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Abstract
Imaging techniques play a key role in the management of
patients with colorectal cancer. The introduction of new ad-
vanced anatomical, functional, and molecular imaging tech-
niques may improve the assessment of diagnosis, prognosis,
planning therapy, and assessment of response to treatment of
these patients. Functional and molecular imaging techniques
in clinical practice may allow the assessment of tumour-
specific characteristics and tumour heterogeneity. This paper
will review recent developments in imaging technologies and
the evolving roles for these techniques in colorectal cancer.

Teaching Points
• Imaging techniques play a key role in the management of
patients with colorectal cancer.

• Advanced imaging techniques improve the evaluation of
these patients.

• Functional and molecular imaging allows assessment of
tumour hallmarks and tumour heterogeneity.
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(BOLD) Blood oxygenation level dependent
(CTP) Chemotherapy
(CRTP) Chemoradiotherapy
(Cho) Choline
(CRC) Colorectal cancer
(pCR) Complete pathologic response
(CT) Computed tomography
(CTC) Computed tomographic colonography
(DW) Diffusion-weighted
(DWI) Diffusion-weighted imaging
(DECT) Dual-energy computed tomography
(DCE) Dynamic contrast-enhanced
(EES) Extravascular extracellular space
(18F-FDG) Fluorodeoxyglucose
(FLT) 18F-3-deoxy-3-fluorothymidine
(FMI) Functional and molecular imaging
(IVIM) Intravoxel incoherent motion
(IC) Iodine concentration
(Lip) Lipids
(LNs) Lymph nodes
(MRI) Magnetic resonance imaging
(MRL) MR lymphography
(MRS) MR spectroscopy
(MTT) Mean transit time
(NPV) Negative predict value
(OS) Overall survival
(PCT) Perfusion CT
(f) Perfusion fraction
(D) Perfusion-free diffusion
(PP) Portal phase
(PPV) Positive predict value
(1H) Proton
(kep) Rate constant
(PET) Positron emission tomography
(RC) Rectal cancer
(SUV) Standardized uptake values
(Ktrans) Transfer constant
(TVRR) Tumour volume reduction rate
(USPIO) Ultrasmall iron oxide particles
(VEGF) Vascular endothelial growth factor
(WB)-DWI Whole-body diffusion-weighted imaging

Introduction

Colorectal cancer (CRC) represents one of the most common-
ly diagnosed cancers worldwide. It is the second most com-
mon cause of cancer death in the western world [1]. A multi-
disciplinary approach to CRC management, which includes
the radiologist’s role, and the optimization of screening, bio-
marker and genomic analysis, imaging evaluation, surgical
techniques, and therapies have improved patients’

management and prognosis and have decreased CRC mortal-
ity rate by 20 % in the last years [2].

Conventional imaging techniques have clear limitations for
the evaluation of important tumour features. For example, 9-
10 % of patients with computed tomography (CT)-indetermi-
nate lung and/or liver lesions during radiological staging of
CRC had definite metastases [3, 4]. Besides, an increasing
importance is being placed on the non-invasive imaging as-
sessment of tumour-specific characteristics [5–8]. Functional
and molecular imaging (FMI) techniques have emerged to
address these limitations. This paper is focused on the current
role of advanced imaging modalities in CRC patient
management.

Anatomical imaging techniques in CRC

Conventional imaging technique

Conventional imaging techniques play a central role in CRC
because they depict relationships of the tumour to surgical
landmarks (e.g., the circumferential resection margin in the
rectum), the presence of important prognostic features, evalu-
ate tumour response to treatment, and are useful for surveil-
lance after therapy. In the case of rectal cancer (RC), magnetic
resonance imaging (MRI) is the best imaging technique for
evaluating main factors that affect treatment and prognosis,
including tumour length, location from the anal verge, rela-
tionship to the peritoneal reflection, T-stage, depth of extramu-
ral tumour growth, lymph node (LNs) status, vascular and
neural invasion, distance to the mesorectal resection margin,
and invasion to adjacent structures [8, 9]. Beside this, the main
focus for innovations inmedical imaging has been the achieve-
ment of excellence in anatomical resolution. To date, imaging
techniques allow image segmentation and volumetric model
reconstruction with different clinical applications in CRC.

Computed tomographic colonography

Computed tomographic colonography (CTC) involves the use
of a CT scanner to produce 2- and 3-dimensional (3D) images
of the entire colon and rectum obtained after air insufflation
(Fig. 1). CTC can be considered the best radiological diagnos-
tic test for screening CRC and polyps. It has been established
that its diagnostic performance for the detection of CRC is
similar to that of conventional colonoscopy and is clearly su-
perior to that of a barium enema [10]. Besides, CTC is less
invasive than a conventional colonoscopy and easy to per-
form. Different indications have emerged supported by strong
evidence-based data and scientific societies including (1) in-
complete, failed, or unfeasible conventional colonoscopy (for
diagnosing synchronous cancers), (2) elderly and frail patients
(who are more likely to have a complicated colonoscopy), (3)
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evaluation of alarm symptoms suggestive of CRC, (4) tumour
localization (especially for laparoscopic surgery), (5) and eval-
uation of diverticular disease and of patients with colonic sto-
ma [11]. Other indications, many of which are still being de-
bated, include CRC screening and surveillance after surgery
for CRC or polypectomy [11–13].

Volumetry in CRC

Tumour sizes and volumes have been proven to be an impor-
tant prognostic indicator for a variety of tumours. However,
these features were not found useful in the TNM staging sys-
tem in CRC and in predicting the clinical outcome of patients,
though published papers are sometimes contradictory [14–16].
Simple methods are available for measuring volume based on

different semi-automated techniques. In the case of RC, tu-
mour volume reduction rate (TVRR) following chemoradio-
therapy (CRTP) based on T2-weighted volumetry may have a
predictive value. TVRR shows a significant correlation with
tumour pathological regression grade after preoperative CRTP
[17] and a volume reduction ratio >75 % is associated with an
increased pathologic complete response rate [18]. The main
limitation of T2-weighted images in the restaging of RC
post-CRTP is its inability to distinguish between small remain-
ing tumour foci and fibrosis, which impacts negatively on its
sensitivity. Moreover, it is difficult to decide which areas re-
main suspicious for tumours on T2-weighted images and
should be included in the volume measurements. Tumour
volumetry based on the signal-intensity characteristics of dy-
namic contrast-enhanced (DCE) or diffusion-weighted (DW)

Fig. 1 CT colonography in a 40-year-old woman with rectal bleeding.
3D endoluminal virtual dissection view (presenting the bowel as if it has
been straightened and unfolded) (top left) and 3D endoluminal view of
the colon (top right) showed a suspicious finding (arrows) for the

computer-aided polyp detection system (blue lesion). Correlation of
these 3D endoluminal views with traditional images at CT
demonstrated that this finding corresponded to a high-density (108 HU)
impacted diverticulum
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images may be more accurate than conventional T2-weighted
images to distinguish between complete and non-complete
responders (sensitivity, specificity, accuracy, and area under
the curve (AUC) for DCE, DWI, and T2-weighted images,
respectively, 86/64/86 %, 73/94/93 %, 79/76/93 %, and 0.76/
0.81/0.90 [19]. However, these data need to be consideredwith
caution. Contrast uptake can be prominent in areas with in-
flammation, altering DCE-based measurements, and suscepti-
bility artifacts and bright areas on high b-values images due to

the T2 shine-through effect can make the tumour segmentation
on DWI not accurate.

Hepatic resection has improved the survival of patients
with metastatic CRC. Approximately 25 % of newly di-
agnosed patients with CRC have liver metastases at the
time of diagnosis and another 25 % will develop liver
metastases during the course of the disease. There are
several key features to consider when planning hepatic
resection, including the number of segments involved,

Fig. 2 CT volumetry in a patient with colorectal cancer liver metastases.
Liver area determined with automated method (yellow) (top-left). Total
liver volumetry (1185 cc) (top) and images of the segmentation of the

suprahepatic and portal vessels (a). Automatic Couinaud liver
segmentation using CT images (b), which allows the location of the
metastatic deposits (green – white arrows)

Fig. 3 Dual-energy CT in a patient with a rectosigmoid tumour. Coronal reformatted conventional CT (left) and iodinemap images. Iodinemap depicted
iodine uptake in a mass in the sigmoid colon (arrow), improving tumour detection on CT exams without bowel preparation
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the proximity of lesions to vascular and biliary structures,
and the amount of remnant liver following resection. The
size of the remnant liver affects procedural success and
postoperative mortality and morbidity [20–22]. This fea-
ture is more important in patients with underlying liver
disease (e.g., fatty liver secondary to hepatotoxic chemo-
therapy -CTP- in CRC patients), in which the future liver
remnant required needs to be larger than in those patients
with a normal liver. Imaging-based liver volumetry has
been increasingly utilized to obtain accurate measure-
ments for planning major hepatic resections in patients
with CRC [20–22]. Semi-automated computerized liver
segmentation methods are mainly based on CT images
with the use of liver attenuation for delineating the liver
(Fig. 2). However, measurement of attenuation is not pos-
sible on MRI. To address this issue, stereology techniques
have been used for MRI evaluation with accurate results
[23].

Emerging anatomical imaging techniques

Dual-energy computed tomography

Dual-energy computed tomography (DECT) is a new tech-
nique that allows for differentiation of materials and tissues
based onCT density values derived from two synchronous CT
acquisitions at different tube potentials in a single acquisition.
Iodine uptake can be distinguished from other materials owing
to its stronger photoelectric absorption at low tube voltages
[24]. DECT improves tissue characterization and material sep-
aration. The attenuation caused by iodine on contrast-en-
hanced CT can be quantified and data can be displayed
as a map of iodine concentrations. Additionally, virtual
non-enhanced images can also be created. The addition
of iodine map evaluation may improve CRCs detection
on the contrast-enhanced DECT without bowel prepara-
tion compared to only contrast-enhanced images (accu-
racy 96.7 % vs 90 %) [24] (Fig. 3). DECT may also be
useful for tumour staging. The iodine concentration (IC)
in the portal phase (PP) had the highest ability to dis-
criminate LN metastasis (AUC 0.932). When clinically
obvious metastatic LNs based on conventional CT find-
ings are excluded, the IC in PP remained the most
powerful predictor of metastatic LNs (AUC 0.933)
[25]. For its part, combining normalized IC in PP with
the short axis diameter of LNs, the overall accuracy
could be improved to 82.9 % for differentiating meta-
static from non-metastatic LNs in RC [26]. Nonetheless,
the limitations of these studies include the small sample
size, the exclusion of lymph nodes (LNs) less than
2 mm, and an incomplete radiological-histological one-
to-one comparison, as not all the LNs identified on
pathologic exam were evaluated on CT images.T
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Texture analysis

Malignant tumours display a great spatial and temporal het-
erogeneity in their biological characteristics and behavior.
However, much of the heterogeneity visible on imaging may
represent noise. Texture analysis can reduce the effect of noise
in images, while enhancing biologic heterogeneity. Texture

analysis focuses on the distribution and relationships of
grey-level values within images. Texture extracts basic com-
ponents (i.e., spatial, frequency, etc.) from conventional im-
ages, creates a derived set of sub-images, and allows the quan-
tification of different parameters, including entropy, kurtosis,
and standard deviation of the pixel distribution histogram
[27]. In the case of CRC, texture features have been shown

Fig. 4 Dynamic contrast-
enhanced (DCE) MRI evaluation
of a rectal malignant tumour
(white arrow) with different types
of parameters. Data analysis of
DCE-MRI data may be based on
different approaches. A
qualitative evaluation is based on
the visual assessment of tumour
enhancement (top left) or type of
curve enhancement (top right).
Semiquantitative parameters can
characterize the shape and
structure of the curves of
enhancement (middle row).
Finally, a quantitative approach is
able to measure physiological
parameters (bottom)
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to correlate with KRAS expression, patient’s survival, tumour
staging, and tumour response [28–30]. Cui et al. reported that
CT texture evaluation of LNs in CRC patients demonstrated a
greater heterogeneity (the fraction of pixels that deviate more
than a certain range, 10 % default, from the average intensity)
in malignant nodes with a size greater than 3 mm and less than
10 mm and fractal dimension [28]. However, in contrast, less-
heterogeneous tumours have been associated with a poorer
outcome. In this sense, Ng et al. reported that primary CRC
at fine filter levels in contrast-enhanced CT were showed a
poorer 5-year overall survival (OS) rate with values for entro-
py, kurtosis, and standard deviation of pixels of less than 7.89,
2.48, and 61.83, respectively, and at least 0.01 for uniformity
and −0.38 for skewness [29]. Luebner et al. demonstrated that
CRC tumours with hepatic metastases that are more homoge-
neous at coarse filters (less entropy, smaller standard devia-
tion, higher in attenuation/higher mean of positive pixels) are
potentially more aggressive in their biology with higher tu-
mour grade and poorer OS [30]. To explain this apparent

�Fig. 5 Diffusion analysis in a rectal tumour. Analysis of the relationship
between signal attenuation in tissues with different b-values. Theorical
(tCURVE) and real (rCURVE) curves of signal decay are different. (a) At
low b-values (L), the signal is suppressed by small diffusion weightings
(e.g., b value ≤ 100 s/mm2), which can be attributed to microcapillary
perfusion, and intravoxel incoherent motion (IVIM) analysis may
quantify the diffusion and perfusion effects separately. At medium b
values (M) (100-1000 s/mm2), signal decay usually shows a Gaussian
diffusion behavior, which would result in linear decay of the natural
logarithm of the DWI signal intensity (SI) as the b-value increases, and
subsequent quantification can be performed using a mono exponential
analysis. On its part, at high b-values (e.g., >2000 s/mm2) (H), diffusion
restriction is mainly secondary to cellularity, and quantification of non-
gaussianity for water diffusion is possible based on diffusional kurtosis
imaging (DKI), which may evaluate tissue structure that creates diffusion
barriers and compartments. Tumours usually show an increased kurtosis.
Pictured is an example of bi-exponential analysis of diffusion in a rectal
tumour (arrow) (b), which allows the calculation of perfusion-related
parameters, including the perfusion fraction (f) and perfusion-free
diffusion (D) (top row), and an image of tumour kurtosis (bottom right)

Fig. 6 Volumetric perfusion CT multiplanar and multiparametric
evaluation in a 62-year-old man with rectal cancer (white arrows).
Parametric maps fused (50 % transparency) with CT images in different
planes demonstrated increased values of perfusion-related parameters

within the tumour: sagittal reformatted blood flow (BF) map, axial
reformatted permeability map, and coronal reformatted blood volume
(BV) map. Time-density curve of the tumour (bottom-right)
demonstrated an enhancement curve type 3 (green arrow)
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contradiction between studies, we must consider the limita-
tions of texture analysis, which include that biologic correlates
of texture analysis have not been definitively confirmed in his-
tological studies and that image acquisition parameters and
analysis (unenhanced vs contrast-enhanced exam, pattern of
contrast administration, texture methods, software platforms,
etc.) deeply affect measurement of texture features and change
their biological correlation (i.e., texture features may reflect
cellular distribution on unenhanced images at a fine scale; they
may also reflect the distribution of the contrast agent between
the intra- and extravascular extracellular space (EES) on
contrast-enhanced images) [29].

Functional and molecular imaging for the evaluation
of tumour hallmarks in CRC

CRC typically show characteristic tumour phenotypic alter-
ations, which are manifestations of genetic changes and

metabolic reprogramming, including sustained angiogenesis,
limitless replication potential, and altered metabolic pathways
(including an increased glycolytic capacity) [5]. Anatomic
imaging techniques may be insensitive to mapping the distri-
bution of these tumour-specific characteristics. FMI-derived
techniques may help to discriminate these features for clinical
decision-making [6, 8] (Table 1).

Imaging of tumour angiogenesis in CRC

Angiogenesis is a prognostic feature in CRC that has been cor-
related with important tumour characteristics such as grade and
stage and with an increased incidence of metastases and local
tumour recurrence. Functional imaging techniques may provide
additional insights into the tumour microenvironment. Main
imaging techniques for assessing tumour vascularization in the
clinical field are DCE techniques based on MRI and CT. These
techniques acquire a series of images through a region of interest
before, during, and after the intravenous injection of a contrast

Table 2 Biological correlation of
perfusion-related parameters BVand BF (often coupled) Permeability Biological interpretation

↑↑↑ ↓ or↔ or ↑ New vessel formation (increased perfusion and blood volume)
with varying degrees of maturation

↓ or↔ or ↑ ↑↑↑ Poor perfusion with increased permeability (immature vessels),
which usually represent a reaction to hypoxia

↑ ↔ or ↓ Mature vasculature

↑ ↔ or ↑ Inflammation +/− early fibrosis

↓ ↓ Mature fibrotic areas (usually showing a progressive
enhancement)

↓↓ ↓↓ Poor vascularized areas

BF↓ relating to BV —— Blood flow-blood volume mismatch, which usually
represents hypoxia

+/− 0 +/− 0 Necrotic areas

Note—Data from literature reviews and personal experience and adapted from references 30,31, and 45

BV = blood volume, BF = blood flow

Fig. 7 Diffusion for detecting colorectal tumours. A carcinoid tumour
(white arrows) in a 44-year-old patient. Sagittal fast spin-echo T2-
weighted image (left) and sagittal diffusion-weighted image with high b
value (b = 800 s/mm2) (center) showed a rectal tumour nodule. Fused

image (right) superimposing sagittal T2-weighted MR image and color-
coded map derived from high-b-value diffusion-weighted image clearly
delineated the tumour
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media [31, 32]. Different method of analysis can be used to
evaluate the obtained data, from purely qualitative assessment
to complexmathematical modeling. However, not all the studies
have shown agreement concerning the capability of imaging to
reflect angiogenesis in CRC [33]. Published data related to the
correlation of DCE-derived perfusion parameters with morpho-
logic, angiogenic, and molecular prognostic factors in RC
results are sometimes contradictory [8, 34–37]. However, DCE
techniques may show clinical value in diagnosis, prognosis,
planning therapy, assessment of response to treatment, and
detection of tumour relapse in CRC patients [6–8, 34, 35].

MR-based imaging techniques

T1-weighted DCE-MRI techniques are able to evaluate tissue
perfusion and vascular leakage based on signal changes second-
ary to the presence of low-molecular-weight contrast media in
the EES [6–8, 31] (Fig. 4). Different parameters can be obtained
depending on the complexity of the analytic model applied.
Quantitative parameters such as the transfer constant (Ktrans)
have demonstrated a prognostic value. Lim et al. reported that
Ktrans values in rectal tumours at presentation in the downstaged
group following CRTP were significantly higher than those in

Fig. 8 Whole-body diffusion
imaging for tumour staging.
Conventional portal-phase
contrast-enhanced images (a)
demonstrated two liver
metastases (left – red arrows) and
a tumour in the cecum (right -
white arrow). Whole-body-
diffusion-weighted image with
inverted gray scale (b) depicted
both focal liver lesions (red
arrows) and the tumour in the
cecum (white arrow) that showed
restriction of diffusion. 18F-FDG-
PET image (c) evidenced similar
findings
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the non-downstaged group [38]. In contrast, Gollub et al. in a
similar study did not find that pretreatment Ktrans had predictive
value, though post-treatment Ktrans in a select group was able to
distinguish pathological complete responders from incomplete
responders [39]. However, different therapies were used in both
studies, which could explain these differences. CRTP was used
in Lim’s study while CTP/antiangiogenic therapy
(bevacizumab) was administrated in Gollub’s study (which
may cause a more effective devascularization of the tumour,
resulting in lower Ktrans values). DCE-MRI with the use of
blood pool contrast-agents has shown a good performance in
RC prognosis of tumour response to CRTP. The late slope was

able to discriminate between good and poor responders with an
AUC of 0.90, sensitivity of 92 %, specificity of 82 %, positive
predictive value (PPV) of 80 %, and negative predictive value
(NPV) of 93 % [40]. Evaluation of tumour pathological re-
sponse after CRTP is another important role of imaging. In this
setting, the relative change in Ktrans has shown a good predic-
tive potential using a cutoff value of 32 % reduction in median
Ktrans with a PPVof 100 % for good response (complete path-
ologic response -pCR- and near-pCR based on the Mandard’s
tumour regression grade) [41], and Tong et al. reported that a
Ktrans threshold of 0.66 could distinguish between complete and
incomplete response before CRTP in RC with a sensitivity of

Fig. 9 Diffusion for the evaluation of tumour response. Pretherapy (a)
sagittal T2-TSE image and volumetry (volume = 109.91 cc) based on
diffusion (b = 1500 s/mm2) image showed a big rectal cancer with inva-
sion of the anal canal (white arrows). Post-therapy (b) volume was

reduced (volume=42.96 cc). Histogram analysis© pre and post-therapy
of the apparent diffusion coefficient (ADC) also demonstrated increased
ADC values
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100 % [42]. Finally, DCE-MRI findings correlate with clinical
outcome in patients who undergo surgical treatment for recur-
rent RC. A higher value correlated directly with a complete
tumour-free resection margin, while in the case of the rate con-
stant or kep there was a negative correlation [43]. However, it
must be considered that clinical comparability across perfusion
analysis solutions is currently not warranted. A considerable
variability for DCE-MRI pharmacokinetic parameters has been
found among various commercially available perfusion analy-
sis solutions [44].

DWI can be also used for assessing tumour vascularization.
The perfusion component dominates the signal decay at low b-
values and can be assessed using intravoxel incoherent motion
(IVIM) analysis (Fig. 5). This feature enables differentiation
between the perfusion fraction (f) and perfusion-free diffusion
(D). The IVIM-related parameters may be used in the non-
invasive evaluation of tumour perfusion. Bäuerle et al. found
that f correlated to the vascular area fraction (percentage of CD
31 positive-staining area) on histological evaluation in the nor-
mal rectum and in tumours [45]. However, this correlation or
significant changes on f have not been evidenced after CRTP
[45, 46], which restricts the clinical value of IVIM in CRC.

Perfusion CT

DCE-CTor perfusion CT (PCT) is an attractive technique for the
evaluation of tumour vasculature based on the temporal change
in tumour enhancement following intravenous iodinated contrast
agent administration. Pharmacokinetic models allow obtaining
qualitative data and quantitative parameters on tumour vascular-
ization including blood flow (BF), blood volume (BV), mean
transit time (MTT), permeability-surface area, or Ktrans [34, 35]
(Fig. 6). Tumour perfusion-related parameters (BF) may also
distinguish the normal colonic wall from CRC (10–40 ml/
min−1 100 g−1 tissue vs. 50–200ml/min−1 100 g−1 tissue, respec-
tively) [34]. Variations in tumour phenotyping and intratumoural
heterogeneity may also be assessed based on the combination of
perfusion-related parameters (Table 2) [34, 47], although the use
of global mean values for perfusion parameters may underesti-
mate the extent of spatial heterogeneity. In clinical practice, CT
perfusion-related parameters may separate well, moderately, and
poorly differentiated RC. Sun et al. reported that the mean BF
was significantly different among well, moderately, and poorly
differentiated groups (61.17±17.97, 34.80±13.06, and 22.24
±9.31 mL/minute/100 g, respectively) [48]; while Kim et al.

Fig. 9 (continued)
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evidenced that BF was higher in moderately differentiated CRC
than well differentiated and poorly differentiated CRC [49]
Although, certain limitations of these studies must be considered.
First, the study sample size was small and second, there was no
precise correlation between tumour ROI in perfusion CT and
pathologic specimen after surgery. PCT parameters may also
have a role as a potential prognostic biomarker in CRC.
Hayano et al. evidenced that patients with more poorly perfused
RCs (<40 ml/min−1 100 g−1 tissue) had a poorer outcome [50].
Finally, PCTcan also depict therapy-inducedmodifications in the
vascularization of CRC [34, 35, 47, 51]. Changes in tumour
vascularization depend on both the therapeutic mechanism of
action and the timing of response evaluation. In this setting,
neoadjuvant CRTP produces a decrease in perfusion parameters
(reduction in BF around 40 %), although an early temporal in-
crease can be depicted secondary to radiation-induced inflamma-
tory changes [52]. In the case of CRC liver metastases treated
with therapeutic regimens including antiangiogenic agents, sev-
eral studies also have shown a reduction in BF and permeability
after the therapy [53, 54].

PCT is actually a robust technique on the basis of recent
technological advances, including whole-tumour coverage,
motion correction, noise reduction algorithms, etc. However,
quality control is essential to enable CT quantification and
efforts are needed toward a standardization of acquisition
and data processing.

Finally, many features have to be considered that can affect
the calculation of vascular parameters in both CT and MRI,
including the conditions of signal production, the characteris-
tics of the contrast agent, and the data analysis model. There
are several important differences between DCE-MRI and
PCT. The attenuation (expressed in Hounsfield units) is direct-
ly proportional to contrast agent concentration on CT. For its
part, on MRI, the image intensities depend on many features
(underlying native signal of the tissue or various parameters of
the imaging sequences) adding complexity to analysis. Beside
this, physiological explanation of some MRI-based quantita-
tive parameters is complex, while PCT usually provides a
series of more comprehensive parameters. CT offers a wider
availability, but also shows potential limitations, including
radiation dose, contraindications to iodinated contrast media,
or the fixed axial plane of CT scanning. In the case of DCE-
MRI, this technique is recommended over PCT for relatively
young patients and offers a better signal-to-noise ratio, a stron-
ger contrast uptake, and the absence of ionizing radiation
[6–8, 31].

Imaging tumour proliferation and cellularity in CRC

A basic characteristic of cancer is uncontrolled cell prolifera-
tion, which generally causes a greater cell density in tumour
lesions.

Functional imaging of cellularity: Diffusion-weighted
imaging in CRC

To date, DWI is a basic technique in oncologic imaging [55].
Diffusion measures the random Brownian motion of water
molecules within a voxel of tissue. The relationship between
histology and diffusion is complex. DWI canmainly provide an
indirect evaluation of cellularity and the integrity of cell mem-
branes, but gland formation, perfusion, or cell death may also
influence water diffusion. Besides, diffusion can be quantita-
tively assessed using the apparent diffusion coefficient (ADC)
value. In CRC, this technique has shown to be of value for
tumour detection, staging, prognosis, evaluation of response,
and assessment of recurrence. DWI is a useful tool for detecting
colorectal tumours. Ichikawa et al. reported a sensitivity and
specificity of high-b-value DWI for detection of CRC of 91 %
and 100 %, respectively [56] (Fig. 7). However, this study had
some limitations, including a small study population and the
fact that it did not include other benign conditions (i.e., inflam-
matory bowel disease), which could reduce its specificity. DWI
may also improve tumour staging. This technique increases the
sensitivity for detecting LNs. In a study by Heijnen et al., DWI
detected 6 % more nodes than T2-weighted imaging [57].
Concerning the characterization of LNs, specificity and accu-
racy also increased after adding DWI to T2-weighted images,
although the diagnostic accuracy of ADC for discriminating
metastatic from non-metastatic LNs is only around 70 %,

Fig. 10 18F-FDG-PET in staging rectal cancer. Coronal PET image
evidenced a focal area of uptake in the pelvis corresponding to the
primary tumour (white arrow). PET also demonstrated multiple liver,
lung, and lymph-node metastases (red arrowheads)
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because subjective visual assessment cannot discriminate be-
tween benign and malignant nodes, as both display high DWI
signals with increasing b-values, and the ADC values of malig-
nant nodes have been shown to be only slightly lower than that
of benign nodes—not enough to allow their discrimination.

Besides this, complete radio-pathological correlation was
not possible in published studies, and a good correlation bet-
ween anatomical and DWI sequences was difficult to achieve
due to partial volume effects (based on the different voxel size
used in both sequences) [58, 59]. The use of whole-body (WB)-
DWI may be an attractive alternative for staging CRC (Fig. 8).
A small study evidenced that the overall sensitivity of WB-
DWI as a single modality for the detection of malignant lesions
was 81 %. All primary CRC were detected, included 77 % of
the liver metastases, 72 % of the distant nodal metastases, and
75 % of the lung metastases [60]. Further, in a study including
28 gastrointestinal cancers (23 CRC), Gong et al. found no
statistically significant difference in the overall diagnostic per-
formances of PET-CT (accuracy 98.9 %; sensitivity 95.2 %;
specificity 99.8 %; PPV 98.9 %; NPV 98.9 %) and WB-DWI
(accuracy 95.9 %; sensitivity 81.7 %; specificity 99.1 %; PPV
95.0 %; NPV 96.1 %) for the initial diagnosis or post-operative
follow-up in detecting distant metastases or recurrence [61].

The role of diffusion as a prognostic or predictive tool has
been also evaluated. In this setting, RC with lower ADC
values was associated with more aggressive tumour behavior
[62, 63]. Beside this, diffusion may predict RC response to
neoadjuvant CRTP [64, 65]. A significant correlation between

tumour volume reduction and pre-CRTPADC values has been
reported [64]. Pre-CRTP ADC of the histopathological re-
sponders was significantly lower than that of the histopatho-
logical non-responders and the change of ADC of the re-
sponders was significantly higher. Concerning tumour re-
sponse evaluation, patients with a pCR after CRTP always
have a better prognosis than those with other TRG grades.
Increases in ADC values occur within 3–7 days in responding
patients treated with CRTP [66]. Preliminary results indicate
that DWI improves the diagnostic performance of MRI to
detect early tumour response and to predict mesorectal fascia
tumour clearance [67]. DWI, DW-MR-volumetry, and ADC
histogram analysis are significantly more accurate than T2-
weighted images in assessing tumour response [68–70]
(Fig. 9). However, MRI showed heterogeneous results of di-
agnostic performances for restaging RC after CRTP, although
better results were demonstrated when DWI was included
[71]. A meta-analysis including 16 studies and 826 patients
determined that the changes between the pre- and post-ADC
are good predictors of a pCR, but some misjudgments remain,
because DWI cannot reliably microscopically discriminate re-
sidual viable tumour cells from fibrosis, which can cause a
considerable overlap of the ADC values between a pCR and
near-pCR. Furthermore, DWI sensitivity is low, mainly due to
the erroneous interpretation of high signals in ‘normal’ post-
treatment rectal walls as residual tumour [72, 73]. These data
are in agreement with a systematic review of the role of im-
aging (including DWI and fluorodeoxyglucose (18F-FDG)

Fig. 11 18F-FDG-PET for
evaluating response to therapy.
Changes secondary to therapy in a
patient with rectal cancer treated
with chemoradiation. Sagittal 18F-
FDG-PET-CT image pretherapy
(left) demonstrated an FDG-avid
rectal mass (white arrow). Post-
neoadjuvant chemoradiotherapy
18F-FDG-PET-CT image
evidenced a complete tumour
response (Courtesy JM Llamas-
Elvira, MD. Department of
Nuclear Medicine, Hospital
Universitario Virgen de las
Nieves, Granada, Spain)
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Fig. 13 Tumour hypoxia. BOLD images (fusion of T2 and T2*) pre- and
following the administration of oxygen may demonstrate a mucinous
adenocarcinoma of the rectum. In basal conditions, the tumour showed

high signal on T2* map. After O2 administration, the signal decreased
with an ascending curve of ΔR2* (red line), which is related to tumour
radioresistance

Fig. 12 MR spectroscopy of rectal polyp. ProtonMRSI of a rectal polyp.
Axial (upper row), sagittal (middle), and coronal (right) images obtained
by T2-weighted turbo spin-echo imaging. Spectra obtained by univoxel

spectroscopy at long echo time (TE= 135 ms) showed an increased level
of choline (Cho) peak at 3.2 ppm
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positron emission tomography (PET-CT) in the re-staging of
RC after CRTP, which suggests that the major strength of
imaging lies in the identification of non-responders. Both
DWI and 18F-FDG PET-CT are not actually accurate enough
to safely select patients for possible organ-sparing strategies
[70]. In the case of tumour recurrence, a study by Lambregts et
al. using DWI for diagnosing local tumour regrowth during
follow-up of organ preservation treatment after CRTP for RC
evidenced that although there was no overall improvement in
diagnostic performance in terms of AUC, DWI improved the
sensitivity of MRI for diagnosing local tumour regrowth and
lowered the rate of equivocal MR exams [73].

Finally, we must consider that the standard mono-
exponential analysis of DWI assumes a Gaussian behavior
of water diffusion. However, in many biological tissues, the
presence of barriers (e.g., cell membranes and intracellular
organelles) and compartments (intracellular, intravascular,
and EES) alter the water diffusion process so that it is no
longer Gaussian. The kurtosis is a dimensionless statistical
metric for quantifying the non-gaussianity of diffusion. A
large diffusional kurtosis suggests a high degree of diffusional
heterogeneity and microstructural complexity, which is usual-
ly the case of tumour lesions (Fig. 5) [74]. Preliminary results
in body imaging open the consideration of a future role for this
imaging technique in RC [74].

Molecular imaging of tumour proliferation with PET

18F-3-deoxy-3-fluorothymidine (FLT) is a radiotracer, which
allows the evaluation of cellular proliferation. Nonetheless,
FLT-PET evidenced a limited value in CRC, demonstrating
less sensitivity than 18F-FDG-PET for the detection of patho-
logic LNs or liver metastases in CRC [75, 76].

Tumour metabolism in CRC

Tumour proliferation needs nutrients, energy, and biosynthetic
activity. This feature is responsible for the metabolic
reprogramming associated with cancer. Imaging techniques

allow assessment of the status of the altered metabolic path-
ways in CRC.

Imaging energetic metabolism with 18F-FDG-PET

A well-known energy metabolism alteration in tumour
cells is an increased glycolytic capacity, even in the
presence of a high O2 concentration, a process named
aerobic glycolysis. Proliferating tumour cells generally
consume glucose at a high rate. This increased glucose
uptake is the basis for clinical PET imaging in tumours.
PET-CT is an established clinical technique for the man-
agement of CRC patients, which may have an impact
on changing patient management strategies with its
evolving role in diagnosis, radiation therapy planning,
prediction of response, and therapy assessment
[77–80]. PET-CT may upstage a significant proportion
the patients in RC by identifying unsuspected systemic
or LN metastases [77, 78]. Nonetheless, routine PET for
the initial staging of CRC is not an established indica-
tion of the technique. PET may also help to guide de-
cisions concerning metastasectomy for patients with
CRC by excluding unresectable metastatic disease [77].
Some papers support the accuracy of PET in predicting pCR,
while others dispute its utility [70, 81–83] (Figs. 10 and 11).
However, PET will likely not have the ability to detect patients
with pathologic evidence of very few tumour cells in fibrotic
tissue in the surgical specimen after CRTP [70]. A meta-
analysis established that complete metabolic response on 18F-
FDG-PET data after preoperative CRT is predictive of OS in
RC [84]. Finally, PET is also more sensitive than conventional
imaging (CT) in detecting tumour relapse. CT scans were posi-
tive in 82%of patients and 18F-FDG-PET-CT in 98%of patients
[85]. However, several limitations of PET for the evaluation of
CRC must be considered. 18F-FDG uptake is dependent on tu-
mour grade and histological type, and PETshows a limited and a
poor spatial resolution (missing small lesions).

PET-MRI has recently become available for clinical
use. Combined anatomic and functional capabilities of

Fig. 14 MR lymphography.
Metastatic 6-mm node (white ar-
row) on T2*-weighted high-
resolution specimenMRI with the
histopathological correlation
(right) in a patient with a pT3 pN1
moderately differentiated
adenocarcinoma
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MR imaging and the metabolic information of PET pro-
vide new insight into tumour phenotypes at a lower
radiation dose than a PET-CT. Current literature is
sparse concerning the role of PET-MRI in CRC [86].
Perhaps this hybrid technique might prove valuable in
offering an increased confidence in the evaluation of
liver lesions and residual masses after treatment, and
improving identification of LNs.

MR spectroscopy for evaluating metabolism

There has been scarce literature published on the use of proton
(1H) MR spectroscopy (MRS) in CRC. Kim et al. demonstra-
ted that RC mainly showed elevated choline (Cho) at 3.2 ppm
and lipids (Lip) peaks at 1.3 ppm on MRS (Fig. 12). After
CRTP, the Cho peak disappeared, resulting in only the Lip
peak [87]. MRS has also been found of interest in the

Fig. 15 Multiparametric evaluation of a 64-year-old patient with rectal
cancer, pre-therapy. (a) Sagittal fast spin-echo T2-weighted image (left)
and sagittal diffusion-weighted image with high b-value (b = 800 s/mm2)
(center) and ADC map showed a big rectal tumour with restricted diffu-
sion. (b) Perfusion MRI-related parametric maps (transfer constant, Ktrans

and return constant, kep), gadolinium concentration/time curve of the
tumour evidenced increased perfusion within the tumour and a type 3
curve. (c) MR spectroscopy depicted an increased lipids peak. (d)
Sagittal 18F-FDG-PET image evidenced an increased uptake of glucose
in the tumour (red arrows)
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diagnosis of postsurgical recurrence of RC. An increase of
residual Lip peaks in the postsurgical bed suggests tumour
recurrence, while lower Lip peaks are present in scarring post-
operative fibrosis [88]. However, MRS shows no clear clinical
application in CRC because MRS evaluation of these tumours
is technically demanding, not only for bowel movement but
also for the presence of multiple interfaces between air, rectal
wall, and perirectal fat that may result in an inhomogeneous
magnetic field and poor spectra quality.

Imaging oxygenation and hypoxia in CRC

Hypoxia is considered to be an important mediator of malig-
nant disease progression that has an important role in
predicting the response to radiotherapy and an impact on pa-
tient prognosis and survival in CRC. To our knowledge, im-
aging evaluation of hypoxia in CRC has been scarce in pub-
lished literature. Blood oxygenation level-dependent
(BOLD)-MRI may provide a non-invasive means of assessing
in-vivo tumour oxygenation based on endogenous
deoxyhemoglobin as a contrast agent (Fig. 13). However,
BOLD-MRI shows several limitations that need to be consid-
ered. First, no correlation between BOLD-MRImeasurements
and hypoxic markers has been published in CRC. Second, this
technique is more likely to reflect acute tissue hypoxia

(perfusion-related and often transient) than chronic (caused
by increased oxygen diffusion distances due to tumour expan-
sion) hypoxia and requires the simultaneous assessment of the
functionality of tumour vasculature. And third, motion and
susceptibility artifacts limit the clinical application of
BOLD-MRI in CRC [89]. There is also a limited experience
with the PET evaluation of hypoxia in CRC using hypoxia-
related radiotracers in CRC [75].

Functional imaging of lymph nodes

Nodal metastases are one of the most significant indicators of
local recurrence and cancer-specific mortality in RC patients,
and influence the determination of surgical and adjuvant treat-
ments. CT, MRI, and endorectal ultrasound lacked sufficient
accuracy to identify metastatic LNs with sensitivities and
specificities in the 55–78 % range. Apart from this, histolog-
ical data show that up to 45 % of nodal metastases in RC are
≤4 mm, which increases the difficulty of the accurate charac-
terization of LNs. The development of ultrasmall iron oxide
particle (USPIO) contrast agents opened the possibility of
performing MR lymphography (MRL) [90]. The contrast
agent shows a specific cellular uptake by the macrophages
in normally functioning nodes. Macrophage sequestration
within normal LNs causes decreases in nodal signal intensity

Fig. 15 (continued)
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(SI) on susceptibility-weighted (T2*)MRI, whereas infiltrated
LNs do not have macrophages and cannot take up the contrast
agent (Fig. 14). MRL has demonstrated a sensitivity of 93 %
and a specificity of 96 % for nodal staging in RC [91].
However, several limitations must be considered when we
evaluated these data. First, MRI has a limited spatial resolu-
tion, meaning that only nodes that could be directly co-located
between pre-operative in-vivo images and histopathology

analysis were evaluated in published papers, thus excluding
many other LNs (seen at pathology but not by MRI, and vice
versa). This fact necessarily introduces a bias toward the as-
sessment of larger LNs, which are naturally more visible by
imaging. Second, an overlap of SI between benign and malig-
nant LNs has been reported due to different features, including
partial volume and lipomatosis. Finally, the evaluation of nu-
merous LNs is a complex and time-consuming activity.

Fig. 16 Multiparametric evaluation of a 64-year-old patient with rectal
cancer, post-therapy. (a) Sagittal fast spin-echo T2-weighted image (left),
sagittal diffusion-weighted image with high b-value (b = 800 s/mm2)
(center), and ADC map showed a reduction of tumour volume and in-
creased ADC values. (b) Perfusion MRI-related parametric maps (trans-
fer constant, Ktrans and return constant, kep) and gadolinium

concentration/time curve of the tumour evidenced decreased perfusion
within the tumour and a change in the type of curve (type 1 curve). (c)
MR spectroscopy did not depict any metabolite peak. (d) Sagittal 18F-
FDG-PET image evidenced a decreased uptake of glucose in the tumour
(red arrow). All these features indicated partial tumour response

304 Insights Imaging (2016) 7:285–309



Perhaps the use of USPIO combined with DWI may simplify
the process and allow for more accurate detection of nodal
metastases [92]. However, to date, the use of USPIO agents
in clinical practice is not possible.

The use of gadofosveset (a gadolinium-basedMRI contrast
agent, which acts as a blood pool agent) can also significantly
improve the diagnostic performance to discriminate between
benign and metastatic LNs in RC. The intravenous adminis-
tration of this contrast media results in a selective uptake of
contrast in benign LNs, which causes an increase in signal on
T1-weighted images, and enhances the chemical shift artfact
around the border of the nodes [93].

Multiparametric evaluation of CRC

Combining the anatomical resolution of imaging with func-
tional (such as DWI and DCE imaging) and molecular (PET)
techniques may offer additional information about treatment
of tumour microenvironments in different clinical scenarios,

including staging, tumour characterization, prediction of re-
sponse to treatment, and response evaluation [94–101]. The
use of these techniques allow for the quantitative evaluation of
tumour phenotype, including changes in tumour biology that
occur after therapy (Figs. 15 and 16). There has been a very
limited use of the multiparametric/multimodality approach in
CRC. These studies are mainly confined to experimental set-
tings, and most of them have been single-center studies with
small numbers of patients. The relationship between different
parameters may explain tumour biological features. In this
setting, CRC with a low-flow/high-metabolism phenotype
demonstrated higher vascular endothelial growth factor
(VEGF) expression and may reflect a more angiogenic and
aggressive phenotype [98]. Fischer et al. reported that changes
in the flow-metabolic phenotype (blood flow × maximum
standardized uptake values (SUV)) of RC after CRT showed
high accuracy for the prediction of histopathological response
to CRTP (AUC 0.955, 95 % confidence interval 0.833-1.000)
using a cut-off value of −75 % [101]. However, at present,
there is no standardized imaging protocol for multiparametric

Fig. 16 (continued)
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imaging evaluation in CRC patients, which complicates its
clinical implementation.

Conclusion

In conclusion, advanced imaging techniques offer great op-
portunities in the evaluation of patients with CRC. The intro-
duction of functional and molecular imaging techniques in
clinical practice allows for the assessment of tumour hall-
marks and tumour heterogeneity, which may change the man-
agement and therefore the prognosis of patients.
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