour microcirculation. DCE-MRI can be evaluated
either semiquantitatively to determine parameters that de-
scribe changes in signal intensity over time, or quantitatively,
which requires the use of pharmacokinetic models.
Quantitative measurements can be used to analyse perfusion
and permeability parameters, such as the volume transfer con-
stant between plasma and the extracellular extravascular space
(Ktrans), which correlates with vascular permeability. DCE-
MRI is already implemented in MR protocols that are used
to evaluate other tumour entities, such as prostate carcinoma,
to improve tumour detection in treatment-naive and post-
treatment patients [30].

Table 1 Proposed MRI protocol for cervical cancer staging

Sequence Technical aspects Comments

T1 axial TSE/2D GRE Whole abdomen and pelvis ST 5 mm Assessment of lymph nodes and distant
metastases

T2 coronal SS-TSE Whole abdomen and pelvis ST 5 mm Assessment of lymph nodes and distant
metastases

T2 sagittal TSE Small FOV ca. 0.5 × 0.5 mm in-plane resolution
ST 3 mm

Tumour evaluation (size, extension),
assessment of rectal and bladder infiltration

T2 axial oblique TSE Small FOV ca. 0.5 × 0.5 mm in-plane resolution
ST 3 mm perpendicular to long axis of
cervical canal

Tumour extension, assessment of parametrial
invasion and rectal and bladder infiltration

T2 coronal oblique TSE Small FOV ca. 0.5 × 0.5 mm in-plane resolution
ST 3 mm parallel to long axis of cervical canal

Tumour extension, assessment of parametrial
invasion in a second imaging plane

DWI axial oblique EPI Small FOV ST 3 mm b values 100, 600,
1,000 s/mm2

Tumour extension, assessment of parametrial
invasion

Optional: multiphase
3D T1w fat-saturated
sequences

GRE ST 3 mm one native, four post-contrast scans Alternatively DCE axial oblique (temporal
resolution <10 s)

Preparation: fasting (>4 h), antiperistaltic agents, moderately filled bladder

DCE dynamic contrast enhanced,DWI diffusion weighted imaging, EPI echo-planar imaging, FOV field of view,GRE gradient echo, ST slice thickness,
TSE turbo spin echo, SS-TSE single-shot turbo spin echo

Fig. 1 Sagittal T2-weighted im-
age. The oblique axial (a) and
coronal planes (b) are orientated
to the plane of the cervical canal

Insights Imaging (2017) 8:471–481 473



Assessment of parametrial invasion

Conventional MRI has a reported diagnostic accuracy of
88.3–94%, a sensitivity of 38–100%, and a specificity of up
to 92% in the assessment of parametrial invasion [31–34]. The
signs of parametrial invasion on T2-weighted sequences in-
clude the disruption of the cervical stromal ring, spiculated
tumour invasion and encasement of the periuterine vessels
[35]. MRI can accurately exclude parametrial invasion, with
a negative predictive value ranging from 94–100% [20, 36].
The intact hypointense stromal ring around the cervix on T2-
weighted axial imaging represents the main sign for excluding
parametrial invasion [37].

DWI further improves the assessment of parametrial in-
vasion when it is added to conventional T2-weighted MRI
[38–40]. Parametrial extension can be overestimated on T2-
weighted images, especially in large tumours, which can
induce changes in the surrounding stromal tissue due to
tumour compression or increased inflammation [20, 41].
DWI reflects tumour cellularity, which helps differentiate
between infiltrating tumour tissue and reactive changes.
Park et al. [39] found that the fusion of DWI with T2-
weighted images significantly (p < 0.05) increased diagnos-
tic accuracy (reader 1, 90.1%; reader 2, 89.5%) compared to
T2-weighted images alone (reader 1, 85.5%; reader 2,
83.6%). However, DWI is limited by poor anatomical detail
and low spatial resolution; therefore, it should always be
assessed in conjunction with T2-weighted images.

Studies have examined the correlation between low ADC
values and tumour aggressiveness, including the presence of
histopathological parametrial invasion [14, 42–44]. For exam-
ple, Park et al. [44] found that patients with parametrial inva-
sion had significantly lower tumour ADCs than those without
and concluded that tumour ADC values are independent pre-
dictors of pathological parametrial invasion.

Detection of lymph node metastases

Conventional MRI relies on the criterion of size for assessing
pelvic lymph node involvement. Lymph nodes are rated as sus-
picious if the short axis diameter is greater 1 cm.However, given
the overlap in size between metastatic, hyperplastic and normal
lymph nodes and the fact that micrometastases in small lymph
nodes are not uncommon [21], conventional MRI is limited in
lymph node assessment, even when accounting for FIGO stage
[45]. The literature shows that the diagnostic accuracy of MRI is
67–95%, its sensitivity is 37–90%, and its specificity is 71–
100% [21, 32, 46–54], even when other signs of metastatic
disease, such as loss of normal lymph node architecture, rounder
form, irregular borders and heterogeneous signal intensity, are
considered.

DWI may represent a powerful adjunct for differentiating
between metastatic and non-metastatic lymph nodes, as it re-
flects differences in cellularity and histopathology between
benign and malignant lymph nodes [55, 56]. Several studies
have reported that lymph node metastases have a higher de-
gree of diffusion restriction than normal lymph nodes, and this
can be assessed quantitatively using ADC values [57–64].
Choi et al. [61] found that measuring the minimal ADC in a
lymph node had greater sensitivity for detecting metastases
than measuring the short-axis diameter (86% vs 55%, p <
0.001). Similarly, Liu et al. [57] reported a sensitivity of
95.7% and a specificity of 96.5% for the detection of metasta-
tic nodes. Yet the results in the literature are conflicting [60,
65–67], as Rizzo et al. [67] found no significant association
between DWI parameters and the presence of lymph node
metastasis. However, the authors suggested that their results
might have been influenced by patient selection (early clinical
stage) and small patient number. Another study reported an
overlap in mean ADC values between malignant lymph nodes
and hyperplastic lymph nodes, which reduced the diagnostic

Fig. 2 Axial T2-weighted image (a) and DWI image (b = 800) with
ADC map (c) of a 36-year-old woman with stage IIB low-grade squa-
mous cell cervical carcinoma. A hyperintense lesion is seen in the cervix

(arrow), and there is disruption of the cervical stroma ring and
parametrical invasion (a). The tumour shows high signal intensity on
DWI (b), with corresponding low signal intensity on the ADC map (c)
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accuracy to 78.4% [60]. However, the patients in that study
were excluded if all of their lymph nodes had a short axis
diameter under 5 mm, and this may have influenced the results
[60]. Although a meta-analysis by Shen et al. [55] confirmed
the usefulness of DWI for differentiation between benign and
metastatic lymph nodes, study heterogeneity—especially re-
garding the lack of standard protocol for DWI—limits the
comparability of these results. Further prospective studies
with standardised MRI protocol may offer more evidence re-
garding the value of DWI for nodal detection.

Compared with PET/CT, routine MRI without DWI is
less sensitive and accurate for the detection of nodal metas-
tases [49, 54, 68]. A meta-analysis published in 2010 which
included 41 studies found that PET and PET/CT had a
higher diagnostic performance compared with MRI and CT
[69]. The addition of DWI may increase the diagnostic per-
formance of MRI compared with PET/CT. Monteil et al.
[70] reported that MRI which included DWI sequences is
more precise than FDG PET/CT for detecting pelvic lymph
node metastases, with a sensitivity, specificity, and diagnos-
tic accuracy of 67%, 84% and 81% compared to 33%, 92%
and 81% for PET/CT; although the differences were not as
pronounced for para-aortic lymph nodes. Kitajima et al. [71]
also reported that DWI had higher sensitivity than FDG
PET/CT (83.3% vs 38.9%) but lower specificity (51.2% vs
96.3%) for detecting lymph node metastases. Although these
studies show that the addition of DWI clearly improves sen-
sitivity of MRI for the detection of nodal metastases, PET/
CT still has a higher specificity of up to 97% [69].
Especially in cases of advanced disease, PET/CT has a high
sensitivity (75-100%) and specificity (87-100%) [20] and
can help demonstrate sites of unexpected disease such as
supraclavicular lymph nodes [72].

In the future, lymph node-specific MR contrast agents
could further improve the assessment of lymph node metasta-
ses. There are new MR contrast agents that are classified as
nanoparticles that contain ultrasmall particles of iron oxide
(USPIO). These agents are taken up by macrophages into
lymph nodes [73]. Metastatic lymph nodes displace macro-
phages, thereby preventing USPIO uptake. USPIO increases
the sensitivity of MRI up to 93% for the prediction of nodal
metastases [73, 74], and it can also improve tumour conspi-
cuity [75, 76].

Currently, there are no USPIO contrast agents that are ap-
proved by the U.S. Food and Drug Administration (FDA) or
European Medicines Agency (EMA) for clinical MRI appli-
cations [77]. Several first-generation USPIOs, such as SHU
555 C (Supravist) and AMI-227, were discontinued or are still
awaiting approval. Ferumoxytol, a second-generation USPIO,
is an FDA-approved drug that is used to treat iron insufficien-
cy anaemia in patients with chronic kidney disease. Its appli-
cation as an MRI contrast agent remains off-label, and it is no
longer authorised for use in the European Union.

Another contrast agent, gadofosveset trisodium, which
binds to human serum albumin and which accumulates in
benign lymph nodes, has shown great value in precise lymph
node staging in rectal cancerMRI [78]. Thus, it may also be of
value in staging cervical cancer.

Grading and subtype differentiation

The ADC has value in differentiating between normal uter-
ine cervix stroma and cervical carcinoma [79–87].
Furthermore, the ADC shows potential for assessing path-
ological subtypes and for tumour grade differentiation [14,
60, 88–92]. A recent study [93] reported lower ADC
values in poorly differentiated tumours compared to well/
moderately differentiated tumours (p = 0.02). However,
there were no significant differences between squamous
cell carcinomas and adenocarcinomas (p = 0.1). In con-
trast, Xue et al. [92] retrospectively investigated ADC
values in 53 patients with histopathologically proven cer-
vical cancer and found a significant difference in the mean
ADC values between adenocarcinomas and squamous cell
carcinomas (p = 0.0074). However, there are currently no
established ADC cutoff values as variations in MRI tech-
niques and protocols can affect ADC values. In case of the
previously mentioned studies, Winfield et al. [93] used a 3-
T scanner with an endovaginal coil, resulting in higher
signal-to-noise ratio and spatial resolution compared to a
1.5-T scanner with eight-channel phased-array body coil
used in the study of Xue et al. This hinders comparisons
between different centres and studies [94, 95].

In addition to DWI, IVIM may be useful for evaluating
tumour differentiation and perfusion [18, 28, 93, 96]. IVIM
perfusion parameters show moderate to good correlation with
perfusion parameters derived from DCE-MRI in cervical can-
cer (r = 0.42–0.58; p = 0.003–0.038) [96]. Recently, mono-
exponential DWI values (Bclassical^ ADC values) were com-
pared to IVIM model parameters in 42 cervical cancer pa-
tients, with both ADC and D (true molecular diffusion coef-
ficient) showing lower values in poorly differentiated tu-
mours than in well/moderately differentiated tumours [93].
To investigate differences between cancer tissue and normal
cervical stroma, Lee et al. [28] compared the IVIM charac-
teristics of 16 patients with cervical cancer with those of 17
healthy controls. Cervical cancer had lower perfusion and
diffusion IVIM values compared to normal cervical tissue
and leiomyoma tissue. Zhou et al. [18] reported higher per-
fusion at the tumour edge in high-grade tumours and found
that D was significantly higher in G1 tumours than in G3
tumours. Moreover, the authors proposed that measuring tu-
mour perfusion at the tumour edge might be better than mea-
suring the whole tumour volume. Notably, during rapid tu-
mour growth, cell proliferation often exceeds tumour
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angiogenesis, leading to poorly perfused central tumour areas
and leading to tumour heterogeneity. Yamashita et al. [97]
examined 62 cervical cancer patients using DCE-MRI.
They found that areas with high contrast enhancement repre-
sented cancer cell fascicles and that poorly enhanced areas
contained mainly fibrous tissue.

Tumour recurrence and therapeutic response

Differentiating residual tumour tissue or tumour recurrence
from post-therapeutic tissue changes, such as inflammation
and fibrosis, remains challenging using conventional MRI,
as both scar tissue and residual tumour tissue can have similar
signal intensities. The ideal time to predict therapy response is
not yet defined. Some authors advocate early assessment 2
weeks after radiochemotherapy [98]. In difficult cases, func-
tional imaging, including DWI and DCE, can be a useful
addition. Mahajan et al. [99] examined 30 patients after hys-
terectomy with suspected local tumour recurrence. Additional
multiparametric sequences, including DWI and DCE, in-
creased the diagnostic accuracy to 100% compared to 70%
accuracy with conventional MRI alone. Similarly, another
study reported that a combination of T2-weighted images
and DWI had a higher diagnostic accuracy in the detection
of post-treatment tumour recurrence versus T2-weighted im-
ages alone (92.1% vs 73.6%, p = 0.016) [100].

The tumour ADC has been described as a potential bio-
marker for response to treatment. As noted above, the tumour
ADC can be used to assess tumour grading, which can reflect
tumour aggressiveness [92] and which is associated with treat-
ment resistance. Several authors have compared pre-treatment
ADC values in patients with versus without later tumour re-
currence, finding that low pre-treatment ADC values seem to
be a strong predictor of later tumour recurrence [22, 101–107].
Furthermore, changes in ADC values during chemotherapy,
radiotherapy or chemoradiation may help evaluate the treat-
ment response [42, 43, 108–123]. For example, Kuang et al.
[42] examined 75 patients prior to, during and after therapy
completion and found significantly higher ADCs in patients
with complete response compared to those with partial re-
sponse or stable disease after therapy completion.
Accordingly, the ADC seems to be a good biomarker for
monitoring the early tumour response [112, 113, 115, 117,
119, 122, 124], as increasing ADC values reflect increased
diffusivity, possibly due to treatment-induced necrosis,
apoptosis-induced cell death, loss of cell membrane integrity
and increased extracellular space [42, 124, 125].

DWI may also have value as a predictor of long-term dis-
ease control. A recent study examined post-treatment DWI in
100 patients 1 month after completion of chemoradiation
[126]. They found that the presence of residual tumour tissue
determined on post-treatment T2-weighted images with the

addition of DWI improved the prediction of disease progres-
sion up to 3 years after treatment, with a positive predictive
value of 72.7% compared to 39.3% for T2-weighted images
without DWI.

IVIM techniques may also be useful for predicting and
monitoring tumour response, with results that are compa-
rable to mono-exponential ADC modelling [120, 127].
However, so far only a few studies have investigated
IVIM in this context. Zhu et al. [127] examined 21 pa-
tients who were receiving chemoradiation therapy and
showed an increase of both f (the perfusion fraction) and
D* (the pseudoperfusion coefficient) in the first weeks of
chemoradiation therapy.

The value of DCE-MRI in predicting tumour response is
well studied. Tumours with low perfusion characteristics are
associated with tumour hypoxia, which represents a negative
prognostic factor in cervical cancer [128]. In contrast, more
oxygenated tumours may be more sensitive to radiation and
chemotherapy, leading to a better prognosis [129, 130]. DCE-
MRI can be used to predict the treatment response in cervical
cancer [97, 117, 129, 131–146] and can show longitudinal
changes in tumour perfusion during treatment [132, 142].
Mayr et al. [142] demonstrated that persistent low perfusion
prior to, during and after radiotherapy correlates with a high
risk of treatment failure; in contrast, patients with higher per-
fusion prior to therapy or with therapy-induced increases in
initially low perfusion show a better outcome. According to
Halle et al. [134], DCE-MRI can identify patients with
hypoxia-related chemoresistance by correlating hypoxia-
related gene sets with a previously determined prognostic
DCE-MRI parameter (ABrix). Early identification of tumours
with persistent low perfusion and, consequently, a higher
chance of treatment failure warrants further investigation, as
this could drive a change in treatment strategy and help the
field move toward a more personalised treatment approach.

Limitations

There are limitations to DWI and DCE-MRI in that there are
some technical issues and, most importantly, a lack of
standardisation. The technical limitations include differences
in modelling and the choice of b values for diffusion-weighted
MRI, plus there are a large variety of pharmacokinetic models
and sequences/contrast agent injection protocols used for
DCE-MRI. Moreover, continuous technical advances and
constant optimisation of MRI protocols according to the
newest technical standards inadvertently reduce the compara-
bility of MRI studies, as changes in resolution or the introduc-
tion of new advanced MRI techniques might allow for more
precise tumour depiction. This had led to limited reproducibil-
ity and, since ADC values differ between various centres and
with differentMRI scanners, there are currently no established
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ADC cut-off values that allow for precise differentiation be-
tween, for example, tumour subtypes or grades [95].
Standardisation of MRI techniques is therefore considered
critical for improving comparisons between studies.

Regarding the assessment of lymph node metastases, sev-
eral studies excluded lymph nodes smaller than 5 mm, leading
to selection bias. Node-by-node correlations between preop-
erative MRI and histopathological specimens present another
problem. Lymph node position is generally labelled according
to lymph node region, which limits the correlation between
suspicious MRI findings and histopathological samples. In
addition, the small size of some lymph nodes makes it difficult
to precisely position a region of interest in order to measure,
for example, ADC in a single lymph node.

Conclusions

Conventional MRI plays a key role in the evaluation of cervi-
cal cancer, showing good results for the assessment of tumour
extent and parametrial invasion. New techniques, such as
DWI, IVIM and DCE, show promise as tools for viewing
cervical tumours and for quantitative analysis of tumour biol-
ogy and the microenvironment. The addition of DWI im-
proves the determination of tumour extension and the detec-
tion of lymph node metastases. Both DWI and DCE might
provide further insights into tumour biology in terms of his-
tological grading and subtype differentiation, and thereby help
to assess the risk of tumour recurrence. Large multicentre
prospective studies are needed to determine whether these
new techniques can be used to develop optimised and
personalised therapies for patients with cervical cancer.
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