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T2-weighted imaging-based deep-learning
method for noninvasive prostate cancer
detection and Gleason grade prediction:
a multicenter study
Liang Jin1,2 , Zhuo Yu3, Feng Gao2 and Ming Li2,4*

Abstract
Objectives To noninvasively detect prostate cancer and predict the Gleason grade using single-modality
T2-weighted imaging with a deep-learning approach.

Methods Patients with prostate cancer, confirmed by histopathology, who underwent magnetic resonance imaging
examinations at our hospital during September 2015–June 2022 were retrospectively included in an internal dataset.
An external dataset from another medical center and a public challenge dataset were used for external validation.
A deep-learning approach was designed for prostate cancer detection and Gleason grade prediction. The area under
the curve (AUC) was calculated to compare the model performance.

Results For prostate cancer detection, the internal datasets comprised data from 195 healthy individuals
(age: 57.27 ± 14.45 years) and 302 patients (age: 72.20 ± 8.34 years) diagnosed with prostate cancer. The AUC of our
model for prostate cancer detection in the validation set (n= 96, 19.7%) was 0.918. For Gleason grade prediction,
datasets comprising data from 283 of 302 patients with prostate cancer were used, with 227 (age: 72.06 ± 7.98 years)
and 56 (age: 72.78 ± 9.49 years) patients being used for training and testing, respectively. The external and public
challenge datasets comprised data from 48 (age: 72.19 ± 7.81 years) and 91 patients (unavailable information on age),
respectively. The AUC of our model for Gleason grade prediction in the training set (n= 227) was 0.902, whereas those
of the validation (n= 56), external validation (n= 48), and public challenge validation sets (n= 91) were 0.854, 0.776,
and 0.838, respectively.

Conclusion Through multicenter dataset validation, our proposed deep-learning method could detect prostate
cancer and predict the Gleason grade better than human experts.

Critical relevance statement Precise prostate cancer detection and Gleason grade prediction have great significance
for clinical treatment and decision making.

Key Points
● Prostate segmentation is easier to annotate than prostate cancer lesions for radiologists.
● Our deep-learning method detected prostate cancer and predicted the Gleason grade, outperforming human experts.
● Non-invasive Gleason grade prediction can reduce the number of unnecessary biopsies.
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Graphical Abstract

PPrecise prostate cancer detection and Gleason grade prediction has great 
clinical significance for clinical treatment and decision making.
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Introduction
Prostate cancer (PCa) has gained considerable attention
worldwide given that it is the most common cancer in
male individuals in the Western world [1]. The 2022
European Association of Urology guidelines and 2019 UK
National Institute for Health and Care Excellence guide-
lines suggest using multiparametric magnetic resonance
imaging (MRI) for detecting early-stage PCa before biopsy
[2]. However, assessments of PCa using MRI are suscep-
tible to low inter-reader agreement (< 50%), suboptimal
interpretation, and overdiagnosis [3, 4].
Pathological biopsy results are the gold standard for

PCa classification. However, biopsy cores mostly refer to
positive lesions (Prostate Imaging Reporting and Data
System [PI-RADS v2] score ≥ 3), limiting the ability to
detect all PCa lesions [5–7]. Furthermore, the annotations
of biopsy-confirmed lesions highly depend on the inter-
pretation of the radiologist [8].
Artificial intelligence (AI)-based approaches have been

widely applied for the detection and classification of PCa
tumors. Given the advantages of machine-learning or
deep-learning approaches, most studies [9] have used

multimodal imaging approaches, such as T2-weighted
imaging (T2WI) combining diffusion-weighted imaging
(DWI), the apparent diffusion coefficient (ADC), dynamic
contrast-enhanced imaging (DCE-MRI), and DWI with
the ADC. Multimodal imaging combines the strengths of
various imaging modalities to provide comprehensive
information. AI algorithms can utilize this diverse and
rich data to enhance the accuracy and sensitivity of PCa
detection and classification. Each imaging technique
offers unique insights into the nature of the tumor. For
example, DWI and ADC maps are valuable for evaluating
tumor cell density, while DCE-MRI provides information
on vascularity. AI can analyze these characteristics in-
depth, resulting in improved tumor characterization and
grading. However, managing and integrating different
data types from multiple imaging modalities can be
challenging. Ensuring compatibility and effective synthesis
of this data for AI analysis poses a significant hurdle.
AI models may develop biases based on their training data
or struggle to generalize across diverse populations or
imaging systems, potentially impacting their reliability
and accuracy. For instance, a recent editorial suggested
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that ADC values are not readily available in software
applications and ADC cut-off values are affected by
hardware-related factors (e.g., sequence parameters,
choice and number of b values, variation in field homo-
geneity, or coil selection among MRI systems) [10].
Another study reported that, according to their data,
neither qualitative nor quantitative DCE assessment is
required in prostate MRI [11]. Furthermore, most studies
manually segment PCa lesions with the help of experi-
enced radiologists, while the annotation of PCa lesions is
challenged by MRI scan quality, which is affected by
parameters such as slice thickness and field of view [12].
Hence, in this study, we attempted to decrease the

variation arising from multimodality images, although
such images contribute greatly to PCa diagnosis. We
proposed a deep-learning model using single-modality
(T2WI) images with prostate segmentation instead of
lesion segmentation to improve the AI-based approach
for noninvasive PCa detection and Gleason grade pre-
diction, which has great clinical significance for clinical
treatment and decision making.

Patients and methods
Study population
This retrospective study was conducted in accordance
with the Declaration of Helsinki and approved by the
Institutional Review Board of our hospital. The need for
obtaining patient consent was waived due to the retro-
spective nature of the study.
Samples were collected from patients with PCa, con-

firmed by histopathology, who underwent MRI at our
hospital between September 2015 and June 2022. The
inclusion criteria were as follows: (1) MRI examination
with T2WI and (2) no prostate biopsy, surgery, radio-
therapy, or endocrine therapy performed before the MRI
examination. Patients who had undergone catheter pla-
cement or previous treatment for PCa and those who
exhibited artifacts on MRI were excluded (Fig. 1). External
dataset 1 used for external validation was collected from
another medical center. The inclusion criteria for the
enrollment of external dataset 1 were the same as that
applied to the internal dataset.

Imaging acquisition and datasets
All T2WI images in both datasets were obtained using
a 3-T MR system (MAGNETOM Skyra, Prisma, Vida,
Siemens Healthcare, Erlangen, Germany) with a standard
18-channel phased-array body coil and a 32-channel
integrated spine coil. Axial T2-weighted fast spin-echo
imaging was performed with a slice thickness of 3–5mm,
no spacing, and a field of view of 12 × 12 cm2, including
the entire prostate and seminal vesicles. The image
acquisition parameters of external dataset 1 were required

to be kept the same as our center. All internal
MRI datasets were randomly divided into training and
testing datasets. External datasets were collected from
another medical center in China (external dataset 1) and
public challenge datasets (public challenge validation)
(https://prostatex.grand-challenge.org/).

Prostate annotation
All internal datasets and external dataset 1 were manually
annotated for the prostate region on T2WI by one radi-
ologist with 5 years of experience in pelvic diagnosis; all
annotations were confirmed by another radiologist with
10 years of experience in pelvic diagnosis. Manual anno-
tation was performed using an open-source software
(3D Slicer version 5.10; National Institutes of Health;
https://www.slicer.org). All annotations were converted
into the nii.gz format.

Data preparation and preprocessing
Based on the annotation results, we cropped the original
image and retained only the prostate area, thereby redu-
cing the interference of nontarget areas on the model, and
improving its efficiency. This step was performed using
three-dimensional (3D)-connected domain technology. By
calculating the mask, the minimum circumscribed 3D box
of the prostate area could be obtained. To facilitate model
training, the cropped image was resized to 256 × 256 × 16.
Finally, all images were normalized to [0, 1] to reduce the
differences between different datasets. The preprocessing
is illustrated in Fig. 1.
The internal dataset was randomly divided into training

(n= 228) and validation (n= 58) sets, at a ratio of 8:2. The
external dataset 1 (n= 48) and public challenge dataset
(n= 91) were used as external validation sets. Because of the
unbalanced distribution of samples in the training set, we
performed data expansion [13] for Category 1 (20 cases)
with a small amount of data. The specific operation involved
horizontally flipping the data of Category 1 (40 cases). After
data expansion, the differences in classification and data
volume in the training set were small (40:51:67:37:52),
thereby improving the accuracy of the model in identifying
all categories.

Deep-learning framework
A 3D ResNet18 network, which is widely used in medical
image analysis and has good performance, was used to
construct the classification model [14, 15]. The process
employed for the deep-learning model was a two-stage
task: first, detecting PCas in the internal datasets, and
second, predicting the Gleason grade in all PCas including
the internal, external, and public challenge datasets. The
3D ResNet18 network consisted of a convolutional layer,
four residual bolts, a three-dimensional adaptive average
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pool, a fully connected layer, and a softmax layer. The
model used the Adam optimizer, with cross entropy as
loss. A detailed explanation of the model is provided in
Fig. 1. The input of the model was the cropped MRI
images of size 256 × 256 × 16, whereas the output was the
Gleason grade group classification result.

Evaluation of the performance of deep learning
To better evaluate the performance of the model, we cal-
culated the average precision, average recall, and F1 clas-
sification for the training, internal test, and external test
sets, respectively. We also used the area under the curve
(AUC) to evaluate the model performance. Concomitantly,
we used a confusion matrix to visually demonstrate the
classification ability of the model for all cases. When cal-
culating each performance for the training set, we removed

the cases in Category 1 that were duplicated owing to data
augmentation.
In addition, we compared our model with two other

deep-learning frameworks (3D ResNeXt [16] and 3D
densenet [17]) for performance evaluation.
All experimental and statistical analyses were performed

in a Linux environment (Ubuntu 20.04.2) with the
following hardware conditions: an Intel CPU clocked at
3.70 GHz, 128 GB DDR4 memory, and an RTX3080 Ti
graphics card with 10 GB memory. Python (version 3.9.7)
from the Python Software Foundation was used as
the programming language. We employed the PyTorch
deep-learning framework (https://pytorch.org/) with
key packages, such as SimpleITK (version 2.1.1), torch
(version 1.11.0), torchvision (version 0.12.0), and scikit-
learn (version 1.0.2).

Fig. 1 Flowchart of this study. The 3D ResNet structure diagram shows the following: The 3D ResNet utilizes three-dimensional (3D) convolutional layers,
3D pooling layers, and residual connections. The network begins with a 7 × 7 × 7 convolutional layer with 64 filters, a stride of 2, and padding of 3.
Subsequently, a 2 × 2 × 2 max pooling layer with a stride of 2 is used for downsampling, halving the size of feature maps. The resulting network consists
of four stages, each containing two residual blocks. Each residual block consists of two 3 × 3 × 3 convolutional layers. The first, second, third, and fourth
stages have 128, 256, 512, and 1024 filters. Following all the residual blocks is a global average pooling layer. Finally, a fully connected layer with a
number of nodes equal to the number of classes is used for classification, with a softmax activation function
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Radiologist interpretation for Gleason grade prediction
Reporting the Gleason grade using imaging is not a
common task for radiologists; compared with the deep-
learning model, the actual capability of radiologists to
predict the Gleason grade is unknown. Hence, for Glea-
son grade prediction using T2WI, the senior radiologist
with more than 10 years of experience in PCa diagnosis
was blinded to all test sets of Gleason grade prediction,
including the internal, external, and public challenge
datasets.

Results
The optimal parameters of the model were determined
through multiple experiments: 200 training epochs, a
batch size of 8, a learning rate of 0.0002, learning-rate
updates every 20 epochs, a gamma of 0.8, and a dropout
rate of 0.5.

Performance of deep learning for PCa detection
For PCa detection, the internal MRI datasets consisted of
195 patients who were not diagnosed with PCa by radi-
ologists with a follow-up period (age: 57.27 ± 14.45 years)
and 302 who were diagnosed with PCa (age: 72.20 ± 8.34
years); no external validation was used as all patients were
confirmed to have PCa based on histopathological results
obtained through biopsy or surgery.
The AUC of our model for PCa detection in the training

set (n= 392, 80.3%) was 1, whereas that of the validation
set (n= 96, 19.7%) was 0.918, as shown in Table 1 and
Fig. 2.
The AUCs of the PCa detection model built based on

3D ResNeXt and 3D densenet for the training sets were
0.932 and 0.974, respectively, and those for the test sets
were 0.853 and 0.911, respectively. These results indicated
that the model used in this study had satisfactory classi-
fication ability (Table 1).

Performance of deep learning for Gleason grade prediction
For Gleason grade prediction, the data from 283 patients
who were diagnosed with PCa, as confirmed by histo-
pathological results obtained through biopsy or surgery
were used from the internal dataset, of which data from
227 patients were used for training (age: 72.06 ± 7.98 years),
whereas those from 56 patients were used for
testing (age: 72.78 ± 9.49 years). The external and
public challenge datasets consisted of data from 48
(age: 72.19 ± 7.81 years) and 91 (unavailable information
on age) patients, respectively.
As shown in Fig. 3, during the training process, the loss

of the model continued to decrease and stabilized after
3000 batches of training, indicating that the model
achieved convergence. The AUC of our model for Glea-
son grade prediction for the training set (n= 227) was
0.902, whereas those for the validation (n= 56), external
validation (n= 48), and public challenge validation
(n= 91) sets were 0.854, 0.776, and 0.838, respectively.
The details are presented in Tables 2–4.

Fig. 2 Performance of the deep-learning model for prostate cancer detection

Table 1 Performance of our deep-learning model and other
models for PCa detection

Datasets and index 3D ResNeXt 3D Densenet Our model

Training set

(n= 392, 80.3%)

AUC 0.974 0.932 1.0

Acc 0.989 0.955 1.0

Recall 0.96 0.891 1.0

F1 0.974 0.922 1.0

Validation set

(n= 96, 19.7%)

AUC 0.911 0.853 0.918

Acc 0.913 0.882 0.833

Recall 0.907 0.851 0.875

F1 0.91 0.866 0.86

Acc accuracy, AUC area under the curve, PCa prostate cancer
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The AUCs of the Gleason grade prediction model built
based on 3D ResNeXt and 3D densenet for the training
sets were 0.857 and 0.838, those for the validation sets
were 0.788 and 0.776, those for the external validation sets
were 0.698 and 0.703, and those for the public challenge
validation sets were 0.738 and 0.776, respectively. These
results demonstrated that the model used in this study
exhibited superior classification ability (Table 3).

Radiologist interpretation
The radiologist interpretations of Gleason grade prediction
are shown in detail in Table 5 and Fig. 4.

Discussion
Our proposed deep-learning model demonstrated good
performance for PCa detection and Gleason grade pre-
diction with T2WI, which was comparable to that
reported in previous studies using multimodal imaging
[9]. Although the PCa detection performance of our
model did not show better performance compared with
that of 3D ResNeXt, its Gleason grade prediction per-
formance was the best among the three models tested. As
a two-stage task in this study, the performance of 3D
ResNeXt with the external validation set 1 and public
challenge validation set was the worst among the three

models, in contrast to our model that had the best per-
formance. We noted that the performance of all models
was more significantly decreased when used with the
external validation set 1 than when used with the public
challenge validation set. This was attributed to the image
quality of T2WI images (e.g., field of view and slice
thickness); the public challenge validation set is char-
acterized by thinner slice thickness (https://prostatex.
grand-challenge.org/) compared with that of the other
two datasets, indicating that the better performance of the
deep-learning model with the public challenge validation
set compared with that when using the external validation
set was influenced by image quality parameters. Further-
more, our model had better performance for Gleason
grade prediction compared with that of radiologist
interpretations using only T2W images.
Compared with Ishioka et al [18], who evaluated 335

patients using T2WI with a 0.8-mm slice thickness and
achieved a model in two separate populations with AUCs of
0.636 and 0.645 for PCa detection, we used multicenter
datasets and achieved an average AUC of 0.99 for PCa
detection and an above average AUC of 0.87 for Gleason
grade prediction. Compared with Schleb et al [19] (for a PI-
RADS cut-off score of ≥ 3 vs. ≥ 4 on a per-patient basis),
Arif et al [20] (for 292 patients with low-risk PCa), and

Table 2 Patient characteristics

Internal training and validation of

patients with prostate cancer

External validation Public challenge validation

Clinical diagnosis Training Validation Validation Validation

Number 227 56 48 91

Mean age (years) 72.06 ± 7.98 72.78 ± 9.49 72.19 ± 7.81 Unknown

Gleason grade counts

1 20 6 2 29

2 51 12 3 31

3 65 16 3 19

4 37 9 20 7

5 51 13 20 5

Fig. 3 Performance of the deep-learning model for Gleason grade prediction
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Winkel et al [21] (for patients with lesions with PI-RADS
score > 3 without histopathology validation), we demon-
strated the good performance of our model in PCa detec-
tion and Gleason grade prediction for patients with all PCa
grades. AI has become popular in recent years and has been
heavily applied for PCa detection. Indeed, a meta-analysis
[22] that included 12 studies reported an overall pooled
AUC of 0.86, with a range of 0.81–0.91 in clinically sig-
nificant PCa detection. As proposed in another brief sum-
mary of deep learning-based AI applications [12], most deep
learning-based approaches are applied on naturally large-
scale, diverse, and well-annotated datasets of both training
and external validation testing datasets, whereas PCa lesion
annotations are full of challenges even for experienced
radiologists. Although the findings in this study were based
on < 1000 case sample sizes, we tried using easy prostate
annotation compared with PCa lesion annotation for wide
validation across different medical centers in China, in
addition to public challenge validation.
Multiparameter MRI shows high sensitivity and specific

diagnostic capability for the clinical management of PCa by
combining anatomical T1-weighted imaging, T2WI, func-
tional DWI, DCE-MRI, and magnetic resonance spectro-
scopy [23]. As mentioned in a previous review of PCa
imaging with a focus on deep-learning methods from 2014,
Giannini et al [9] used T2WI and ADC for lesion detection,
Matulewicz et al [24] used DCE for PCa classification, and
Abraham et al [25] used T2WI, ADC, and DWI for PCa
classification. These studies [9] used T2WI or ADC or both,

DWI, and DCE-MRI for PCa classification; only Alkadi et al
[26] used T2WI for PCa detection. Our model exhibited
reliable performance using a large-scale multicenter dataset
compared with the study by Alkadi et al, which had a very
small sample size (19 patients). The strength of our study
was that our deep learning model using single-modality
imaging (T2WI) achieved good performance.
Prostate biopsy is an invasive procedure, and its benefits

are evident when the diagnosis is accurate. Typically, a
biopsy is recommended for lesions with a PI-RADS score
of 4 or 5, indicating a high or very high likelihood of
clinically significant cancer [27]. For lesions scored as PI-
RADS 3, the decision to perform a biopsy may depend on
other factors, such as PSA levels, PSA density, and the
patient’s overall clinical context and risk factors [27–29].
Lesions with PI-RADS scores of 1 or 2 are generally
considered low risk, and an immediate biopsy may not be
necessary, although ongoing surveillance may be recom-
mended. It is important to consider the individual cir-
cumstances, preferences, and overall health status of the
patient when making the decision to perform a biopsy, in
consultation with their healthcare provider.

Table 3 Overall performance of our deep-learning model
compared with that of other models for Gleason grade prediction

Datasets and index 3D ResNeXt 3D Densenet Our

model

Training set

(n= 227)

AUC 0.857 0.838 0.902

Acc 0.821 0.834 0.870

Recall 0.842 0.787 0.861

F1 0.831 0.810 0.865

Validation set

(n= 56)

AUC 0.788 0.776 0.854

Acc 0.785 0.768 0.857

Recall 0.794 0.781 0.807

F1 0.789 0.771 0.833

External validation

set

(n= 48)

AUC 0.698 0.703 0.776

Acc 0.708 0.688 0.762

Recall 0.604 0.646 0.677

F1 0.642 0.661 0.718

Public challenge

validation set

(n= 91)

AUC 0.738 0.776 0.838

Acc 0.735 0.768 0.806

Recall 0.524 0.545 0.551

F1 0.611 0.638 0.654

Acc accuracy, AUC area under the curve

Table 4 Performance of our deep-learning model for Gleason
grade prediction

Datasets AUC Acc Recall F1

Training set (n= 227)

Gleason grade group 1 (n= 20) 0.940 0.890 0.886 0.912

Gleason grade group 2 (n= 51) 0.907 0.883 0.886 0.907

Gleason grade group 3 (n= 65) 0.879 0.861 0.869 0.890

Gleason grade group 4 (n= 37) 0.914 0.861 0.807 0.882

Gleason grade group 5 (n= 51) 0.869 0.857 0.858 0.886

Validation set (n= 56)

Gleason grade group 1 (n= 6) 0.880 0.893 0.833 0.625

Gleason grade group 2 (n= 12) 0.876 0.857 0.833 0.714

Gleason grade group 3 (n= 16) 0.863 0.821 0.813 0.722

Gleason grade group 4 (n= 9) 0.753 0.857 0.556 0.556

Gleason grade group 5 (n= 13) 0.901 0.857 1.000 0.765

External validation set (n= 48)

Gleason grade group 1 (n= 2) 0.848 0.813 0.500 0.619

Gleason grade group 2 (n= 3) 0.900 0.875 0.667 0.757

Gleason grade group 3 (n= 3) 0.701 0.638 0.667 0.652

Gleason grade group 4 (n= 20) 0.663 0.708 0.800 0.751

Gleason grade group 5 (n= 20) 0.769 0.776 0.750 0.763

Public challenge validation set (n= 91)

Gleason grade group 1 (n= 29) 0.859 0.758 0.414 0.535

Gleason grade group 2 (n= 31) 0.832 0.802 0.645 0.715

Gleason grade group 3 (n= 19) 0.828 0.824 0.526 0.642

Gleason grade group 4 (n= 7) 0.845 0.824 0.571 0.675

Gleason grade group 5 (n= 5) 0.827 0.823 0.600 0.694

Acc accuracy, AUC area under the curve
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One study presented at the RSNA 2020 highlighted the
absence of specific guidelines for managing PI-RADS 3
patients, noting that a significant number of these patients
could develop clinically significant PCa within a relatively
short period. This suggests a potential need for a more
proactive approach to their care management [30]. Another
perspective mentioned in RSNA News pointed out that
upgrading to PI-RADS category 3 may lead to unnecessary
biopsies, underscoring the delicate balance between being
overly cautious and avoiding unnecessary interventions [31].
Applied Radiology expanded on themanagement of PI-RADS
3 lesions, acknowledging the challenges posed by their over-
lapping findings with benign conditions. The article men-
tioned that the European Association of Urology guidelines
recommend biopsy for all PI-RADS 3 lesions, emphasizing the
importance of patient factors such as age, comorbidities, and
treatment preferences in decision-making. The article also
highlighted the utility of prostate-specific antigen density
(PSAD) in assessing the risk of clinically significant cancer in
PI-RADS 3 lesions, with higher PSAD levels indicating a
greater likelihood of clinically significant PCa [32]. These
insights indicate that while there is a consensus on the need
for a thorough evaluation of PI-RADS 3 lesions, the approach
to biopsy may vary based on factors such as patient-specific
risk factors, additional imaging characteristics, and
professional guidelines. The ongoing development of
guidelines and the use of additional markers such as
PSAD may help refine the decision-making process for
these intermediate-risk lesions.

Therefore, if it were possible to accurately predict the sta-
ging of PCa non-invasively, it would effectively reduce
unnecessary biopsies resulting from misdiagnosis and missed
detections. Although our results showed better performance
of the deep learning model on the public challenge dataset
compared with the external validation dataset, we investigated
the image quality factors such as slice thickness and field of
view.We found that the public challenge dataset had a thinner
slice thickness and provided a better display of the prostate
with a wide field of view. This consistency is in line with the
understanding that image quality can influence the perfor-
mance of deep-learning models.
In this study, a senior radiologist with over 10 years of

experience was invited to conduct the Gleason grade pre-
diction. However, based on the results (Tables 3–5; Fig. 4),
the performance of the deep-learning model (average
AUC> 0.776) was significantly better than that of clinicians
(average AUC< 0.5). Indeed, accurate prediction of the
Gleason grade by clinicians is very difficult, as confidence
in pathological histology diagnosis using only T2WI is
lacking. In addition, as stated in a previous review [12],
many reported performance metrics were mostly based
on cross-validation, without including an actual radi-
ologist vs. AI interaction; thus, these studies cannot
represent a real-world setting. Our study demonstrated
and compared the performance of both clinicians and
models and although this does not fully reflect reality, it
is still valuable.
Our study had some limitations. First, owing to the small

sample size of the external and public challenge validation
datasets, we were unable to show the performance of the
model for PCa detection using external or public datasets;
moreover, we did not accurately predict the Gleason score.
Second, the pathological histology of some patients with PCa
was obtained from biopsy, and some of these patients may
have had cancer lesions of several Gleason grades. Therefore,
we only predicted the highest Gleason grade instead of
accurately predicting the Gleason grade of each cancerous
lesion. Third, all MRI examinations were performed using
3 T devices, which means that the trained model may have
limitations when applied to images from non-3T scans.
Finally, our observation highlights a critical aspect of fairness
and accuracy in comparing human and AI capabilities,
particularly in specialized fields such as medical imaging and
diagnosis. The Gleason score, which is used for grading the
aggressiveness of PCa based on tissue samples, requires
specific pathological expertise that radiologists might not
typically possess. In contrast, the PI-RADS score is designed
for radiologists to evaluate prostate MRI images and suggest
the likelihood of clinically significant PCa, which aligns more
with their training and expertise.
It is important to note that our intention in this study is

not to highlight the lack of accuracy of physicians but

Table 5 Radiologist performance for Gleason grade prediction

Datasets Acc Recall F1

Validation set (n= 56) 0.528 0.528 0.528

Gleason grade group 1 (n= 6) 0.353 0.353 0.353

Gleason grade group 2 (n= 12) 0.308 0.308 0.308

Gleason grade group 3 (n= 16) 0.312 0.312 0.312

Gleason grade group 4 (n= 9) 1.000 1.000 1.000

Gleason grade group 5 (n= 13) 0.353 0.353 0.353

External validation set 1 (n= 48) 0.344 0.344 0.344

Gleason grade group 1 (n= 2) 0.000 0.000 0.000

Gleason grade group 2 (n= 3) 0.200 0.200 0.200

Gleason grade group 3 (n= 3) 0.091 0.091 0.091

Gleason grade group 4 (n= 20) 0.538 0.538 0.538

Gleason grade group 5 (n= 20) 0.889 0.889 0.889

Public challenge validation set (n= 91) 0.097 0.097 0.097

Gleason grade group 1 (n= 29) 0.111 0.111 0.111

Gleason grade group 2 (n= 31) 0.262 0.262 0.262

Gleason grade group 3 (n= 19) 0.111 0.111 0.111

Gleason grade group 4 (n= 7) 0.000 0.000 0.000

Gleason grade group 5 (n= 5) 0.000 0.000 0.000

Acc accuracy
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rather to indicate that physicians may not be skilled at
predicting Gleason grades. We aim for a more equitable
and accurate comparison between AI and human per-
formance in specialized tasks such as Gleason grade
prediction. This approach not only ensures fairness but
also contributes to a better understanding of how AI tools
can complement professional expertise to improve diag-
nostic accuracy and patient care outcomes. We plan to
address these limitations in future studies.
In conclusion, our deep-learning method using T2WI,

validated through multicenter datasets, may provide a
new approach to accurately diagnose PCa and predict
Gleason grade. This has significant clinical significance for
treatment and decision-making in clinical practice.
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