Skip to main content

Table 1 Results depicted per image modality: ultrasound, CT and MRI

From: Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review

Included studies

Study setting

Patients (n)

Samples (n)

CAD-model

Features

(n)

Performance

ACC

Performance

AUC

Performance

Sensitivity

Performance

Specificity

Performance

Other

CAD model evaluation method

Compared to other models or reviewer(s)*

a: CAD ultrasound (22)

Gao et al. [33]

Retrospective Case–control

107,624

575,930 images

DCNN

121 layers

(1) 86.9%

(1) 0.870)

(1) 40.3%

(1) 91.6%

Brier-score

1 internal validation set

Radiologist alone (3) Radiologist with DCNN (4)

   

103,370 benign

  

(2) 85.3%

(2) 0.831

(2) 57.8%

(2) 98.5%

F1-score

2 external validation set (1 + 2)

 
   

4254 malignant

  

(3) 81.1%

(3) N/A

(3) 55.5%

(3) 87.5%

PPV

  
      

(4) 87.6%

(4) N/A

(4) 82.7%

(4) 88.7%

NPV

  

Chiappa et al. [34]

Retrospective Case–control

241

241 images

SVM

853

80.00%

0.83

78.00%

83.00%

N/A

Training-Validation Testing Nested-tenfold validation

N/A

   

115 benign

 

269 solid

87.00%

0.88

75.00%

90.00%

   
   

126 malignant

 

278 cystic

81.00%

0.89

81.00%

81.00%

   
     

306 motley

       

Chiappa et al. [35]

Retrospective & Prospective Case–control

274

274 images

DSS

857

(1) 87.9%

N/A

(1) 99.2%

(1) 75.9%

PPV

External validation in prospective cohort (n = 35) tenfold cross validation

2 gynecologists with DCNN (1 + 2) on internal & external dataset

  

239

239

 

269 solid

(2) 88.7%

 

(2) 98.4%

(2) 78.5%

NPV

  
  

35

123 benign

 

278 cystic

(1) 91.4%

 

(1) 100.0%

(1) 80.0%

   
   

116 malignant

 

306 motley

(2) 91.4%

 

(2) 100.0%

(2) 80.0%

   
   

35

 

4 clinical

       
   

15 benign

         
   

20 malignant

         

Christiansen et al. [36]

Retrospective Case–control

758

3077

VGG16

1024 layers

91.30%

0.95

96.00%

86.70%

N/A

Training 67%

SA (2)

  

634 surgery

1927 grayscale

ResNet

512 layers

(2) 92.0%

N/A

(2) 96.0%

(2) 88.0%

 

Validation 13%

RMI (3)

  

124 follow-up

1150 power doppler

MobileNet

 

(3) 93.6%

 

(3) 94.5%

(3) 92.6%

 

Testing 20%

SR (4)

    

(Ovry-Dx1)

 

(4) 96.0%

 

(4) 66.7%

(4) 81.3%

  

SRR (5)

   

449 benign

         
   

309 malignant

         

Qi et al. [37]

Retrospective Case–control

265

279 images

Nomogram with LASSO and RADscore

17

(1) 88.0%

(1) 0.914

(1) 81.3%

(1) 92.2%

IDI

Training 70% Validation 30% tenfold cross validation

Senior (3) & Junior (4) sonographists

   

106 benign

task 1 + 2

22

(2) 86.3%

(2) 0.890

(2) 84.2%

(2) 97.5%

  

task 1 benign – malignant (1)

   

65 borderline tumors

 

4 clinical

(3) 79.5%

(3) 0.789

(3) 69.7%

(3) 86.0%

  

task 2 benign-borderline-malignant (2)

   

108 malignant tumors

  

(3) 64.7%

(3) 0.612

(3) 53.6%

(3) 68.6%

   
      

(4) 69.9%

(4) 0.669

(4) 56.8%

(4) 80.4%

   
      

(4) 56.9%

(4) 0.521

(4) 56.3%

(4) 62.2%

   

Stefan et al. [63]

Retrospective Case–control

120

123 images

KNN

3

85.37%

N/A

80.00%

87.50%

PPV

Run KNN twice**

N/A

   

85 benign

         
   

35 malignant

         

Wang et al. [38]

Retrospective Case–control

265

279 images 108 benign

VGG

N/A

(1) 91.4%

(1) 0.963

(1) 91.4%

(1) 91.4%

F1-score

Transfer learning

Sonographist (3) task C (benign-borderline-malignant)

   

65 borderline 106 malignant

GoogleNet

 

(2) 75.3%

(2) N/A

(2) 80.0% / 45.5% / 88.9%

(2) 89.7% / 95.8% / 75.4%

 

threefold-cross validation

task A benign – malignant (1)

    

ResNet

 

(3) 66.7%

(3) N/A

(3) 75.0% / 47.4% / 68.4%

(3) 81.8% / 85.2% / 82.5%

   
    

MobileNet

        
    

task A + C (1) + (2)

        

Martinez-Mas et al. [39]

Retrospective Case–control

187

384 images 112 benign

SVM

N/A

87.70%

0.874

92.00%

80.00%

N/A

LOO-CV

N/A

   

75 malignant

KNN

      

N = 30

 
    

LD

        
    

ELM

        

Zhang et al. [40]

Retrospective Case–control

N/A

428 images 357 malignant 71 benign 1400 images 277 malignant 299 benign

Cost-sensitive RF

N/A

99.20%

0.997

99.70%

95.60%

N/A

Transfer learning

N/A

    

VGGNet

      

Training 71.5%

 
    

GoogleNet

      

Validation 14.3%

 
    

FCNN

      

Testing 14.3%

 
    

AlexNet

      

tenfold-cross validation

 

Acharya et al. [41]

N/A

469

469

KNN

39

80.60%

0.806

81.40%

76.30%

N/A

tenfold cross validation

N/A

 

Cohort

 

238 suspicious 281 non-suspicious

RF

        
    

FF

        
    

FRNN

        

Aramendia-Vidaurreta et al. [46]

N/A

145

145 images 106 benign

MLP

40

98.80%

0.997

98.50%

98.90%

PPV

Training 80% Validation 10% Testing 10%

N/A

 

Case–control

 

39 malignant

 

1 clinical

     

tenfold cross validation

 
           

40:30:01

 

Khazendar et al. [47]

Retrospective Cohort

177

187 images

SVM

1

78.00%

N/A

80.00%

77.00%

T-test

Training and testing set

N/A

   

112 benign

LBP on enhanced image

      

50-fold cross validation Performance of the SVM per 15 cycles

 
   

75 malignant

         

Acharya et al. *** [44]

Retrospective Case–control

20

10 benign

SVM

11

(1) 100%

N/A

(1) 100%

(1) 100%

N/A

Training and testing set

N/A

   

10 malignant 2600 images 1300 benign 1300 malignant

KNN

 

(2) 100%

 

(2) 100%

(2) 100%

 

tenfold cross validation

 
    

PNN

        

Acharya et al. **** [42]

Prospective cohort

23

20

PNN

23

99.81%

N/A

99.92%

99.69%

PPV

Training 90%

N/A

   

10 benign

       

Testing 10%

 
   

10 malignant

       

tenfold-cross validation

 
   

2600 images

         
   

1300 benign

         
   

1300 malignant

         

Acharya et al. [45]

Prospective Case–control

10

20

DT

4

N/A

N/A

94.30%

99.70%

PPV

Training and testing set

N/A

   

10 benign

      

TP rate

tenfold cross validation

 
   

10 malignant

      

FP rate

  
          

TN rate

  
   

2000 images

      

FN rate

  
   

1000 benign

         
   

1000 malignant

         

Faschingbauer et al. [48]

Retrospective Case–control

105

105

SVM-ABTA

(1) 16

(1) N/A

N/A

(1) 69%

(1) 86%

Youden-index

Training and testing set

Level III gynaecologists (5)

   

70 benign

Malignant (1)

(2) 16

(2) N/A

 

(2) 72%

(2) 81%

 

onefold cross validation

 
   

35 malignant

Dermoid cysts (2)

(3) 16

(3) N/A

 

(3) 82%

(3) 96%

   
    

Functional cysts (3) Overall (4)

(4) 16

(4) 74.3%

 

(4) N/A

(4) N/A

   
      

(5) 83.75%

      

Acharya et al. [43]

Retrospective Cohort

20

20

SVM-RBF

14

99.90%

N/A

100%

99.80%

PPV

Training and testing set

N/A

   

10 benign

      

TP rate

tenfold cross validation

 
   

10 malignant

      

FP rate

  
          

TN rate

  
   

2000 images 1000 benign 1000 malignant

      

FN rate

  

Vaes et al. [49]

Prospective Case–control

197

291 adnexal masses

OVHS + RMI1

N/A

N/A

N/A

88%

95%

N/A

Training 70%

N/A

   

125 benign

OVHS + RMI2

      

Testing 30%

 
   

166 malignant

OVHS + RMI3

      

100 times a random subsampling process

 

Vaes et al. [50]

Prospective Case–control

197

197 ultrasound images—365 ovarian tumors

LR (1)

(1) 9

N/A

(1) 0.97

(1) 83%

(1) 98%

N/A

Training 60%

RMI (3)

   

77—normal

NN (2)

(2) N/A

 

(2) 0.93

(2) 80%

(2) 86%

 

Testing 40%

LR2 (4)

   

125—benign

 

(3) 7

 

(3) 0.80

(3) 69%

(3) 79%

 

100 bootstrap resampled data sets with AICC selection

NN2 (5)

   

166—malignant

 

(4) 6

 

(4) 0.85

(4) 79%

(4) 70%

   
     

(5) 7

 

(5) 0.87

(5) > 99%

(5) 10%

   

Lucidarme et al. [52]

Prospective Case–control

264

375 ovaries

OVHS

N/A

N/A

N/A

98%

88%

PPV

One group

N/A

   

107 normal

      

NPV

  
   

127 benign

      

TP rate

  
   

141 malignant

      

FP rate

  
          

TN rate

  
   

359 sonographist opinion

      

FN rate

  
   

104 normal ovaries

         
   

119 benign

         
   

136 malignant

         

Lu et al. [51]

N/A

425

425

SVM (1)

(1) 10

(1) 84.38%

(1) 0.918

(1) 85.19%

(1) 83.96%

PPV

Training 62%

RMI (2)

 

Case control

 

291 benign

 

(2) 7

(2) 76.88&

(2) 0.873

(2) 81.48%

(2) 74.53%

NPV

Testing 38%

LR1 (3)

   

134 malignant

 

(3) 12

(3) 80.63%

(3) 0.911

(3) 81.48%

(3) 80.19%

 

1 internal test set

LR2 (4)

     

(4) 6

(4) 78.75%

(4) 0.916

(4) 81.48%

(4) 77.36%

 

1 external validation set

 
           

30-fold cross validation

 

Zimmer et al. [53]

Retrospective Case–control

163

163 images

Bayes method

4

82.10%

 

80%

100%

PPV

Training 85%

N/A

   

25 transparent cyst

      

NPV

External validation 15%

 
   

67 turbid cyst

         
   

50 significantly solid

         
   

21 solid

         

b: CAD CT (3)

Li et al. [54]

Retrospective Case–control

140

140

Radiomics segmentation models

(1) 10

(1) 97.6%

(1) 0.99

(1) 95.7%

(1) 100%

N/A

Training 61%

N/A

   

62 benign

 

4 clinical

(2) 90.2%

(2) 0.97

(2) 100%

(2) 82.6%

 

Testing 29%

 
   

72 malignant

 

(2) 11

     

07:03

 
     

5 clinical

       

Park et al. [55]

Retrospective Case–control

427

427

RF

8

N/A

0.88

91%

69%

N/A

tenfold cross validation

N/A

   

348 benign

LR

        
   

79 malignant

         

Li et al. [56]

Retrospective Case–control

160

160 images

Nomogram (int. val)

14

(1) 89.7%

(1) 0.897

(1) 94.7%

(1) 85.0%

N/A

Training 59%

N/A

   

134

Nomogram (ext. val)

      

Testing 24%

 
   

62 benign

  

(2) 88.0%

(2) 0.880

(2) 84.6%

(2) 91.7%

 

External validation 17%

 
   

72 malignant

       

tenfold cross validation

 
   

External dataset N/A

         

c: CAD MRI (6)

Liu et al. [57]

Retrospective Case–control

196

196

Radiomics segmentation

(1) 396

(1) 99,0%

(1) 1.0

(1) 100%

(1) 98.0%

PPV

Random Training 50% Testing 50%

N/A

   

91 borderline

models*

     

NPV

  
   

10 malignant

3D sagit (1)

(2) 396

(2) 78.9%

(2) 0.82

(2) 72.9%

(2) 85.1%

   
    

2D coron (2)

        

Song et al. [58]

Prospective Case–control

82

104

PK-model

(1) 7

(1) 84.2%

N/A

(1) 66.7%

(1) 100%

N/A

Training 70% Validation 30% 3-class classification task

Radiologists (2)

   

33 benign

 

(2) N/A

(2) 68.4%

 

66.70%

93.80%

 

50-fold cross-validation

benign

   

18 borderline

    

70%

77.80%

  

borderline

   

53 malignant

    

(2) 66.7%

(2) 92.3%

  

malignant

        

66.70%

81.3%%

   
        

70%

77.80%

   

Jian et al. ** [59]

Retrospective Case–control

501

501

MICNN

512

76.70%

0.884

74.80%

80.80%

F1 score

Training 68%

N/A

   

165 borderline

EMP

      

(centers A-B)

 
   

336 malignant

LMP

      

External validation set 32%

 
           

(centers C-H)

 

Jian et al. *** [62]

Retrospective Case–control

501

22,977

MICNN MAC-net

512

82.70%

0.878

N/A

N/A

F1 score

Training 76% Validation 23%

N/A

   

501

         
   

165 borderline

         
   

336 malignant

         

Li et al. [61]

Retrospective Case–control

501

501

MP-ST (1)

(1) 851

(1) N/A

(1) 0.920

(1) N/A

(1) N/A

N/A

Training 50%

Radiologists (3)

   

165 borderline

CE-T1W1 (2)

(2) 851

(2) N/A

(2) 0.801

(2) N/A

(2) N/A

 

Internal validation 18%

 
   

336 malignant

 

(3) N/A

(3) N/A

(3) 0.797

(3) 80.5%

(3) 78.9%

 

(centers A-B)

 
           

External validation 32% (centers C-H)

 

Zhang et al. [60]

Retrospective Case–control

280

72 benign

SVM (b-m) (1)

(1) 84

(1) 90.6%

(1) 0.9670

(1) 90.3%

(1) 91.3%

PPV

Randomly

Radiologists (3)

   

100 type I EOC

SVM (I-II) (2)

(2) 56

(2) 83.3%

(2) 0.8228

(2) 76.5%

(2) 86.5%

NPV

LOOCV 70%

 
   

81 type 2 EOC

 

(3) N/A

(3) 83.5%

(3) N/A

(3) 82.3%

(3) 86.9%

TP rate

Testing 30%

 
          

FP rate

  
          

TN rate

  
          

FN rate

  
  1. AUC = Area Under the Curve; PPV = positive predictive value; NPV = negative predictive value;SVM = standard vector machine; DCNN = (deep) Convolutional Neural Network); N/A = not applicable; DSS = decision; support system, based on 3 radiomics models VGGNet, ResNet, MobileNet; SA = subjective assessment of an expert (gynaecologist/sonographist); SR = IOTA Simple Rules model; SRL = IOTA simple rules risk model; IDI = integrated discrimination improvement; KNN = k-nearest neighbor; LD = Linear Discriminant; ELM = Extreme Machine Learning (***linear-gaussian in this example); LOO-CV = Leave-One-Out Cross Validation procedure; FCNN = Fully Connected Convolutional Neural Network; RF = Random Forest; FRNN = Fuzzy-Rough Nearest Neighbor; FF = fuzzy forest; MLP Multilayer Perceptron Networks; LBP = Local Binary Pattern; PNN = Probabilistic Neural Network; DT = Decision Tree; ABTA = automatic texture based algorithm; RBF = Radial Basis Function; OVHS = Ovarian HIstoscanning; RMI = Risk of Malignancy; LR = Logistic Regression; NN = Neural Network; AICC = Akaike information corrected criterion; Bold = best performing classifier
  2. N/A = not applicable; LR = logistic regression; RF = random forest; Bold = best performing classifier
  3. MICNN = Multiple instance convolutional neural network; EMP = early multiparametric; LMP = late multiparametric; PK model = pharmacokinetic model; MP-solid = multiparametric solid tumor model; CE-T1W1 = Contrast-enhanced T1W1 model; Bold = best performing
  4. * = radiologist, gynaecologist, sonographist or other(s)
  5. ** = Unable to split data set in 70% and 30% training and validation sets, due to limited number malignant tumors, therefore classifier was run twice with different variables
  6. *** = Acharya et al. [44—GyneScan: An improved online paradigm for screening of ovarian cancer via tissue characterization
  7. **** = Acharya et al.[42]—Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification
  8. * Different segmentation models were constructed using 3D and 2D MRI in coronal and sagittal plane;
  9. **Jian et al. [59]—MRI-Based Multiple Instance Convolutional Neural Network for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumours;
  10. ***Jian et al. [64]—Multiple instance convolutional neural network with modality-based attention and contextual multi-instance learning pooling layer for effective differentiation between borderline and malignant epithelial ovarian tumours