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Objectives To systematically review the value of apparent
diffusion coefficient (ADC) measurement in the differentia-
tion between benign and malignant lesions.
Methods A systematic search of the Medline/Pubmed and
Embase databases revealed 109 relevant studies. Quality of
these articles was assessed using the Quality Assessment of
the Studies of Diagnostic Accuracy Included in Systematic
Reviews (QUADAS) criteria. Reported ADC values of be-
nign and malignant lesions were compared per organ.
Results The mean quality score of the reviewed articles was
50%. Comparison of ADC values showed marked variation
among studies and between benign and malignant lesions in
various organs. In several organs, such as breast, liver, and
uterus, ADC values discriminated well between benign and
malignant lesions. In other organs, such as the salivary
glands, thyroid, and pancreas, ADCs were not significantly
different between benign and malignant lesions.
Conclusion The potential utility of ADC measurement for
the characterisation of tumours differs per organ. Future well-
designed studies are required before ADC measurements
can be recommended for the differentiation of benign and
malignant lesions. These future studies should use stand-
ardised acquisition protocols and provide complete report-
ing of study methods, to facilitate comparison of results and
clinical implementation of ADC measurement for tumour
characterisation.
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Introduction

Over the past two decades, magnetic resonance (MR) imaging
(MRI) has proven to be a valuable diagnostic tool in oncology
[1–4]. Rapid improvements in MRI techniques have resulted
in MR images with excellent spatial resolution and soft tissue
contrast, which contribute to the differentiation of suspected
tumours. However, using conventional MRI sequences, diffi-
culty in differentiating benign from malignant lesions may
arise when malignant and benign lesions share certain mor-
phologic and contrast-enhancement characteristics. In these
cases, diffusion-weighted MR imaging (DWI) might be of
value in tumour assessment, as it has the ability to provide
tissue contrast based on molecular diffusion [5]. Since the
1990s, DWI using single-shot echo-planar imaging (EPI)
has been successfully applied in the field of neuroradiology.
It is particularly valuable in the assessment of acute cerebral
ischemia [6, 7]. Initially, DWI in other than intracranial sites
did not yield sufficient image quality due to susceptibility
artefacts and motion artefacts. More recently, technical advan-
ces in MRI, such as the development of parallel imaging, high
gradient amplitudes, and multichannel coils, have enabled the
performance of DWI in the body. These developments have
initiated the investigation of applicability of DWI for tumour
characterisation, both intra- and extracranially. Diffusion-
weighted images can be assessed in two ways, qualitatively,
by visual assessment of signal intensity, and quantitatively, by
measurement of the apparent diffusion coefficient (ADC). The
ADC value quantifies water proton motion, which in biolog-
ical tissues is a combination of true water diffusion and
capillary perfusion. The ADC value can theoretically be used
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to characterise tissues, as the degree of diffusion is correlated
to cellular density and extracellular space volume [8, 9].
Malignant tumours are reported to have a high cellular density
and low extracellular space volume, which is associated with
impeded water proton diffusion and low ADC values. In
contrast, various benign lesions are characterised by an in-
creased amount of extracellular matrix with minimal increase
of cellular density, which may result in higher ADCs [10, 11].
This hypothesis has been investigated for various types of
lesions throughout the body. However, because of the large
number of studies on this subject with sometimes conflicting
results, the utility of ADC measurements in the characterisa-
tion of lesions remains unclear. The aim of this study was
therefore to systematically review the current literature on the
value of ADC measurement in the differentiation between
benign and malignant lesions throughout the entire body.

Materials and methods

Search strategy

A systematic literature reviewwas conducted to identify articles
on ADC measurements for differentiating benign and malig-
nant lesions (Fig. 1). We performed an electronic search using
the Medline/Pubmed and Embase databases. The search string
is noted in the flowchart (Fig. 1). No beginning date limit was
used and the search was updated until February 25, 2012. No
language restriction was applied. Inclusion and exclusion crite-
ria were postulated in consensus by the three authors (M.V./
T.K./R.N.) and were applied to the title/abstract and full text
screening (Table 1). One researcher (M.V.) screened the titles
and abstracts of the search results and selected 221 eligible

articles. Full texts were available for 186 of these 221 articles
and were screened by one researcher (M.V.). One hundred
and nine articles were found to meet the inclusion
criteria and were reviewed. The remaining articles were
excluded for various reasons, such as lack of histopath-
ological reference standard, the use of ADC ratios in-
stead of true ADC values or describing only the ADC
values per histopathological entity, instead of comparing
mean ADC values of malignant and benign lesions as a
group. Finally, we screened the references of the included
articles to find relevant articles that may have been missed in
our search, which did not reveal any additional eligible
articles. Studies investigating the value of ADCmeasurements
in differentiating benign frommalignant prostatic lesions were
excluded, because the most important clinical role of DWI
with ADC mapping in the prostate is cancer detection and
characterisation. In addition, we did not review studies on
differentiation of malignant and benign lymphadenopathy, as
this subject lies beyond the scope of this paper.

Quality assessment

All relevant papers were assessed for quality using the Quality
Assessment of the Studies of Diagnostic Accuracy Included in
Systematic Reviews (QUADAS) criteria [12]. We modified
this 14-item instrument for optimum applicability to this re-
view. The complete list of criteria is presented in Table 2. One
reader (M.V.) assigned positive or negative scores to theseFig. 1 Flow chart of systematic literature search

Table 1 Inclusion and exclusion criteria

Inclusion criteria

1 Human, in vivo studies

2 Any language

3 Differentiation between benign and malignant lesions in any
organ

4 ADC measurements used to differentiate benign from malignant
lesions

5 It was possible to classify ADC measurements into a group of
benign and a group of malignant lesions

6 Histological examination used as reference standard

7 Diffusion-weighted MRI with ADC measurements performed
prior to any treatment

8 Absolute outcome measures (mean ADCs) can be obtained from
article

9 Total sample size of at least 20 lesions

10 MR≥1 Tesla

11 All ages

Exclusion criteria

1 Therapeutic or prognostic studies

2 Reviews, meta-analyses, editorials, case reports

3 Studies that focus solely on ADC values of (pathologic) lymph
nodes or vertebral fractures

ADC Apparent diffusion coefficient
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criteria for all of the eligible articles. If insufficient information
was provided the item was given a negative score. Total quality

scores were expressed as a percentage of the maximum score.
Quality scores of 0–39% were rated as poor, 40–70% as
moderate, and 70–100% as good.

Data presentation

Reported ADC values of the reviewed studies are presented
per organ or body region. The reported ADC values (mean±
standard deviation) of benign and malignant tumours in
each organ will be discussed and compared and are repre-
sented graphically in the accompanying figures. We did not
perform meta-analyses as the substantial variation in study
characteristics and applied diffusion-weighted imaging
parameters of the reviewed studies prevented meaningful
pooling of the data. We aimed to give a broad overview of
the literature on differentiation between benign and malig-
nant tumours.

Results

We identified 109 articles that described and compared
mean ADC values for malignant and benign tumours in
various body regions, of which 14 were intracranial and
95 extracranial. The included extracranial regions were sal-
ivary glands (6), thyroid (6), breast (24), lung (2), liver (14),
gallbladder (1), pancreas (9), kidney (8), adrenal gland (4),
uterus (8), ovaries (7), and soft tissue (6). Study design was
prospective in 38 studies, retrospective in 39, and unreport-
ed in 32 out of 109 studies. Most studies (98 out of 109)
used echo planar imaging (EPI) pulse sequences for
diffusion-weighted imaging, and 64 out of 109 studies
reported using diffusion gradients in three orthogonal direc-
tions (along the x, y, and z axes).

Study quality

Quality assessment was performed by assessing quality
scores for all studies, using 12 criteria adapted from the
QUADAS tool [12]. Total quality scores in the included
studies ranged from 25 to 75%. The average score of all
studies was 50%, which is moderate, but indicates that these
studies may have important limitations. In the quality as-
sessment of these studies many negative scores were
appointed because important details of study design were
not reported (Fig. 2). In most studies, the patient sample was
representative of the clinical setting in which DWI and ADC
measurements are applied. The methods of patient enrol-
ment were sufficiently described (in 97% of studies), and in
many studies histopathological verification was available.
However, in 38% of studies, histological diagnosis was not
available for all lesions included in the analyses. Although
in common practice it is not feasible to obtain histological

Table 2 Adjusted QUADASa tool for quality assessment

Quality item Positive score

1. Was the spectrum of patients
representative of the patients
who will receive the test in
practice?

Patients with lesions detected at
conventional imaging (e.g., CT,
US, or anatomical MRI).
Conventional imaging could
not assess whether those lesions
were benign or malignant

2. Were selection criteria clearly
described?

It was clear how patients were
selected for inclusion

3. Is the reference standard likely
to correctly classify the target
condition?

Histological examination was
used as a reference standard

4. Was the time period between
histological assessment and
DWI short enough to be
reasonably sure that the target
condition did not change
between the two tests?

Histological assessment was
performed within 2 weeks after
DWI

5. Did the whole sample or a
random selection of the sample
receive verification using a
reference standard of
diagnosis?

All patients, or a random sample
of patients, received
histological examination

6. Did patients receive the same
reference standard regardless of
the index test result?

Patients received histological
assessment regardless of ADC
measured

7. Was the execution of the index
test described in sufficient
detail to permit replication of
the test?

All of the following MRI
parameters are described: field
strength, coil type, sequence
type, applied b-values, BH/RT/
FB, and direction(s) of applied
diffusion gradients

8. Was the execution of the
reference test described in
sufficient detail to permit
replication?

Description of the following
points: means of harvesting
histological material (biopsy or
surgery) given, interpreter of
histological assessment
mentioned

9. Were the index test results
interpreted without knowledge
of the results of the reference
standard?

DWI was interpreted without
knowledge of the histological
assessment findings

10. Were the reference standard
results interpreted without
knowledge of the results of the
index test?

Histological assessment was
interpreted without knowledge
of the DWI findings

11. Were the same clinical data
available when test results were
interpreted as would be
available when the test is used
in practice?

Clinical data were available to the
interpreter(s) of the DWI

12. Were withdrawals from the
study explained?

Withdrawals from the study after
inclusion were explained

DWI Diffusion-weighted imaging, ADC apparent diffusion coefficient,
BH breath-hold, RT respiratory triggering, FB free breathing
a Adapted from [12]
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verification of all (benign and malignant) lesions, and a
reasonable reference standard is provided by follow-up of
these lesions, partial verification bias may not be fully
excluded. Reporting on methods of diffusion-weighted im-
aging and ADC measurement was not sufficient in a sub-
stantial fraction of the studies (53% of studies), although
these data are important for the comparison of ADC meas-
urements among studies. Furthermore, authors frequently
failed to document whether blinding was used for the as-
sessment of the index test (64% of studies) and reference
test (94% of studies).

In the following section, a summary of the results will be
presented per organ or body region. Due to the large number
of studies reviewed, tables containing study characteristics
could not be included in this paper but are provided in the
Electronic Supplementary Material (ESM S1–S14).

Intracranial

The articles regarding intracranial DWI addressed the fol-
lowing issues: differential diagnosis between cerebral ab-
scesses and necrotic or cystic malignant tumours and
between typical (benign) and atypical (malignant) meningi-
omas. Differentiation of high- and low-grade malignant
brain tumours has also been studied extensively but lies
beyond the scope of this review and will not be discussed.

We identified eight articles that compared mean ADC
values of abscesses to malignant cerebral tumours with a

cystic or necrotic component (ESM Table S1) [13–20].
Malignant lesions included in these studies were predomi-
nantly high-grade gliomas and metastases and a smaller
number of low-grade gliomas and cerebral lymphomas.
Quality scores of these articles were low to moderate, rang-
ing from 25 to 50%. The studied populations ranged from
18 to 54 patients. Applied maximum b-values ranged from
972 to 1,200 s/mm2. All studies measured ADC values with
placement of a region of interest (ROI) in the cystic com-
ponent of abscesses and malignant tumours. These studies
found that overall, cerebral abscesses show restricted diffu-
sion with hyperintensity on DWI and low ADC values.
Lowest reported mean ADC of abscesses was 0.42±0.15×
10−3 mm2/s and the highest reported mean ADC in these
studies was 0.94±0.42×10−3 mm2/s. For malignant lesions,
reported mean ADC values ranged from 1.45±0.67 to
2.96×10−3 mm2/s (Fig. 3). Three authors reported a signif-
icant difference between ADC values of cerebral abscesses
and malignant tumours [15, 16, 19]; the other authors did
not provide P-values.

Six articles discussed the contribution of DWI to the
differentiation between histologic grades of meningio-
mas (ESM Table S2) [21–26]. Quality scores ranged
from 42 to 67%. DWI was performed on a 1.0 T MR
system in one study, 1.5 T in four studies, and 3.0 T in
one study [26], and all authors applied a high maximum
b-value of 800–1,000 s/mm2. All except one of the
studies showed lower ADC values in atypical and

Fig. 2 Overall quality assessment of all 109 included studies. Data are presented as stacked bars for each quality item of the modified Quality
Assessment of the Studies of Diagnostic Accuracy Included in Systematic Reviews (QUADAS) tool
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malignant meningiomas than in typical meningiomas,
with P-values <0.05 in three out of six studies [21,
22, 26]. However, considerable overlap existed between
the types of meningiomas. Mean ADC values of typical
meningiomas ranged from 0.88±0.08 to 1.17±0.21×
10−3 mm2/s, mean ADC values of atypical and malig-
nant meningiomas ranged from 0.66±0.13 to 0.923±
0.085×10−3 mm2/s (Fig. 3).

Salivary glands

We identified six articles that compared mean ADCs of
pleomorphic adenomas, Warthin tumours, and salivary
gland carcinomas (ESM Table S3) [27–32]. Two studies
[29, 30] included lesions in all major salivary glands, four
studies included only parotid gland lesions. The studies
had moderate quality scores, ranging from 50 to 58%.
All studies used a high maximum b-value of 1,000 s/
mm2. Five authors [27, 29, 31–32] showed that pleo-
morphic adenomas have high mean ADC values, rang-
ing from 1.54 ± 0.35 to 2.09 ± 0.16 × 10−3 mm2/s,
compared to malignant tumours, which had mean ADC
values ranging from 0.79 ± 0.33 to 1.40 ± 0.39 ×
10−3 mm2/s (Fig. 4). This difference was significant in
two out of five studies [25, 28]. The benign Warthin
tumours were observed to have low mean ADC values,

ranging between 0.89±0.16 and 1.02±0.13×10−3 mm2/s,
comparable to the ADC values of malignant tumours.

Thyroid

Six studies addressed the issue of differentiating benign
and malignant thyroid nodules with DWI and ADC
measurement (ESM Table S4) [33–38]. Quality scores
of these studies ranged from 25 to 75%. Applied max-
imum b-values were 300 [34], 500 [33], 800 [38], and
1,000 [35–37]. All authors measured ADC values in
solid (components of) lesions. The six included studies
showed a marked variance in ADC values of thyroid
nodules. In five studies [33–37], ADC values of thyroid
carcinoma were significantly lower than ADC values of
benign thyroid nodules. In these studies, mean ADC val-
ues of benign nodules ranged from 1.15±0.43 to 2.75±
0.60×10−3 mm2/s, mean ADC values of malignant lesions
ranged from 0.30±0.20 to 1.20±0.25×10−3 mm2/s
(Fig. 4). However, one study [38] found a remarkably
high mean ADC value in 16 thyroid carcinomas (2.73±
0.65×10−3 mm2/s), which was significantly higher than
the mean ADC of benign thyroid adenomas (1.93±
0.25×10−3 mm2/s).

Cerebral cystic lesions

[13] Chan

[14] Chang

[15] Chiang

[16] Guzman

[19] Noguchi

Meningiomas

[21] Hakyemez

[22] Nagar

[24] Santelli

[25] Sanverdi

[26] Toh

4,03,02,01,00,0

ADC x10(-3) mm(2)/s

[17] Mishra

[18] Mucchio

[20] Park

[23] Pavlisa

Fig. 3 Apparent diffusion coefficient (ADC) values of intracranial
lesions. Reported mean (circles) ADC±1 SD (whiskers) of cerebral
cystic tumours (red) vs. cerebral abscesses (green) and malignant (red)
vs. benign (green) meningiomas

Salivary glands

[27] Habermann

[28] Ikeda

[29] Matsushima

[31] Yabuuchi

[32] Yerli

[33] Abdel Razek

[35] Erdem

[37] Nakahira

4,03,02,01,00,0

ADC x10(-3) mm(2)/s

[30] Motoori

Thyroid

[34] Bozgeyik

[38] Schueller

[36] Mutlu

Fig. 4 Apparent diffusion coefficient (ADC) values of salivary gland
and thyroid lesions. Reported mean (circles) ADC±1 SD (whiskers) of
malignant (red) vs. benign (green) thyroid tumours. Salivary gland
malignant tumours (red) vs. pleomorphic adenomas (green) vs. Warthin
tumours (blue)
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Breast

We identified 24 articles on the differentiation of breast lesions
with ADC measurement (ESM Table S5) [39–62]. Quality
scores ranged from 33 to 67%. The number of lesions included
in the studies ranged from 22 to 262. Most studies applied high
b-values of 1,000 s/mm2 (15 out of 24) or 1,500 s/mm2 (4 out
of 24). Twenty studies showed statistically significant differ-
ences between ADC values of benign and malignant breast
lesions. Among studies using maximum b-values of 700 or
higher, mean ADC values of benign lesions ranged from 1.19
to 1.73±0.34×10−3 mm2/s, whereas mean ADC values of
malignant lesions ranged from 0.73 to 1.22±0.31×
10−3 mm2/s (Fig. 5). Higher mean ADC values were observed

in three studies that applied lower b-values (maximum 290–
600 s/mm2), for both benign (range 1.71±0.43 to 2.01±0.46×
10−3 mm2/s) and malignant breast lesions (range 1.26±0.29 to
1.60±0.36×10−3 mm2/s) [42, 52, 56].

Lung

The systematic search revealed two studies on the ability of
ADC values to discriminate between benign and malignant
lung lesions (ESM Table S6). Uto et al. [63] studied 28
patients with pulmonary nodules, using b-values of 0 and
1,000 s/mm2. Quality score of this study was 67%. The
calculated mean ADC for benign (inflammatory) nodules
was 1.15±0.31×10−3 mm2/s, and mean ADC for lung cancer
was 1.02±0.36×10−3 mm2/s (Fig. 6). There was no significant
difference between benign pulmonary lesions and lung cancer
(P00.388). A second study on ADC values in pulmonary
nodules by Liu et al. [64], however, did show a significant
difference between benign (inflammatory and noninflamma-
tory) nodules and malignant nodules (P00.001). Mean ADC
value of benign lesions was 1.65±0.42, while malignant nod-
ules had a meanADC of 1.26±0.32×10−3 mm2/s. The applied
maximum b-value in this study was 500 s/mm2.

Breast

[39] Baltzer

[40] Belli

[41] Bogner

[42] Corum

[43] Guo

[44] Hatakenaka

[45] Hirano

[46] Jin

[47] Kinoshita

[48] Kul

[49] Kuroki

[52]  Partridge

[53] Pereira

[54] Rubesova

[55] Satake

[56] Sinha

[57] Sonmez

[58] Stadlbauer

[59] Tozaki

[60] Woodhams

[61] Woodhams

[62] Yili

2,52,01,51,00,5

ADC x10(-3) mm(2)/s

[51] Park

[50] Lo

Fig. 5 Apparent diffusion coefficient (ADC) values of breast lesions.
Reported mean (circles) ADC±SD (whiskers) of malignant (red) vs.
benign (green) tumours

Lung

[63] Uto

[64] Liu

Liver

[65] Battal

[66] Choi

[69] Holzapfel

[70] Kim

[71] Koike

[73] Onur

[74] Papanikolaou

[76] Sandrasegaran

Gallbladder

[79] Sugita

4,03,02,01,00,0

ADC x10(-3) mm(2)/s

[78] Taouli

[77] Taouli

[75] Parikh

[72] Miller

[67] Coenegrachts

[68] Demir

Fig. 6 Apparent diffusion coefficient (ADC) values of lung, liver,
gallbladder. Reported mean (circles) ADC±SD (whiskers) of malig-
nant (red) vs. benign (green) tumours
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Liver

Fourteen studies described ADC values of benign and ma-
lignant liver lesions (ESM Table S7) [65–78]. Quality scores
ranged from 25 to 58%. All of these studies used single-shot
EPI diffusion-weighted sequences. Seven studies applied max-
imum b-values of 400–600 s/mm2, while the other half of the
studies applied maximum b-values of 800–1,000 s/mm2.Mean
ADC values of benign hepatic lesions were higher than those
of malignant lesions in all studies, of which 11 studies showed
a statistically significant difference [65–70, 72–75, 78]. Mean
ADC values of benign liver lesions ranged from 1.94 to 2.86×
10−3 mm2/s, mean ADC values of malignant tumours ranged
from 0.86±0.11 to 1.52±0.55×10−3 mm2/s (Fig. 6). In all but
two of these studies, benign cysts were included in the group of
benign lesions.

Gallbladder

We identified only one article in which the differentia-
tion of benign and malignant gallbladder lesions with
ADC measurement is described (ESM Table S8). Sugita
et al. [79] retrospectively studied ADC values of 14
benign and 15 malignant gallbladder lesions, with b-
values of 0 and 1,000 s/mm2. Quality score of this study
was 50%. Mean ADC of benign lesions was 1.92±0.21×
10−3 mm2/s, mean ADC of malignant lesions was 1.28±
0.41×10−3 mm2/s; the difference was statistically significant
(P<0.01) (Fig. 6).

Pancreas

Several studies have been published on the differentiation of
pancreatic cystic lesions with diffusion-weighted imaging
and ADC measurement (ESM Table S9) [80–88]. Quality
scores in these studies ranged from 33 to 58%. Five studies
compared ADC values of benign mass-forming pancreatitis
with ADC values of pancreatic cancer, and two studies did
not specify the histological types of the investigated benign
and malignant pancreatic lesions. These five studies on
ADC measurement in pancreatic lesions show inconsistent
results. Lee et al. [85] and Takeuchi et al. [87] found signif-
icantly lower mean ADC values in benign than in malignant
pancreatic lesions, 1.04±0.18 vs. 1.23±0.18×10−3 mm2/s
and 1.00±0.18 vs. 1.38±0.38×10−3 mm2/s, respectively
(Fig. 7). Fattahi et al. [80] and Kartalis et al. [83] measured
significantly higher mean ADC values in benign than in
malignant lesions, 2.09±0.18 and 2.57±1.17×10−3 mm2/s
versus 1.46±0.18 and 1.40±0.30×10−3 mm2/s, respectively.
Yamashita et al. [88] also found mean ADC values of
benign tumours (3.2±1.3×10−3 mm2/s) to be higher than
those of malignant tumours (2.7±0.9×10−3 mm2/s), however,
this was not statistically significant. ADC values measured by

Yamashita et al. with relatively low b-values 0 and 300 s/mm2

were higher than the ADC values in the other studies.

Kidney

ADC values of kidney tumours were described in six retrospec-
tive studies and two prospective studies (ESM Table S10)
[89–96]. Quality scores of these studies ranged from 42 to
67%. Applied maximum b-values ranged from 400 to
1,000 s/mm2. All studies included benign renal cysts and seven
out of eight studies showed significant differences between
benign and malignant renal lesions. Lowest mean ADC values
of benign lesions were reported for angiomyolipomas (1.40 to
1.81×10−3 mm2/s), and highest mean ADC values of benign
lesions were reported for simple cysts (2.50 to 3.82×10−3 mm2/

Pancreas

[80] Fattahi

[81] Huang

[82] Kamisawa

[83] Kartalis

[84] Klauss

[85] Lee

[86] Sandrasegaran

[87] Takeuchi

[88] Yamashita

Kidney

[89] Abdel Razek

[90] Doganay

[91] Kilickesmez

[92] Kim

[93] Sandrasegaran

[95] Yoshikawa

[96] Zhang

Adrenal gland

[98] Sandrasegaran

[99] Song

[100] Tsushima

5,04,03,02,01,00,0

ADC x10(-3) mm(2)/s

[94] Taouli

[97] Miller

Fig. 7 Apparent diffusion coefficient (ADC) values of pancreas, kid-
ney, and adrenal gland lesions. Reported mean (circles) ADC±SD
(whiskers) of malignant (red) vs. benign (green) tumours
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s). Mean ADC values of malignant renal lesions (mainly renal
cell carcinomas) ranged from 1.05 to 2.49×10−3 mm2/s (Fig. 7).

Adrenal gland

We found four studies that described ADC values of adrenal
gland lesions (ESM Table S11). These studies had quality
scores of 33–50% and applied high maximum b-values of
800–1,000 s/mm2. Sandrasegaran et al. [98] and Song et al.
[99] evaluated benign pheochromocytomas and adenomas,
which were reported to have significantly higher ADC val-
ues than malignant (metastatic) adrenal lesions (1.07 to
1.35×10−3 mm2/s versus 0.88 to 0.92×10−3 mm2/s, respec-
tively). However, a larger study by Miller et al. [97] did not
show a significant difference between benign and malignant
adrenal gland lesions. Tsushima et al. [100] could only
confirm a significant difference between adenomas and
malignant pheochromocytomas, but not between adrenal
adenomas and metastases (Fig. 7).

Uterus

Eight studies have been published in which the differentia-
tion between benign and malignant uterine tumours using
ADC measurement was investigated (ESM Table S12)
[101–108]. Quality scores of these studies ranged from 33
to 67%. All eight studies used high b-values (maximum
800–1,000 s/mm2) for diffusion-weighted imaging and
showed comparable ADC values for uterine lesions. Benign
lesions included in these studies were mainly leiomyomas,
and the malignant lesions included were mainly endometrial
carcinomas in five studies [101–103, 105, 108] and sarco-
mas in the other three studies [104, 106, 107]. Benign
lesions had significantly higher mean ADC values (range
1.18±0.24 to 1.64±0.18×10−3 mm2/s) than malignant
lesions (range 0.76±0.26 to 1.17±0.15×10−3 mm2/s) in
seven out of eight studies (Fig. 8).

Ovaries

Seven articles retrieved in our search studied ADC values in
ovarian tumours (ESM Table S13) [103, 109–114]. Quality
scores ranged from 50 to 67%. Applied maximum b-value
was 1,000 s/mm2 in four studies, and 500–800 s/mm2 in
three studies. In two studies, ADC values were measured in
regions of interest placed in the cystic components of ovar-
ian lesions [110, 112], two studies measured ADC values of
solid components [109, 113] and three studies measured
ADC values of both cystic and solid components [103,
111, 114]. Mean ADC values of cystic components of
benign ovarian lesions ranged from 1.24±0.46 to 2.32±
0.56×10−3 mm2/s, mean ADC values of cystic components
of malignant lesions ranged from 1.64±0.48 to 2.34±0.47×

10−3 mm2/s (Fig. 8). Only one study [112] found a signifi-
cant difference between mean ADC values of cystic com-
ponents of benign (1.33±0.82×10−3 mm2/s) and malignant
tumours (2.28±0.32×10−3 mm2/s). The ADC values of
solid components of benign ovarian lesions (range 1.15±
0.55 to 1.47±0.42×10−3 mm2/s) and malignant ovarian
lesions (range 1.14±0.28 to 1.41±0.34×10−3 mm2/s) were
not significantly different [109, 114].

Soft-tissue

Six articles have been published in which the application of
diffusion-weighted imaging andADCmeasurement to the char-
acterisation of soft-tissue tumours is discussed (ESMTable S14)
[115–120]. Quality scores of these articles ranged from 33 to
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Fig. 8 Apparent diffusion coefficient (ADC) values of uterus, ovary,
and soft tissue lesions. Reported mean (circles) ADC±SD (whiskers)
of malignant (red) vs. benign (green) tumours
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67%. One article focused on the differentiation between
chronic expanding hematomas (CEH) and malignant
soft-tissue tumours and observed significantly (P<0.01)
higher mean ADC values in CEH (1.55±0.121×10−3 mm2/s)
than in malignant tumours (0.92±0.139×10−3 mm2/s) [118].
Five authors studied ADC values in various benign and ma-
lignant tumours [115–117, 119, 120]. Mean ADC values of
benign soft-tissue tumours (range of mean ADC values 1.36±
0.48 to 1.80×10−3 mm2/s) overlapped with those of malignant
soft-tissue tumours (range of mean ADC values 0.88±0.20 to
1.70×10−3 mm2/s). Only one study found a significant differ-
ence between benign desmoid tumours and malignant soft-
tissue tumours (Fig. 8) [118].

Discussion

Since its development in the early 1990s, the application of
diffusion-weighted imaging has expanded from intracranial
to extracranial disease and from detection of brain ischemia
to assessment of tumour masses. Its potential additional
value in oncological imaging lies in the fact that it provides
functional tissue information, which can be combined with
anatomical MR images to improve the specificity of lesion
characterisation. Besides the qualitative assessment of signal
intensity in DWI, images can be assessed quantitatively by
the measurement of ADC values. We performed a system-
atic review of the recent literature in order to obtain an
insight into the value of DWI and ADC measurement in
differentiating benign from malignant tumour masses.

Additional value of ADC measurement in tumour
characterisation

In DWI, tissue contrast is obtained through differences in free
water motion between various tissue types and between normal
and pathological tissues. The functional information provided
by DWI and ADC measurement may be of value in tumour
characterisation, complementary to the anatomical information
obtainedwith conventionalMRI sequences. Because of its high
contrast-to-noise ratio, lesions with restricted diffusion are usu-
ally easily recognised on diffusion-weighted images [10]. A
drawback of DWI is the relatively low spatial resolution of the
images, compared with conventional T1- or T2-weighted MR
images. Small lesions (i.e., below spatial resolution) may not be
visible on DWI and ADC maps [51], and partial volume aver-
aging is more likely to occur. Several of the reviewed studies
excluded small lesions for this reason. Similarly, lesions with a
degree of diffusivity equal to the surrounding normal tissuemay
not be easily distinguished on DWI images and ADC maps.
Thus, not all lesions are suitable for ADC measurement.

The lowest mean ADC value of extracerebral benign
lesions (0.86×10−3 mm2/s) was reported for Warthin tumours

of the parotid glands, while benign renal cysts showed the
highest mean ADC value (3.82×10−3 mm2/s). The lowest
and highest mean ADC values reported for malignant
lesions were 0.30×10−3 mm2/s in thyroid carcinomas and
2.70×10−3 mm2/s in malignant pancreatic lesions, respec-
tively. The observed wide variation in ADC values within
benign and malignant tumours can be partly explained by the
wide variety of histological subtypes of proliferative tumours.
In most malignant tumours, diffusion is restricted due to
increased cellular density and decreased extracellular matrix
volume, which impede free motion of water molecules [10,
121, 122]. However, some malignant tumours show increased
diffusion due to an increase in intratumoural water content,
which is the case in intratumoural edema and in cystic tumour
components. The degree of serous or mucinous content and
intratumoural hemorrhage also influences the signal intensity
and ADC value through their effect on restriction of free
proton diffusion and magnetic susceptibility of the tumour
tissue. Furthermore, loss of cell membrane integrity in ne-
crotic tumours may result in increased diffusion [10, 121,
122]. This was also demonstrated in the studies that com-
pared ADC values of cerebral necrotic/cystic tumours and
cerebral abscesses, in which high mean ADC values of
necrotic tumours (ranging from 2.58±0.60 to 2.84±0.30×
10−3 mm2/s) were reported [13–20]. In cerebral abscesses
restricted diffusion was observed, with mean ADC values
ranging from 0.42±0.15 to 0.91±0.65×10−3 mm2/s
[13–20]. It is postulated that the restricted diffusion in
abscesses is attributable to high viscosity of pus resulting
from high protein and different types of viable or dead cells,
along with necrotic tissue and bacteria [123]. Mean ADC
values in other benign or malignant cystic lesions in the
body were comparable to the high values in malignant
cerebral cystic tumours (1.45 to 2.96×10−3 mm2/s) [13–20].
For example, the following ranges of mean ADC values
were described in various cystic lesions: 2.35±0.08 to
2.65±0.30×10−3 mm2/s in benign cystic breast lesions
[43, 56], 1.902 to 3.63×10−3 mm2/s in simple liver cysts
[66, 68–71, 75, 76, 78], 1.33±0.82 to 2.32±0.56×
10−3 mm2/s in cystic components of benign ovarian tumours
[114] and 2.34±0.47×10−3 mm2/s in cystic components of
malignant ovarian tumours [114].

We observed significant differences in reported ADC val-
ues between benign and malignant tumours in the following
tissues: brain abscesses vs. cystic brain tumours, meningiomas,
breast, liver, and uterus. However, many studies showed con-
siderable overlap between ADC values of benign and malig-
nant tumours. The presence of overlap complicates potential
prospective usage of these quantitative measurements, which
calls for the use of “artificial” cut-off values.

In some organs, such as the salivary glands, thyroid,
lungs, pancreas, and soft tissue, the reported data on the
value of ADC measurements showed contradictory results.
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ADC measurement in these organs is unlikely to contribute
to the differentiation between benign and malignant lesions.
In the pancreas, ADC measurements fail to differentiate
cysts. Furthermore, it is generally accepted that we need
both high b-value DWI and ADC mapping for the diagnosis
of solid pancreatic lesions. Likewise, we have observed
widely varying reported ADC values of benign and malig-
nant ovarian lesions. In cystic ovarian lesions, conventional
MR imaging is often not conclusive and differentiation by
ADC measurement would be useful. However, the reviewed
studies that compare ADC values in cystic components of
benign and malignant ovarian tumours showed contradicto-
ry results. Moreover, ADC values of solid components of
benign and malignant cystic ovarian lesions were not sig-
nificantly different [103, 109–114]. In several breast and
liver studies, simple benign cysts were enrolled, which are
well recognised on conventional (T1- and T2-weighted)
imaging and usually do not cause diagnostic dilemmas.
Including these cysts may overestimate the ability of ADC
measurements to discriminate benign from malignant
lesions. Another limitation of many studies included in this
review was that benign lesions in particular were frequently
confirmed by other imaging modalities and follow-up, with-
out histological assessment. This is a common procedure in
daily practice but may cause bias in the comparison of ADC
values of benign and malignant tumours.

Technical aspects of DWI and ADC measurement

Quality of diffusion-weighted images and ADC measure-
ments may vary when different MR imaging parameters and
MR systems are used. The most important limitations of
DWI are the low SNR and susceptibility to artefacts [10].
Strategies to optimise image quality often incorporate the
use of parallel imaging techniques, fat-suppression techni-
ques, and signal averaging. Additional factors that can
influence measured ADC values are use of breath-hold,
respiratory triggering, or free-breathing acquisition and di-
rection of diffusion gradients. Diffusion-weighting gradients
are commonly applied in three orthogonal directions, which
is desirable particularly in tissues with anisotropic orienta-
tion such as brain and kidney, in which ADC values may
differ among the x, y, and z directions [10].

Another important factor in DWI is the maximum b-
value. When low b-values are applied, the ADC values tend
to be higher due to the contribution of perfusion. This was
shown by several studies that applied low b-values to ADC
measurement of breast lesions [42, 52, 56]. On the other
hand, among the reviewed studies on ADC values of liver
lesions, the ADC values did not clearly differ between high
and low b-values. In malignant tumours, a higher percentage
of microvessels is present than in benign tissue [124]. Ac-
cordingly, perfusion may artificially increase the ADC in

malignant lesions and complicate differentiation. Therefore,
if ADC measurement is performed to differentiate tissues by
their water diffusion characteristics exclusively, applying
high maximum b-values may be preferable. However,
signal-to-noise ratios decrease as the b-value increases, thus
limiting the maximum b-value. Another way of minimising
contribution of perfusion to the ADC value is to select
minimum b-values higher than 0 s/mm2 (e.g., 100 s/mm2),
which was done in several reviewed studies [19, 41, 69].
Optimal b-values should be chosen for each organ, however,
no consensus or guidelines are available for that purpose. In
the reviewed articles, various methods of ADC measure-
ment have been used. ADC measurement is performed by

Table 3 Checklist for reporting diffusion-weighted imaging (DWI)
technique in studies on apparent diffusion coefficient (ADC) mea-
surement in tumour characterisation (recommended minimum
requirements)

DWI parameters

Field strength (T)

Coil type (i.e., built-in body coil/surface coils)

Pulse sequence [e.g., single-shot spin-echo/single-shot double spin-
echo/multi-shot spin-echo, echo planar imaging (EPI)/non-EPI, etc.]

Repetition time, echo time (ms)

b-values (s/mm2)

Directions of diffusion-weighting gradients

Fat saturation technique (e.g., fat saturation, inversion recovery, water
selection only, etc.)

Number of excitations

Parallel acquisition factor

Echo train length

Respiratory motion correction technique (i.e., breath-hold/respiratory
gating/none)

Cardiac motion correction technique (i.e., ECG triggering/finger pulse
triggering/none)

Voxel size (mm3)

Receiver bandwidth

Acquisition of DWI data before or after intravenous contrast
administration

Method of ADC calculation

Applied model for ADC calculation (e.g., monoexponential,
biexponential, etc.)

b-values that were used to calculate the ADC

Method of ADC measurement

Description of which portion of the tumour was measured (e.g., whole
tumour, only enhancing and/or solid portions, etc.)

Description of ROI margins (i.e., distance from tumour periphery)

ROI shape and size (fixed or variable)

Single or multiple slice ROI measurement

Verification of ROI position on diffusion-weighted images that were
used to calculate the ADC map

T Tesla, EPI echo planar imaging, ECG electrocardiogram, ROI region
of interest
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placing regions of interest (ROI) in the lesion on the ac-
quired ADC maps. Variations occurred in applied size and
shape of the ROI, use of T1/T2 MR images for guidance of
ROI placement on ADC map, and averaging of multiple
ROIs. As the ROI placement is usually performed manually,
training is required to optimise the reproducibility (minimise
interobserver variation) of ADC measurement. Furthermore,
in case of lesions with both solid and cystic components, a
consensus on localisation of ROI (in solid or cystic part of
lesion) should be established.

Study limitations

Selection of eligible articles and assessment of study quality
was performed by one author only, which could be considered a
limitation.However, in a study byWhiting et al., reproducibility
of theQUADAS instrument has been reported to be good [125].
Three reviewers independently rated the quality of 30 studies
using QUADAS. The proportion of agreements between each
reviewer and the final consensus rating was assessed. This was
done for all QUADAS items combined and for each individual
item. Over all items, the agreements between each of the
reviewers and the final consensus rating were 91, 90, and
85%. The results for individual QUADAS items ranged from
50 to 100% with a median value of 90% [125].

As this study aimed to evaluate the potential of ADC
measurements to differentiate between benign and malig-
nant lesions in the body, we included a large number of
studies on ADC measurement in a variety of organs. Con-
sequently, heterogeneity in study methods and applied MRI
parameters was observed, which precluded the performance
of statistical meta-analysis.

Towards standardisation of ADC measurement
and reporting

If ADC measurements are to be routinely used in clinical
practice, standardisation of protocols across institutions is
required in order to improve reproducibility. Differences in
MR protocols and in histological types of lesions enrolled in
the studies contribute to the variation in reported ADC
values. In order to obtain reliable data on the value of
ADC measurement in clinical practice, two issues need to
be addressed. Firstly, applied MR parameters differ among
hospitals, which complicates a direct comparison of ADC
values. Therefore, standardised diffusion-weighted MRI pro-
tocols need to be established to ensure reproducibility at
different centers [126, 127]. In particular, the use of b-values
and method of ADC measurement should be standardised for
clinical application, adjusted to each organ of interest. Sec-
ondly, due to incomplete reporting of study methods, compar-
ison of ADC values among studies becomes challenging.
Detailed reporting of patient population and data collection

is important to assess generalisability of study results. No-
tably, standardised acquisition and reporting may not fully
solve this problem, as differences in SNR and image quality
across various MR systems may still cause some variation in
measured ADC values. Padhani et al. have provided use-
ful recommendations for the use of DWI as a cancer
biomarker, both for the choice of methods of measurement
and analysis and for the reporting of data [127]. Fur-
thermore, the Standards for Reporting of Diagnostic
Accuracy (STARD) criteria provide a good guideline
for the reporting of study methods in diagnostic accuracy
studies [128]. When key DWI parameters are well reported,
differences in reported ADC values may be easier to evaluate.
In addition, we suggest a short checklist of DWI parameters
that can serve as a guideline for reporting in studies on ADC
measurement for tumour characterisation (Table 3).

Conclusion

Reported ADC values among studies and between benign and
malignant lesions differ considerably. In several tumours, such
as brain abscesses vs. cystic brain tumours, meningiomas, and
breast, liver, and uterine tumours, ADC measurement may be
of value to discriminate benignancy from malignancy. How-
ever, in other organs, such as the salivary glands, thyroid,
lungs, pancreas, and soft tissue, the ADC value does not
appear to contribute to tumour characterisation.

One of the challenges that must be faced to enable wide-
spread adoption of ADC measurement in clinical practice is
standardisation of study methods and reporting. The devel-
opment of organ-specific guidelines for DWI acquisition
and ADC measurement and checklists for reporting of
results may facilitate comparison of study results and con-
tribute to the implementation of ADC measurement for
tumour characterisation in the clinical setting.
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